Remedial Action Progress Report — January 2010 through December 2010

UNC Chapel Hill
Airport Road Waste Disposal Area
Chapel Hill, North Carolina

June 2011
Remedial Action Progress Report — January 2010 through December 2010

UNC Chapel Hill
Airport Road Waste Disposal Area, Chapel Hill, North Carolina

Prepared for:
The University of North Carolina at Chapel Hill

Prepared by:
ARCADIS G&M of North Carolina, Inc.
801 Corporate Center Drive,
Suite 300
Raleigh
North Carolina 27607
Tel 919 854 1282
Fax 919 854 5448

Our Ref:
NC000239.0018

Date:
June 2011
REMEDIATING PARTY DOCUMENT CERTIFICATION STATEMENT (.0306(B)(2))

"I certify under penalty of law that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information."

Mary Beth Koza
Name of Remediating Party

[Signature]
Signature of Remediating Party

6-14-2011
Date

NOTARIZATION

North Carolina (Enter State)

Orange COUNTY

I, Nelda Hamlett, a Notary Public of said County and State, do hereby certify that Mary Beth Koza did personally appear and sign before me this day, produced proper identification in the form of license, was duly sworn or affirmed, and declared that, he or she is the duly authorized environmental consultant of the remediating party of the property referenced above and that, to the best of his or her knowledge and belief, after thorough investigation, the information contained in the above certifications is true and accurate, and he or she then signed these Certifications in my presence.

WITNESS my hand and official seal this 14 day of June, 2011.

[Signature]
Notary Public (signature)

My commission expires Jan 8, 2013

Document Certification Form No. DC - 1
(Revised 3/11)
REGISTRATION SITE MANAGER CERTIFICATION OF SIGNATURES

As the Registered Environmental Consultant for the Site for which this filing is made, I certify that the signatures included herewith are genuine and authentic original handwritten signatures and/or true, accurate, and complete copies of the genuine and authentic original handwritten signatures of the persons who purport to sign for this filing. I further certify that I have collected through reliable means the originals and/or copies of said signatures from the persons authorized to sign for this filing who, in fact, signed the originals thereof. Those persons and I understand and agree that any copies of signatures have the same legally binding effect as original handwritten signatures, and I certify that any person for whom I am submitting a copy of their signature has provided me with their express consent to submit said copy. Additionally, I certify that I am authorized to attest to the genuineness and authenticity of the signatures, both originals and any copies, being submitted herewith and that by signing below, I do in fact attest to the genuineness and authenticity of all the signatures, both originals and copies, being submitted for this filing.

James E. Shilliday III
Name of Registered Site Manager

Signature of Registered Site Manager

Date
6/23/11

REGISTRATION SITE MANAGER DOCUMENT CERTIFICATION STATEMENT (.036(b)(1))

“I certify under penalty of law that I am personally familiar with the information contained in this submittal, including any and all supporting documents accompanying this certification, and that the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete and complies with the Inactive Hazardous Sites Response Act G.S. 130A-310, et seq., and the remedial action program Rules 15A NCAC 13C .0300. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information.”

James E. Shilliday III
Name of Registered Site Manager

Signature of Registered Site Manager

Date
6/23/11

NOTARIZATION
North Carolina
WAKE COUNTY

Joyce A. Rogers, a Notary Public of said County and State, do hereby certify that James E. Shilliday III did personally appear and sign before me this day, produced proper identification in the form of personal knowledge, was duly sworn or affirmed, and declared that, he or she is the duly authorized environmental consultant of the remediating party of the property referenced above and that, to the best of his or her knowledge and belief, after thorough investigation, the information contained in the above certifications is true and accurate, and he or she then signed these Certifications in my presence.

WITNESS my hand and official seal this 23 day of JUNE, 2011.

Joyce A. Rogers
Notary Public (Signature)

My commission expires: 8/25/14

Document Certification Form No. DC - II
(Revised 3/11)
Table of Contents

1. Introduction
 - 1-1

2. Groundwater Remediation System
 - 2-1
 - 2.1 Treatment System Operation and Maintenance - 2-1
 - 2.2 Treatment System Sampling
 - 2.2.1 Monthly OWASA Discharge Permit Sampling - 2-2
 - 2.2.2 Air Discharge Effluent Sampling - 2-3

3. Annual Groundwater and Surface Water Sampling Event
 - 3-1
 - 3.1 Groundwater Flow Direction - 3-1
 - 3.2 Groundwater Parameters - 3-2
 - 3.3 Groundwater Sample Analytical Results - 3-2
 - 3.4 Historical Groundwater Analytical Trends - 3-3
 - 3.5 Surface Water Analytical Results - 3-3

4. Infiltration Gallery Injection Event
 - 4-1
 - 4.1 Infiltration Gallery Construction - 4-1
 - 4.2 Injection Chemical Selection - 4-1
 - 4.3 Permitting - 4-1
 - 4.4 October 2010 Injection Event - 4-2
 - 4.5 Post Injection Monitoring - 4-3

5. Summary
 - 5-1
 - 5.1 Groundwater Remediation System O&M - 5-1
 - 5.2 Groundwater Remediation System Monthly OWASA Sampling - 5-1
Table of Contents

5.3 Air Discharge Effluent Sampling 5-2
5.4 Groundwater Sampling 5-2
5.5 Surface Water Sampling 5-2
5.6 Infiltration Gallery 5-3
5.7 Conclusions 5-3

Tables
1 Groundwater Remediation System Sampling and Operation and Maintenance Record, January 2010 through December 2010
2 Summary of Groundwater Treatment System Effluent Sample Results
3 Summary of Air Stripper Discharge Sample Results
4 Summary of VER Discharge Sample Results
5 Summary of Monitor Well and Recovery Well Construction Details
6 Water-Level Elevations in Monitor Wells and Recovery Wells, November 2, 2010
7 Historical Groundwater Elevation Data
8 Groundwater Sampling Data for Samples Collected from Monitor Wells in November 2010
9 Summary of Analytical Results for Groundwater Samples Collected in November 2010
10 Historical Groundwater Analytical Data
11 Summary of Analytical Results for Surface Water Samples Collected in November 2010
12 Infiltration Gallery Monitoring Data Collected in October 2010

Figures
1 Site Location
2 Monitor Well and Recovery Well Location Map
Table of Contents

3 Groundwater Potentiometric Surface of the Shallow Aquifer - November 2010
4 Groundwater Potentiometric Surface of the Bedrock Aquifer - November 2010
5 Benzene Isoconcentration Contour Map of the Shallow Aquifer - November 2010
6 Chloroform Isoconcentration Contour Map of the Shallow Aquifer - November 2010
7 Methylene Chloride Isoconcentration Contour Map of the Shallow Aquifer - November 2010
8 Diethyl Ether Isoconcentration Contour Map of the Shallow Aquifer - November 2010
9 Benzene Isoconcentration Contour Map of the Bedrock Aquifer - November 2010
10 Chloroform Isoconcentration Contour Map of the Bedrock Aquifer - November 2010
11 Diethyl Ether Isoconcentration Contour Map of the Bedrock Aquifer - November 2010
12 Benzene Isoconcentration Cross Section - November 2010
13 Diethyl Ether Isoconcentration Cross Section - November 2010
14 Infiltration Gallery Layout

Appendices

A Discharge Monitoring Reports
B Laboratory Analytical Data Reports for Groundwater Samples
C Laboratory Analytical Data Reports for Air Discharge Samples
1. Introduction

ARCADIS G&M of North Carolina, Inc. (ARCADIS) prepared this report on behalf of the University of North Carolina at Chapel Hill (UNC) to document remedial action progress and performance of the groundwater remediation system at the UNC Airport Road Waste Disposal Area (the site). The site is located near the intersection of Municipal Drive and Animal Shelter Road and is shown on Figure 1.

This site is being remediated under the Registered Environmental Consultant (REC) Program. As required by the REC program implementation guidance, this report is the seventh Remedial Action Progress Report submitted since certification of the Groundwater Remediation System Construction Completion Report on October 25, 2006. As four consecutive quarterly reports were submitted in 2007, REC program guidelines allows for submittal of a single annual report detailing all groundwater remedial activities over the past year. This report is the third annual report and covers the reporting period of January 2010 through December 2010.

This report discusses the operation and maintenance (O&M) of the groundwater remediation system for the period, along with results of the required groundwater effluent sampling and air discharge sampling. The selected remedial option for the site consists of groundwater extraction using electric submersible pumps and dual phase (groundwater/soil vapor) recovery utilizing vacuum-enhanced recovery (VER). Treated groundwater is discharged to the Orange Water and Sewer Authority (OWASA) sewer system under OWASA discharge permit #010. The groundwater remediation system became fully operational on October 5, 2006.

This report also contains the results of the November 2010 annual groundwater and surface water monitoring event. The samples were collected from 28 monitor wells, 4 vapor extraction and recovery wells, 6 recovery wells, and 5 surface water sample locations to evaluate overall effectiveness of the groundwater remediation efforts.

Additionally, during 2010, enhancement of the remedial system was conducted by use of an infiltration gallery. The gallery was installed during removal of the source material conducted in 2008. One injection event utilizing sodium persulfate and associated monitoring was conducted in October 2010. Additional injection events are planned in 2011.
2. Groundwater Remediation System

The groundwater remediation system was installed at the site in the summer of 2006, and the system became fully operational on October 5, 2006. The groundwater remediation system consists of four vapor extraction and recovery (VER) wells (designated VER-1 through VER-4), three shallow recovery wells (designated as SRW-1 through SRW-3) and three deep recovery wells (designated as DRW-1 through DRW-3) as shown on Figure 2. Groundwater from the VER wells and shallow recovery wells is pumped into a settling tank, followed by bag filtration. This flow then joins groundwater pumped from the deep recovery wells and the combined flow enters the air stripper. Following treatment by the air stripper, the water is pumped to OWASA Manhole 47C4001 where it is discharged into the OWASA sewer system.

2.1 Treatment System Operation and Maintenance

The groundwater remediation system is inspected by ARCADIS personnel on a monthly basis. System operational information recorded during the site checks includes readings from the various pressure and flow gauges located on the bag filter, influent flow meters, air stripper, VER system, effluent pump, and effluent totalizer. Minor adjustments are made to keep the system operating as efficiently as possible. Maintenance activities include changing of the cloth bag filter. Monthly O&M activities include collecting readings from the various flow meters and pressure gauges at each well head, as well as cleaning of the air stripper and removal of accumulated sediment from the settling tank.

A record of system O&M activities conducted from January 2010, through December 2010 is included in Table 1. The information presented on Table 1 includes descriptions of the activities and the dates on which the activities were performed.

The groundwater remediation system and recovery wells were generally operational between January 2010 and December 2010. There were no major repairs performed during this period beyond normal cleaning.

Based on the totalizer reading recorded at the treatment system on December 16, 2010, approximately 27,972,470 gallons of impacted groundwater have been extracted from the site and treated and discharged since the system was first activated on October 5, 2006.
2.2 Treatment System Sampling

Treatment system sampling consists of collection of groundwater effluent samples to monitor the quality of water entering the OWASA system and also collection of air discharge samples from the air stripper and VER system. The following sections describe the sampling in greater detail.

2.2.1 Monthly OWASA Discharge Permit Sampling

Following start up of the groundwater remediation system, monthly collection of treated groundwater samples was performed as per the requirements of the OWASA discharge permit #010, which became effective on June 1, 2006. The permit requires monthly discharge sampling and monthly reporting for the first year of system operation followed by monthly sampling and quarterly reporting for subsequent years. The first year of operation was completed as of October 2007 and as such the reporting frequency was adjusted to quarterly. Monthly effluent sampling will continue for the duration of the permit.

The treatment system effluent samples were analyzed for volatile organic compounds (VOCs) and arsenic, chromium, copper, lead, zinc and mercury. Samples designated for analysis of VOCs, arsenic, chromium, copper, lead, and zinc were submitted to TestAmerica in Savannah, Georgia for analysis. Samples designated for analysis of mercury were submitted to TestAmerica in Pensacola, Florida for analysis.

The analytical results from all effluent monitoring events (Table 2) indicate the groundwater treatment system is effectively treating the extracted groundwater. In 2010, all parameters were in compliance with OWASA discharge limits for the respective monitoring period.

Quarterly discharge monitoring reports (DMR) were generated for the January to March 2010 monitoring period, April to June 2010 monitoring period, July to September 2010 monitoring period and October to December 2010 monitoring period. Copies of the DMRs are included in Appendix A. The laboratory analytical reports
associated with the groundwater treatment system effluent samples are included in Appendix B.

2.2.2 Air Discharge Effluent Sampling

In addition to the OWASA effluent sampling, air discharge samples were collected from the air stripper and VER system on a regular basis upon commencement of system operations. Samples were collected during the monitoring period on February 11, 2010 and again on July 27, 2010.

Air samples collected in the field remained in the custody of an ARCADIS employee until hand delivered to the laboratory. Air sample analytical services were provided by Research Triangle Park Laboratories. All air samples were analyzed for VOCs by EPA Method TO-15.

The analytical results from the air discharge sampling events associated with the air stripper and the VER system are presented in Table 3 and Table 4, respectively. The analytical data were converted to daily mass flow in pounds per day using the raw data and the air flow information collected during each monitoring event. The converted data indicates a total average of 0.2 pounds per day of volatile organics for the combined discharge from both the air stripper and VER system for the period of January 2010 through December 2010. Extrapolated for a year, this average would be 73 pounds per year or approximately 0.04 tons. This volume is well below the 5 tons per year required for an air quality permit.

Monitoring of air quality from the air stripper and VER system will continue on a semi-annual basis through the next reporting period as per the monitoring schedule contained in the Construction Completion Report: Groundwater Remediation System dated October 2006. Copies of the air quality laboratory reports are included in Appendix C.
3. Annual Groundwater and Surface Water Sampling Event

The results of the field measurements collected from the site monitor wells are presented in this section along with the analytical results for the November 2010 groundwater and surface water sampling event. The locations of the site monitor wells, recovery wells, and surface water sample points are shown on Figure 2. The construction details for site monitor wells and recovery wells are listed on Table 5.

3.1 Groundwater Flow Direction

Water-level measurements from tops of casings were collected from the site wells on November 2, 2010, to determine the groundwater flow direction at the site. The water-level measurements were converted to water-level elevations using existing monitor well top of casing elevation data. The depth-to-water measurements and the converted water-level elevations for the November 2010 gauging event are listed on Table 6.

The water-level elevations in the shallow monitor wells ranged from 447.41 feet above mean sea level (ft msl) in downgradient well MW-25 to 478.81 ft msl in upgradient well MW-3, located near the source area. In the bedrock aquifer, water-level elevations ranged from 383.85 ft msl in downgradient monitor well MW-35 to 473.57 in monitor well MW-28 which is located upgradient of the source area.

The water-level elevations in the monitor wells adjacent to, or near, recovery wells are most directly affected by the active pumping of the recovery wells. Since the activation of the recovery wells in October 2006, water-level elevations in site monitor wells located near the recovery wells have decreased slightly to significantly depending on the proximity of the monitor well relative to the recovery wells. Historical depth-to-water measurements and groundwater elevation data for the site monitor wells are presented in Table 7.

Water-level contour maps for the November 2010 sampling event were prepared for the surficial and bedrock aquifers using the water-level elevation data from the wells (Figures 3 and 4, respectively). Based on the information presented on Figures 3 and 4, the overall groundwater flow direction in the surficial and bedrock aquifers is generally towards the north and northeast. In comparing the groundwater flow map created with the November 2010 water-level elevation data to the numerous historic potentiometric surface maps that have been created for the site, it is apparent that the groundwater recovery system has altered the groundwater flow pattern at the site.
Based on the November 2010 water level data, the capture zone created by the groundwater extraction wells extends from the VER wells north/northwest to the SRW series of recovery wells and northeast toward deep recovery wells DRW-2 and DRW-3.

3.2 Groundwater Parameters

The field groundwater parameters for temperature, pH, and specific conductance were measured for samples collected from monitor wells during the November 2010 sampling event. The last set of temperature, pH, and specific conductance measurements that were recorded prior to sampling the monitor wells are presented in Table 8. The temperature, pH, and specific conductance ranges for the monitoring wells were as follows: 14.23 to 18.62 (degrees Celsius), 5.30 to 7.88 (standard units), and 163 to 2,507 (µmhos), respectively. The temperature, pH, and specific conductance measurements collected during the November 2010 sampling event are consistent with the measurements collected during previous monitor well sampling events.

3.3 Groundwater Sample Analytical Results

Groundwater samples were collected from 25 monitor wells, 4 vapor extraction and recovery wells, and 6 recovery wells during the November 2010 groundwater sampling event. The analytical results for the November 2010 groundwater sampling event are summarized in Table 9. A copy of the laboratory analytical data report associated with this sampling event is included in Appendix B.

Based on the laboratory data report for the November 2010 sampling event, benzene, chloroform, 1,2-dichloroethane, diethyl ether, methylene chloride, methyl terti-butyl ether (MTBE), 1,1,2,2-tetrachloroethene, trichloroethene, vinyl chloride, and xylene were reported at concentrations above North Carolina Groundwater Standards. The highest concentrations of these compounds were seen in monitor wells MW-1 and MW-2, located immediately downgradient of the source area, with decreasing concentrations further downgradient. The one exception was MTBE which was only detected in one monitor well (bedrock well MW-36) which is located approximately 1,000 feet lateral gradient of the waste disposal area and within approximately 100 feet of Martin Luther King, Jr. Boulevard (formerly Airport Road). Based on the fact that MTBE has never been detected at the site in any other wells, and that the timeframe for use of MTBE began in the 1980s (well after burial activities were suspended at the waste disposal area), it appears that the detection of MTBE in well
MW-36 is likely related to an offsite release of gasoline. It is possible that a gasoline release on or near Martin Luther King Jr. Boulevard (formerly Airport Road) is the cause of the MTBE detections in well MW-36.

Contaminant isoconcentration contour maps for benzene, chloroform, methylene chloride, and diethyl ether are presented for the shallow unconsolidated aquifer in Figures 5, 6, 7, and 8, respectively. Isoconcentration contour maps for benzene, chloroform, and diethyl ether are presented for the bedrock aquifer in Figures 9, 10, and 11, respectively. The maps were created using the data from the November 2009 sampling event, and historical data was also considered in the placement of the contours. Isoconcentration contour cross section maps for benzene and diethyl ether have been prepared and are included as Figures 12 and 13, respectively. Historical groundwater analytical data for site monitor wells are presented in Table 10.

Overall the groundwater analytical data from the November 2010 groundwater sampling event indicates that the existing monitor well network has defined the extent of impacted groundwater at the site.

3.4 Historical Groundwater Analytical Trends

The groundwater analytical data obtained during the November 2010 sampling event indicate localized decreases in specific VOC concentrations since activation of the groundwater remediation system. VOC concentration reductions have been observed primarily in the shallow monitor wells MW-1, MW-2, MW-6 and MW-12, and the bedrock monitor wells MW-11, MW-15 and MW-31. Monitor wells MW-1 and MW-2 are located in close proximity to the VER wells, downgradient of the source area, while monitor well MW-12 is located between SRW-2 and SRW-3. Monitor wells MW-11 and MW-15 are adjacent to DRW-2 and DRW-1 respectively. The general decrease in VOC concentrations, especially in monitor wells located in the vicinity of recovery wells, suggests the groundwater remediation system is effectively reducing groundwater contaminant concentrations at the site. The analytical results for these wells will be further evaluated during future monitoring events to determine if these trends continue. In addition, the groundwater at well MW-36 will continue to be monitored for the presence of MTBE.

3.5 Surface Water Analytical Results

Surface water samples were collected from sample locations SW-2, SW-3, SW-4, SW-5, and SW-6 and analyzed for VOCs during the November 2010 monitoring
event. Surface water sample locations are shown on Figure 2 and tabulated analytical results are displayed on Table 11. Analytical results indicate that no VOCs were detected above laboratory reporting limits in any of the surface water samples collected.
4. Infiltration Gallery Injection Event

4.1 Infiltration Gallery Construction

Following the excavation and off-site disposal of the source material in 2008 at the UNC Airport Road Waste Disposal Area, an infiltration gallery was installed in the excavation base. The gallery was designed to allow the future application of remedial amendments to supplement groundwater recovery efforts. The infiltration gallery was constructed as three individual cells as shown on Figure 14. The bottom of each cell is approximately 13 feet below land surface at elevations ranging from 472 to 474 ft amsl with the higher elevations near Cell 3. Eighteen inch high clay berms separate each cell from each other. The cells are filled to a depth of approximately 18 inches with number 4 sized crushed stone. Within each cell, two north to south oriented 4-inch diameter horizontal slotted pipes were installed at the approximate midpoint of the stone. The horizontal pipes are connected to the land surface via 4-inch diameter Schedule 40 PVC pipes. The dimensions and approximate capacity of each cell and the total infiltration gallery are shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Area (ft²)</th>
<th>Depth (ft)</th>
<th>Volume (ft³)</th>
<th>Est. Porosity</th>
<th>Capacity (ft³)</th>
<th>Capacity (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>1,575</td>
<td>1.5</td>
<td>2,363</td>
<td>30%</td>
<td>709</td>
<td>5,301</td>
</tr>
<tr>
<td>Cell 2</td>
<td>1,950</td>
<td>1.5</td>
<td>2,925</td>
<td>30%</td>
<td>878</td>
<td>6,564</td>
</tr>
<tr>
<td>Cell 3</td>
<td>4,212</td>
<td>1.5</td>
<td>6,318</td>
<td>30%</td>
<td>1,895</td>
<td>14,178</td>
</tr>
<tr>
<td>Total</td>
<td>7,737</td>
<td>1.5</td>
<td>11,606</td>
<td>30%</td>
<td>3,482</td>
<td>26,043</td>
</tr>
</tbody>
</table>

4.2 Injection Chemical Selection

An evaluation was conducted on the mixture of chemicals known to be present at the site. The mixture includes aromatics (benzene, toluene, ethylbenzene and xylenes), ketones (acetone), diethyl ether, chlorinated methanes (carbon tetrachloride and chloroform), chlorinated ethenes (trichloroethene – TCE) and chlorinated ethanes (dichloroethane– DCA). Based on the site specific mix, it was determined that sodium persulfate would likely provide the best treatment approach for the broadest range of chemicals. In addition, activation via sodium hydroxide was selected as the best way to treat the typically more resistant chlorinated methanes.

4.3 Permitting

An Underground Injection Control (UIC) permit was issued to UNC on April 15, 2010 to cover the injection gallery. The permit was issued by the NCDENR Division of Remedial Action.
Water Quality. The site is permitted to perform up to 12 quarterly injection events. Each individual event is permitted for injection of up to 15,000 gallons of sodium persulfate at a concentration of 5 grams per liter (g/L). Activation may be through the use of up to 15,000 gallons of sodium hydroxide at a concentration of 5 g/L. Post injection monitoring consists of monitor wells MW-1, MW-2, MW-3, MW-38, MW-39 and bedrock well MW-14.

4.4 October 2010 Injection Event

Baseline groundwater sampling was conducted prior to the initial injection event on October 1, 2010. Baseline groundwater sampling was conducted on wells MW-1, MW-2, MW-3, MW-14, MW-38, and MW-39 on September 29 and 30, 2010. Each well was purged prior to sampling and field parameters including temperature, pH, dissolved oxygen, conductivity, turbidity, and oxidation-reduction potential were measured with a calibrated multi-parameter meter and recorded. Samples were collected and submitted to TestAmerica Laboratories in Savannah, Georgia for analysis of VOCs, RCRA metals, sodium, iron, and sulfate. Field parameters were also measured and recorded at injection monitoring wells IGMW-1 and IGMW-2.

ARCADIS utilized Garco, to perform the injection. ARCADIS and Garco mobilized to the site on October 1, 2010. Water levels were measured and recorded at injection wells IW-1, IW-2, IW-3, IW-4, IW-5, and IW-6.

An injectant solution was prepared in a decontaminated stainless steel mobile tanker by combining approximately 240 pounds of sodium persulfate and 5,000 gallons of potable water. The solution was recirculated using a pneumatic diaphragm pump to ensure dissolution and mixing of the persulfate. The injectant solution was gravity drained into IW-1. Water levels in the injection wells were monitored throughout the injection. The injection was stopped after injecting approximately 800 gallons to prevent rising water levels in injection wells IW-1 and IW-2 from overflowing.

Due to elevated water levels in the infiltration gallery following a heavy rain event on September 30, 2010 an injectant solution with a higher concentration of sodium persulfate was prepared by adding an additional approximately 240 pounds of sodium persulfate to the remaining 4,200 gallons of injectant solution in the tanker. The injectant was again recirculated in the tanker. Approximately 2,000 gallons of resulting solution were injected into each IW-5 and IW-6. 300 gallons of solution were injected into IW-4.
Due to rising water levels during the first injection attempt in IW-1 and IW-4, a more concentrated injectant solution was prepared for additional injections in IW-2 and IW-3. Approximately 220 pounds of sodium persulfate were mixed with 1,000 gallons of potable water and recirculated in the tanker. Approximately 400 gallons of the resulting solution were gravity drained into injection well IW-2 and approximately 250 gallons were injected into injection well IW-3. Rising water levels in injection wells IW-1, IW-2, IW-3, and IW-4 prevented additional injections into these wells. The remaining approximately 350 gallons of solution were gravity drained into injection well IW-5. The final injection gallery concentration was calculated to be 4 g/L, which is within the injection permit limits.

4.5 Post Injection Monitoring

Post-injection groundwater monitoring was conducted on October 4, 2010, October 8, 2010, and October 18, 2010. During each sampling event MW-1, MW-2, MW-3, MW-14, MW-38, and MW-39 were purged prior to sampling and field parameters including temperature, pH, dissolved oxygen, conductivity, turbidity, and oxidation-reduction potential were measured with a calibrated multi-parameter meter and recorded. Each well was sampled for VOCs, RCRA metals, iron, sodium, and sulfate. Samples were submitted to Test America, an environmental analytical laboratory, for analysis.

The pre-injection and post-injection data are summarized on Table 12. The data are similar for both pre-injection and post-injection; however, both are slightly lower than historic concentrations seen in these wells. Additional monitoring and injections are needed to further evaluate the effectiveness of the persulfate.
5. Summary

This section provides a summary of the groundwater remediation system O&M activities and system sampling activities conducted for the performance monitoring period of January 2010 through December 2010. This section also provides a summary of the analytical results for the groundwater and surface water sampling event conducted at the site in November 2010 and a summary of the infiltration gallery injection event. The data collected during the performance monitoring period documented in this report indicate that the groundwater remediation system is effectively extracting and treating impacted groundwater, and that the impacted groundwater plume at the site is adequately defined by the existing monitor well network.

5.1 Groundwater Remediation System O&M

The groundwater remediation system is inspected by ARCADIS personnel on a regular basis. System operational information recorded during the site checks includes readings from the various pressure and flow gauges located on the bag filter, influent flow meters, air stripper, VER system, effluent pump, and effluent totalizer. Minor adjustments are made to keep the system operating as efficiently as possible. Regular maintenance activities include changing of the cloth bag filter. Monthly O&M activities include collecting readings from the various flow meters and pressure gauges at each well head, as well as cleaning of the air stripper and effluent transfer pump.

Based on the totalizer reading at the treatment system on December 16, 2010, approximately 27,972,470 gallons of impacted groundwater have been pumped from the site recovery wells and treated and discharged since the system was activated on October 5, 2006.

5.2 Groundwater Remediation System Monthly OWASA Sampling

The sampling of the effluent entering the OWASA system was conducted on a monthly basis. The analytical data from the monthly sampling events indicate the groundwater treatment system is sufficiently removing the constituents of concern from the discharge. In 2010, all parameters were in compliance with the OWASA discharge limits.
5.3 Air Discharge Effluent Sampling

The air discharge sampling performed on the effluent discharge of the air stripper and the VER system during the operational period indicated that on average, 0.02 pounds per day of VOCs are being generated from the groundwater remediation system. This value extrapolated over a period of a year indicates the total VOC discharge will be approximately 0.04 tons which is well below the 5 tons per year limit for an air discharge permit.

5.4 Groundwater Sampling

Water-level measurements were collected from site monitor wells and recovery wells during the November 2010 monitor well sampling event. The depth-to-water measurements and the converted water-level elevation data for the shallow and bedrock monitor wells indicate that groundwater is flowing north and northeast across the site.

The groundwater flow pattern derived using the November 2010 water level elevation data indicates that the groundwater recovery system has altered groundwater flow at the site in comparison to previous static water-level elevation measurement events. The groundwater extraction system has created a capture zone that extends from the VER wells north/northwest to the SRW series of recovery wells and northeast toward deep recovery wells DRW-2 and DRW-3.

Groundwater samples were collected from 25 monitor wells, 4 vapor extraction and recovery wells, and 6 recovery wells during the November 2010 annual sampling event and the samples were analyzed for VOCs. The analytical results from the November 2010 groundwater sampling event indicate that benzene, chloroform, 1,2-dichloroethane, diethyl ether, methylene chloride, MTBE, 1,1,2,2-tetrachloroethene, trichloroethene, vinyl chloride, and xylene were reported at concentrations above North Carolina Groundwater Standards. The concentrations of some of these constituents have been reduced at specific well locations. The detection of MTBE in well MW-36 will continue to be monitored.

5.5 Surface Water Sampling

Surface water samples were collected from sample locations SW-2, SW-3, SW-4, SW-5, and SW-6 and analyzed for VOCs during the November 2010 sampling event. Analytical results indicate that no VOCs were detected above laboratory reporting limits in any of the surface water samples collected.
5.6 Infiltration Gallery

The initial injection of the infiltration gallery was conducted on October 1, 2010. Monitoring data for the initial event indicated no significant change in concentrations within downgradient monitor wells. Additional events will be conducted in 2011 at which time the use of persulfate can be better evaluated.

5.7 Conclusions

The data generated for the UNC Airport Road Waste Disposal Area during 2010 continues to indicate that the extent of impacted groundwater is well understood, and that the impacted groundwater plume is contained onsite. Furthermore, the active groundwater remediation system appears to be effective at containing and recovering the impacted groundwater and reduced contaminant concentrations have been observed at several monitor well locations. Operation of the groundwater remediation system will continue through 2011 with the next Remedial Action Progress Report being submitted in the first quarter of 2012.
Remedial Action
Progress Report —
January 2010 through
December 2010

Tables
Table 1. Groundwater Remediation System Sampling and Operation and Maintenance Record January 2010 through December 2010, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Date</th>
<th>Personnel On-Site</th>
<th>Maintenance Activity/Comments</th>
<th>System Status</th>
<th>Samples Collected</th>
<th>System Totalizer Reading (gallons)</th>
<th>Gallons Pumped During Period (gallons)</th>
<th>OWASA Totalizer Reading (gallons)</th>
<th>Average Daily Flow for Period (gallons)</th>
<th>Period Start</th>
<th>Period End</th>
</tr>
</thead>
</table>
Table 1. Groundwater Remediation System Sampling and Operation and Maintenance Record January 2010 through December 2010, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Date</th>
<th>Personnel On-Site</th>
<th>Maintenance Activity/Comments</th>
<th>System Status</th>
<th>Samples Collected</th>
<th>System Totalizer Reading (gallons)</th>
<th>Gallons Pumped During Period (gallons)</th>
<th>OWASA Totalizer Reading</th>
<th>Average Daily Flow for Period (gallons)</th>
<th>Period Start</th>
<th>Period End</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/19/2010</td>
<td>SAEDACCO</td>
<td>On-site for monthly system cleaning and O&M. AS trays descaled.</td>
<td>Running</td>
<td>None</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/11/2010</td>
<td>SAEDACCO</td>
<td>On-site for monthly system cleaning and O&M. AS trays descaled.</td>
<td>Running</td>
<td>None</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/14/2010</td>
<td>D. Twamley</td>
<td>On-site to collect monthly effluent samples. Remediation system inspected.</td>
<td>Running</td>
<td>Effluent (VOCs, RCRA metals and LL Mercury)</td>
<td>27,972,470</td>
<td>1,189,341</td>
<td>3,040,485</td>
<td>30,496</td>
<td>11/5/2010</td>
<td>12/14/2010</td>
</tr>
<tr>
<td>12/16/2010</td>
<td>SAEDACCO</td>
<td>On-site for monthly system cleaning and O&M. AS trays descaled.</td>
<td>Running</td>
<td>None</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of Groundwater Treatment System Effluent Sample Results, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OWASA Maximum Allowable Discharge Concentration</th>
<th>Groundwater Treatment System Effluent Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (µg/L)</td>
<td>100</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform (µg/L)</td>
<td>100</td>
<td>< 1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane (µg/L)</td>
<td>71</td>
<td>1.6</td>
</tr>
<tr>
<td>Methylene Chloride (µg/L)</td>
<td>930</td>
<td>< 5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (µg/L)</td>
<td>30</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Arsenic (µg/L)</td>
<td>16</td>
<td>< 20</td>
</tr>
<tr>
<td>Chromium (µg/L)</td>
<td>50</td>
<td>< 10</td>
</tr>
<tr>
<td>Copper (µg/L)</td>
<td>60</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead (µg/L)</td>
<td>49</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc (µg/L)</td>
<td>535</td>
<td>< 20</td>
</tr>
<tr>
<td>Mercury (ng/L)</td>
<td>50</td>
<td>0.67</td>
</tr>
</tbody>
</table>

µg/L Micrograms per liter
ng/L Nanograms per liter
Table 2. Summary of Groundwater Treatment System Effluent Sample Results, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OWASA Maximum Allowable Discharge Concentration</th>
<th>Groundwater Treatment System Effluent Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (µg/L)</td>
<td>100</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform (µg/L)</td>
<td>100</td>
<td>< 1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane (µg/L)</td>
<td>71</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Methylene Chloride (µg/L)</td>
<td>930</td>
<td>< 5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (µg/L)</td>
<td>30</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Arsenic (µg/L)</td>
<td>16</td>
<td>< 20</td>
</tr>
<tr>
<td>Chromium (µg/L)</td>
<td>50</td>
<td>< 10</td>
</tr>
<tr>
<td>Copper (µg/L)</td>
<td>60</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead (µg/L)</td>
<td>49</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc (µg/L)</td>
<td>535</td>
<td>< 100</td>
</tr>
<tr>
<td>Mercury (ng/L)</td>
<td>50</td>
<td>< 0.50</td>
</tr>
</tbody>
</table>

µg/L Micrograms per liter
ng/L Nanograms per liter
Table 3. Summary of Air Stripper Discharge Sample Results, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Stripper Discharge Pipe (6 inch diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Flow Rate (cfm)</td>
<td></td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Vapor Temperature (degrees celcius)</td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Vapor Flow Rate (m³/day)</td>
<td></td>
<td>13824</td>
<td>13824</td>
</tr>
<tr>
<td>Discharge Velocity (ft/sec)</td>
<td></td>
<td>6.79</td>
<td>6.79</td>
</tr>
<tr>
<td>Volatile Organics (ppbv) (USEPA Method TO-15 GC/MS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (g/mol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration ppbv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converted Daily Mass Flow Rate mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Mass Flow Rate lbs/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodifluoromethane (Freon 12)</td>
<td>120.91</td>
<td>0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>1,2-Chloro-1,1,2,2-Tetrafluoroethane</td>
<td>170.92</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>50.49</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>62.50</td>
<td>2.53</td>
<td>0.01</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>54.09</td>
<td>2.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>94.94</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>64.51</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Trichloromonofluoromethane</td>
<td>137.37</td>
<td>0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>96.94</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>187.38</td>
<td>2.53</td>
<td>0.01</td>
</tr>
<tr>
<td>Ethanol</td>
<td>46.07</td>
<td>2.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>76.14</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Isopropl alcohol</td>
<td>60.10</td>
<td>2.53</td>
<td>0.01</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>84.93</td>
<td>2.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Acetone</td>
<td>58.08</td>
<td>2.86</td>
<td>0.01</td>
</tr>
<tr>
<td>1,1,1-Trichloroethylene</td>
<td>96.94</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Hexane</td>
<td>86.18</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>88.15</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>98.96</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>86.09</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>cis-1,2-dichloroethene</td>
<td>96.94</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>84.18</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Chloroform</td>
<td>119.38</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>88.10</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Tetrachlorofuran</td>
<td>72.11</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>133.40</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>153.82</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>72.11</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Heptane</td>
<td>100.2</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Benzene</td>
<td>78.11</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>98.96</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Trichloroethylethane</td>
<td>131.39</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>112.99</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>163.83</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>88.11</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>110.97</td>
<td>2.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Toluene</td>
<td>92.14</td>
<td>1.98</td>
<td>0.01</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>100.16</td>
<td>61.88</td>
<td>0.25</td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>110.97</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>165.83</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>133.40</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>208.28</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>187.86</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>109.16</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>112.56</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>106.17</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>106.17</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>Styrene</td>
<td>104.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribromomethane</td>
<td>252.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>167.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Ethyl-4-4-Methylbenzene</td>
<td>120.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>120.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>120.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyll Chloride</td>
<td>126.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,3,4,4-hexachloro-1,2-butaide</td>
<td>260.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>181.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion from ppbv to mg/m³: mg/m³ = (ppbv/1000)(MW)/24.45

Calculated values

mg/m³ milligrams per cubic meter
lbs/day pounds per day
cfm cubic feet per minute
m³/day cubic meters per day
ft/sec feet per second
ppbv parts per billion by volume
Table 4. Summary of VER Discharge Sample Results, UNC Airport Road Waste Disposal Area, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Molecular Weight (g/mol)</th>
<th>Converted Concentration (mg/m³)</th>
<th>Daily Mass Flow Rate (lbs/day)</th>
<th>Converted Concentration (mg/m³)</th>
<th>Daily Mass Flow Rate (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VER Discharge</td>
<td></td>
<td>VER Discharge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date Sampled: 2/11/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VER Discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Dia. (4 inch diameter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Flow Rate (cfm)</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Temperature (degrees farenheit)</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor flow Rate (m³/day)</td>
<td>3,888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Velocity (ft/sec)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organics (ppbv)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane (Freon 12)</td>
<td>120.91</td>
<td>8.22</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Chloro-1,1,2,2-Tetrafluoroethane</td>
<td>170.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>50.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>62.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>54.09</td>
<td>8.22</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>94.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>64.51</td>
<td>33.64</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloromonofluoromethane</td>
<td>137.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>96.94</td>
<td>4.49</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-trichloro-1,2,2-trifluoroethane</td>
<td>187.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>46.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>76.14</td>
<td>11.90</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>60.10</td>
<td>4.49</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>84.93</td>
<td>11.90</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>58.08</td>
<td>11.90</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-1,2-dichloroethene</td>
<td>96.94</td>
<td>42.45</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>86.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBE</td>
<td>88.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>86.09</td>
<td>1.89</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-dichloroethane</td>
<td>96.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>84.18</td>
<td>0.91</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>119.38</td>
<td>17.42</td>
<td>0.1</td>
<td>28.58</td>
<td>0.1</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>88.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrhydrofuran</td>
<td>72.11</td>
<td>31.35</td>
<td>0.1</td>
<td>7.18</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>133.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>153.82</td>
<td>0.55</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butane</td>
<td>72.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptane</td>
<td>100.2</td>
<td>1.01</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>78.11</td>
<td>10.33</td>
<td>0.1</td>
<td>26.60</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>98.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>131.39</td>
<td>6.97</td>
<td>0.0</td>
<td>1.40</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>112.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>165.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>88.11</td>
<td>11.90</td>
<td>0.0</td>
<td>3.90</td>
<td>0.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>110.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>92.14</td>
<td>8.27</td>
<td>0.0</td>
<td>1.18</td>
<td>0.0</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>100.16</td>
<td>15.56</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-1,2-dichloropropane</td>
<td>110.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>165.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>133.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>208.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>187.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>100.16</td>
<td>136.56</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>106.17</td>
<td>1.49</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>112.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>106.17</td>
<td>1.00</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>106.17</td>
<td>1.00</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>104.15</td>
<td>8.56</td>
<td>0.1</td>
<td>3.46</td>
<td>0.0</td>
</tr>
<tr>
<td>Tribromomethane</td>
<td>252.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>167.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Ethyl-4-Methylbenzene</td>
<td>120.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>120.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>120.19</td>
<td>0.87</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyli Chloride</td>
<td>126.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>147.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,3,4,4-Hexachloro-1,2-buta diene</td>
<td>260.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>181.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total lbs/day: 0.01 0.01

Conversion from ppbv to mg/m³: mg/m³ = (ppbv/1000)(MW)/24.45

Calculated values

Potential hazards: Calculated values

mg/m³: milligrams per cubic meter

lbs/day: pounds per day

cfm: cubic feet per minute

m³/day: cubic meters per day

ft/sec: feet per second

ppbv: parts per billion by volume
Table 5. Summary of Monitor Well and Recovery Well Construction Details, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Monitor Well Identification</th>
<th>Date of Installation</th>
<th>Measuring Point Elevation (ft msl)</th>
<th>Depth of Surface Casing (ft bls)</th>
<th>Total Drilled Depth (ft bls)</th>
<th>Screened Interval (ft bls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>INA</td>
<td>483.11</td>
<td>NA</td>
<td>28.3</td>
<td>INA</td>
</tr>
<tr>
<td>MW-2</td>
<td>INA</td>
<td>484.30</td>
<td>NA</td>
<td>29</td>
<td>INA</td>
</tr>
<tr>
<td>MW-3</td>
<td>INA</td>
<td>483.34</td>
<td>NA</td>
<td>20</td>
<td>INA</td>
</tr>
<tr>
<td>MW-4</td>
<td>INA</td>
<td>472.18</td>
<td>NA</td>
<td>24.6</td>
<td>INA</td>
</tr>
<tr>
<td>MW-6</td>
<td>4/21/1995</td>
<td>475.01</td>
<td>22</td>
<td>48</td>
<td>38.0-48.0</td>
</tr>
<tr>
<td>MW-7</td>
<td>4/21/1995</td>
<td>476.25</td>
<td>NA</td>
<td>43.5</td>
<td>20.0-35.0</td>
</tr>
<tr>
<td>MW-9</td>
<td>4/18/1995</td>
<td>472.78</td>
<td>NA</td>
<td>36</td>
<td>26.0-36.0</td>
</tr>
<tr>
<td>MW-11</td>
<td>4/13/1995</td>
<td>464.21</td>
<td>NA</td>
<td>22</td>
<td>12.0-22.0</td>
</tr>
<tr>
<td>MW-13</td>
<td>4/19/1995</td>
<td>467.60</td>
<td>NA</td>
<td>23</td>
<td>13.0-23.0</td>
</tr>
<tr>
<td>MW-14</td>
<td>8/11/1995</td>
<td>481.67</td>
<td>29</td>
<td>175</td>
<td>165.0-175.0</td>
</tr>
<tr>
<td>MW-15</td>
<td>7/20/1995</td>
<td>465.04</td>
<td>40</td>
<td>60.5</td>
<td>50.0-60.0</td>
</tr>
<tr>
<td>MW-16</td>
<td>7/21/1995</td>
<td>467.14</td>
<td>16</td>
<td>82</td>
<td>22.0-42.0</td>
</tr>
<tr>
<td>MW-17</td>
<td>7/24/1995</td>
<td>478.99</td>
<td>26</td>
<td>71</td>
<td>60.0-70.0</td>
</tr>
<tr>
<td>MW-18</td>
<td>7/19/1995</td>
<td>467.96</td>
<td>NA</td>
<td>16</td>
<td>5.0-15.0</td>
</tr>
<tr>
<td>MW-19</td>
<td>7/19/1995</td>
<td>473.90</td>
<td>NA</td>
<td>10</td>
<td>5.0-10.0</td>
</tr>
<tr>
<td>MW-20</td>
<td>7/27/1995</td>
<td>475.03</td>
<td>NA</td>
<td>25</td>
<td>14.0-24.0</td>
</tr>
<tr>
<td>MW-21</td>
<td>7/21/1995</td>
<td>463.28</td>
<td>NA</td>
<td>22</td>
<td>11.0-21.0</td>
</tr>
<tr>
<td>MW-22</td>
<td>7/26/1995</td>
<td>460.78</td>
<td>NA</td>
<td>10</td>
<td>5.0-10.0</td>
</tr>
<tr>
<td>MW-23</td>
<td>8/17/1995</td>
<td>458.92</td>
<td>17</td>
<td>89</td>
<td>78.0-88.0</td>
</tr>
<tr>
<td>MW-24</td>
<td>1/19/1996</td>
<td>465.32</td>
<td>105</td>
<td>200</td>
<td>175.0-195.0</td>
</tr>
<tr>
<td>MW-25</td>
<td>1/23/1996</td>
<td>458.74</td>
<td>NA</td>
<td>15</td>
<td>5.0-15.0</td>
</tr>
<tr>
<td>MW-26</td>
<td>2/5/1996</td>
<td>458.79</td>
<td>20</td>
<td>180</td>
<td>75.0-95.0</td>
</tr>
<tr>
<td>MW-28</td>
<td>1/15/1996</td>
<td>480.40</td>
<td>NA</td>
<td>46</td>
<td>36.0-46.0</td>
</tr>
<tr>
<td>MW-29</td>
<td>11/14/1996</td>
<td>480.73</td>
<td>55</td>
<td>170</td>
<td>160.0-170.0</td>
</tr>
<tr>
<td>MW-30</td>
<td>11/12/1996</td>
<td>468.57</td>
<td>NA</td>
<td>40</td>
<td>25.0-40.0</td>
</tr>
<tr>
<td>MW-31</td>
<td>11/13/1996</td>
<td>468.45</td>
<td>50</td>
<td>90</td>
<td>75.0-90.0</td>
</tr>
<tr>
<td>MW-32</td>
<td>11/12/1996</td>
<td>462.06</td>
<td>NA</td>
<td>43</td>
<td>28.0-43.0</td>
</tr>
<tr>
<td>MW-33</td>
<td>11/13/1996</td>
<td>461.46</td>
<td>50</td>
<td>85</td>
<td>70.0-85.0</td>
</tr>
<tr>
<td>MW-34</td>
<td>7/6/2004</td>
<td>464.65</td>
<td>NA</td>
<td>85</td>
<td>70.0-85.0</td>
</tr>
<tr>
<td>MW-35</td>
<td>7/6/2004</td>
<td>452.45</td>
<td>NA</td>
<td>75</td>
<td>60.0-75.0</td>
</tr>
<tr>
<td>MW-36</td>
<td>7/7/2004</td>
<td>466.90</td>
<td>NA</td>
<td>84</td>
<td>69.0-84.0</td>
</tr>
<tr>
<td>MW-37</td>
<td>7/6/2004</td>
<td>460.29</td>
<td>100</td>
<td>125</td>
<td>115.0-125.0</td>
</tr>
<tr>
<td>MW-38</td>
<td>9/10/2010</td>
<td>484.85</td>
<td>NA</td>
<td>20</td>
<td>10.0-20.0</td>
</tr>
<tr>
<td>MW-39</td>
<td>9/10/2010</td>
<td>478.20</td>
<td>NA</td>
<td>20</td>
<td>10.0-20.0</td>
</tr>
<tr>
<td>SRW-1</td>
<td>4/4/2006</td>
<td>460.98</td>
<td>NA</td>
<td>25</td>
<td>10.0-25.0</td>
</tr>
<tr>
<td>SRW-2</td>
<td>4/13/2006</td>
<td>464.20</td>
<td>NA</td>
<td>35</td>
<td>20.0-35.0</td>
</tr>
<tr>
<td>SRW-3</td>
<td>4/4/2006</td>
<td>462.76</td>
<td>NA</td>
<td>35</td>
<td>20.0-35.0</td>
</tr>
<tr>
<td>DRW-1</td>
<td>4/2/1998</td>
<td>466.11</td>
<td>20</td>
<td>80</td>
<td>Open Borehole</td>
</tr>
<tr>
<td>DRW-2</td>
<td>4/7/2006</td>
<td>461.90</td>
<td>20</td>
<td>80</td>
<td>Open Borehole</td>
</tr>
<tr>
<td>DRW-3</td>
<td>4/7/2006</td>
<td>459.20</td>
<td>20</td>
<td>150</td>
<td>Open Borehole</td>
</tr>
<tr>
<td>VER-1</td>
<td>4/4/2006</td>
<td>483.08</td>
<td>NA</td>
<td>25</td>
<td>5.0-25.0</td>
</tr>
<tr>
<td>VER-2</td>
<td>3/26/1998</td>
<td>482.20</td>
<td>NA</td>
<td>25</td>
<td>5.0-25.0</td>
</tr>
<tr>
<td>VER-3</td>
<td>4/4/2006</td>
<td>480.11</td>
<td>NA</td>
<td>25</td>
<td>5.0-25.0</td>
</tr>
<tr>
<td>VER-4</td>
<td>4/4/2006</td>
<td>478.83</td>
<td>NA</td>
<td>25</td>
<td>5.0-25.0</td>
</tr>
</tbody>
</table>

* Bedrock wells - This designation indicates that the entire screened interval or open borehole interval is in bedrock.

ft msl Feet above mean sea level.
NA Not Applicable.
ft bls Feet below land surface.
INA Information not available.

Note: Monitor Wells MW-8, MW-10, and MW-27 were not installed.
Table 6. Water Level Elevations in Monitor Wells and Recovery Wells, November 2, 2010, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Monitor Well Identification</th>
<th>Measuring Point Elevation (ft msl)</th>
<th>Depth to Water (ft toc)</th>
<th>Groundwater Elevation (ft msl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>483.11</td>
<td>16.40</td>
<td>466.71</td>
</tr>
<tr>
<td>MW-2</td>
<td>484.30</td>
<td>18.71</td>
<td>465.59</td>
</tr>
<tr>
<td>MW-3</td>
<td>483.34</td>
<td>4.53</td>
<td>478.81</td>
</tr>
<tr>
<td>MW-4</td>
<td>472.18</td>
<td>19.08</td>
<td>453.10</td>
</tr>
<tr>
<td>MW-5</td>
<td>454.62</td>
<td>5.18</td>
<td>449.44</td>
</tr>
<tr>
<td>MW-6</td>
<td>472.55</td>
<td>18.35</td>
<td>454.20</td>
</tr>
<tr>
<td>*MW-7</td>
<td>475.01</td>
<td>23.33</td>
<td>451.68</td>
</tr>
<tr>
<td>*MW-9</td>
<td>476.25</td>
<td>15.58</td>
<td>460.67</td>
</tr>
<tr>
<td>*MW-11</td>
<td>472.78</td>
<td>34.40</td>
<td>438.38</td>
</tr>
<tr>
<td>MW-12</td>
<td>464.21</td>
<td>14.02</td>
<td>450.19</td>
</tr>
<tr>
<td>*MW-13</td>
<td>467.60</td>
<td>15.52</td>
<td>452.08</td>
</tr>
<tr>
<td>*MW-14</td>
<td>481.67</td>
<td>27.26</td>
<td>454.41</td>
</tr>
<tr>
<td>*MW-15</td>
<td>465.04</td>
<td>22.95</td>
<td>442.09</td>
</tr>
<tr>
<td>*MW-16</td>
<td>467.14</td>
<td>5.85</td>
<td>461.29</td>
</tr>
<tr>
<td>*MW-17</td>
<td>478.99</td>
<td>16.22</td>
<td>462.77</td>
</tr>
<tr>
<td>MW-18</td>
<td>467.96</td>
<td>4.13</td>
<td>463.83</td>
</tr>
<tr>
<td>MW-19</td>
<td>473.90</td>
<td>4.21</td>
<td>469.69</td>
</tr>
<tr>
<td>MW-20</td>
<td>475.03</td>
<td>Dry</td>
<td>--</td>
</tr>
<tr>
<td>*MW-21</td>
<td>463.28</td>
<td>12.21</td>
<td>451.07</td>
</tr>
<tr>
<td>MW-22</td>
<td>460.78</td>
<td>4.71</td>
<td>456.07</td>
</tr>
<tr>
<td>*MW-23</td>
<td>458.92</td>
<td>11.56</td>
<td>447.36</td>
</tr>
<tr>
<td>*MW-24</td>
<td>465.32</td>
<td>17.53</td>
<td>447.79</td>
</tr>
<tr>
<td>MW-25</td>
<td>458.74</td>
<td>11.33</td>
<td>447.41</td>
</tr>
<tr>
<td>*MW-26</td>
<td>458.79</td>
<td>26.60</td>
<td>432.19</td>
</tr>
<tr>
<td>*MW-28</td>
<td>480.4</td>
<td>6.83</td>
<td>473.57</td>
</tr>
<tr>
<td>*MW-29</td>
<td>480.73</td>
<td>14.46</td>
<td>466.27</td>
</tr>
<tr>
<td>MW-30</td>
<td>468.57</td>
<td>32.54</td>
<td>436.03</td>
</tr>
<tr>
<td>*MW-31</td>
<td>468.45</td>
<td>33.06</td>
<td>435.39</td>
</tr>
<tr>
<td>*MW-32</td>
<td>462.06</td>
<td>23.34</td>
<td>438.72</td>
</tr>
<tr>
<td>*MW-33</td>
<td>461.46</td>
<td>27.07</td>
<td>434.39</td>
</tr>
<tr>
<td>*MW-34</td>
<td>464.65</td>
<td>24.63</td>
<td>440.02</td>
</tr>
<tr>
<td>*MW-35</td>
<td>452.45</td>
<td>68.60</td>
<td>383.85</td>
</tr>
<tr>
<td>*MW-36</td>
<td>466.90</td>
<td>20.99</td>
<td>445.91</td>
</tr>
<tr>
<td>*MW-37</td>
<td>460.29</td>
<td>22.19</td>
<td>438.10</td>
</tr>
<tr>
<td>MW-38</td>
<td>484.85</td>
<td>16.16</td>
<td>468.69</td>
</tr>
<tr>
<td>MW-39</td>
<td>478.20</td>
<td>3.86</td>
<td>474.34</td>
</tr>
<tr>
<td>VER-1</td>
<td>483.08</td>
<td>14.39</td>
<td>468.69</td>
</tr>
<tr>
<td>VER-2</td>
<td>482.20</td>
<td>21.15</td>
<td>461.05</td>
</tr>
<tr>
<td>VER-3</td>
<td>480.11</td>
<td>23.53</td>
<td>456.58</td>
</tr>
<tr>
<td>VER-4</td>
<td>478.83</td>
<td>4.11</td>
<td>474.72</td>
</tr>
<tr>
<td>SRW-1</td>
<td>460.98</td>
<td>Dry</td>
<td>--</td>
</tr>
<tr>
<td>SRW-2</td>
<td>464.20</td>
<td>26.43</td>
<td>437.77</td>
</tr>
<tr>
<td>SRW-3</td>
<td>462.76</td>
<td>22.52</td>
<td>440.24</td>
</tr>
<tr>
<td>*DRW-1</td>
<td>466.11</td>
<td>19.53</td>
<td>446.58</td>
</tr>
<tr>
<td>*DRW-2</td>
<td>461.90</td>
<td>46.43</td>
<td>415.47</td>
</tr>
<tr>
<td>*DRW-3</td>
<td>459.20</td>
<td>34.54</td>
<td>424.66</td>
</tr>
</tbody>
</table>

* Bedrock Wells - This designation indicates that the entire screened interval or open borehole interval is in bedrock.
Dry Well dry at time of gauging
NA Not available.
NM Not measured.

ft toc Feet below top of casing.
ft msl Feet above mean sea level.
Table 7.

Historical Groundwater Elevation Data, UNC Airport Road Waste Disposal Area, University of North
Carolina at Chapel Hill, Chapel Hill, North Carolina.

1/10/07
4/16/07
7/11/07
10/1/07
10/20/08
11/2/09
11/2/10
Date Measured:
Monitor
Depth
GW
Well
TOC
to WL Elevation to WL Elevation
ID
(ft msl) (ft toc) (ft msl)
MW-1
MW-2
MW-3
MW-4
MW-5
MW-6
*MW-7
*MW-9
*MW-11
MW-12
*MW-13
*MW-14
*MW-15
*MW-16
*MW-17
MW-18
MW-19
MW-20
*MW-21
MW-22
*MW-23
*MW-24
MW-25
*MW-26
*MW-28
*MW-29
*MW-30
*MW-31
*MW-32
*MW-33
*MW-34
*MW-35
*MW-36
*MW-37
MW-38
MW-39
VER-1
VER-2
VER-3
VER-4
SRW-1
SRW-2
SRW-3
*DRW-1
*DRW-2
*DRW-3
TOC
WL
GW
NM
ft toc
ft msl
*
Dry

483.11
484.30
483.34
472.18
454.62
472.55
475.01
476.25
472.78
464.21
467.60
481.67
465.04
467.14
478.99
467.96
473.90
475.03
463.28
460.78
458.92
465.32
458.74
458.79
480.40
480.73
468.57
468.45
462.06
461.46
464.65
452.45
466.90
460.29
484.85
478.20
483.08
482.20
480.11
478.83
460.98
464.20
462.76
466.11
461.90
459.20

20.17
21.10
3.37
11.58
1.84
9.04
13.41
10.97
32.94
9.74
9.18
23.60
10.95
4.72
15.52
2.90
NM
16.36
8.31
3.47
13.32
9.62
4.32
27.55
4.88
13.57
32.18
35.63
18.12
24.39
19.49
58.12
17.69
18.95
--NM
NM
NM
NM
NM
NM
NM
NM
NM
NM

462.94
463.20
479.97
460.6
452.78
463.51
461.6
465.28
439.84
454.47
458.42
458.07
454.09
462.42
463.47
465.06
NM
458.67
454.97
457.31
445.60
455.70
454.42
431.24
475.52
467.16
436.39
432.82
443.94
437.07
445.16
394.33
449.21
441.34

19.08
20.60
3.79
9.88
1.71
10.34
19.40
11.24
33.38
14.45
9.08
27.06
20.33
4.93
17.54
2.95
NM
10.44
8.23
3.23
13.33
12.29
3.31
37.63
4.67
12.80
30.45
35.13
15.81
23.18
17.61
55.78
16.28
17.26
--NM
NM
NM
NM
NM
NM
NM
NM
NM
NM

464.03
463.70
479.55
462.3
452.91
462.21
455.61
465.01
439.4
449.76
458.52
454.61
444.71
462.21
461.45
465.01
NM
464.59
455.05
457.55
445.59
453.03
455.43
421.16
475.73
467.93
438.12
433.32
446.25
438.28
447.04
396.67
450.62
443.03

19.57
21.58
8.22
15.29
14.83
14.55
22.93
12.60
34.96
18.62
22.95
29.02
23.37
7.09
19.28
4.80
4.74
18.85
13.84
7.60
12.61
13.65
11.69
48.86
7.69
15.15
32.11
38.46
22.61
27.35
22.91
53.97
20.44
21.61
--NM
NM
NM
NM
NM
NM
NM
NM
NM
NM

463.54
462.72
475.12
456.89
439.79
458.00
452.08
463.65
437.82
445.59
444.65
452.65
441.67
460.05
459.71
463.16
469.16
456.18
449.44
453.18
446.31
451.67
447.05
409.93
472.71
465.58
436.46
429.99
439.45
434.11
441.74
398.48
446.46
438.68

21.20
24.24
12.42
20.21
Dry
18.03
24.50
16.95
35.60
24.43
Dry
30.38
23.41
8.69
20.88
6.41
6.97
Dry
16.86
10.32
24.34
14.85
Dry
53.78
10.57
18.92
35.84
41.31
28.59
30.01
28.35
52.42
23.66
31.14
--NM
NM
NM
NM
NM
NM
NM
NM
NM
NM

461.91
460.06
470.92
451.97
<439.62
454.52
450.51
459.30
437.18
439.78
<444.60
451.29
441.63
458.45
458.11
461.55
466.93
<450.03
446.42
450.46
434.58
450.47
<443.74
405.01
469.83
461.81
432.73
427.14
433.47
431.45
436.30
400.03
443.24
429.15

18.79
20.25
6.01
14.88
6.50
14.74
21.80
13.38
34.01
12.65
19.10
27.18
21.13
6.40
17.06
4.37
3.84
20.30
11.30
5.06
13.39
10.62
11.22
21.66
6.48
14.23
30.33
34.19
21.19
26.60
22.41
56.67
20.40
21.07
--NM
NM
NM
NM
NM
NM
NM
NM
NM
NM

464.32
464.05
477.33
457.30
448.12
457.81
453.21
462.87
438.77
451.56
448.50
454.49
443.91
460.74
461.93
463.59
470.06
454.73
451.98
455.72
445.53
454.70
447.52
437.13
473.92
466.50
438.24
434.26
440.87
434.86
442.24
395.78
446.50
439.22

Top of Casing
Water Level
Groundwater
Not measured.
Feet below top of casing.
Feet above mean sea level.
Bedrock Wells - This designation indicates that the entire screened interval or open borehole interval is in bedrock.
Well dry at time of gauging

G:\ENV\UNIVNC\Airport Road\NC000239.0018\2010 Remedial System Report\Tables\Table 7 Historical GW Elevations.xlsx

18.20
20.35
4.16
18.27
5.40
18.02
23.34
15.25
34.88
12.20
8.20
28.62
22.90
7.12
18.47
4.79
4.63
Dry
16.00
5.18
17.99
13.37
10.10
28.04
6.30
15.01
32.50
34.58
24.97
27.98
26.21
65.76
20.86
24.07
--8.48
17.64
15.67
6.80
13.55
25.70
23.65
21.00
44.30
35.20

464.91
463.95
479.18
453.91
449.22
454.53
451.67
461.00
437.90
452.01
459.40
453.05
442.14
460.02
460.52
463.17
469.27
-447.28
455.60
440.93
451.95
448.64
430.75
474.10
465.72
436.07
433.87
437.09
433.48
438.44
386.69
446.04
436.22
--474.60
464.56
464.44
472.03
447.43
438.50
439.11
445.11
417.60
424.00

16.40
18.71
4.53
19.08
5.18
18.35
23.33
15.58
34.40
14.02
15.52
27.26
22.95
5.85
16.22
4.13
4.21
Dry
12.21
4.71
11.56
17.53
11.33
26.60
6.83
14.46
32.54
33.06
23.34
27.07
24.63
68.60
20.99
22.19
16.16
3.86
14.39
21.15
23.53
4.11
Dry
26.43
22.52
19.53
46.43
34.54

466.71
465.59
478.81
453.10
449.44
454.20
451.68
460.67
438.38
450.19
452.08
454.41
442.09
461.29
462.77
463.83
469.69
-451.07
456.07
447.36
447.79
447.41
432.19
473.57
466.27
436.03
435.39
438.72
434.39
440.02
383.85
445.91
438.10
468.69
474.34
468.69
461.05
456.58
474.72
-437.77
440.24
446.58
415.47
424.66


<table>
<thead>
<tr>
<th>Well No.</th>
<th>Date Sampled</th>
<th>Gallons per Well Volume</th>
<th>Gallons Purged</th>
<th>Temperature (Degrees Celsius)</th>
<th>pH (Standard Units)</th>
<th>Specific Conductance (µmhos/cm)</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>11/4/2010</td>
<td>1.9</td>
<td>5.7</td>
<td>16.74</td>
<td>6.82</td>
<td>1,967</td>
<td>Peristaltic Pump</td>
</tr>
<tr>
<td>MW-2</td>
<td>11/4/2010</td>
<td>1.6</td>
<td>5.0</td>
<td>16.50</td>
<td>6.55</td>
<td>1,970</td>
<td>Peristaltic Pump</td>
</tr>
<tr>
<td>MW-3</td>
<td>11/4/2010</td>
<td>2.5</td>
<td>7.4</td>
<td>18.62</td>
<td>6.11</td>
<td>742</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-4</td>
<td>11/2/2010</td>
<td>0.9</td>
<td>2.7</td>
<td>15.55</td>
<td>5.38</td>
<td>320</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-5</td>
<td>11/2/2010</td>
<td>1.6</td>
<td>4.8</td>
<td>16.75</td>
<td>5.63</td>
<td>163</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-6</td>
<td>11/3/2010</td>
<td>0.6</td>
<td>1.8</td>
<td>15.49</td>
<td>5.30</td>
<td>289</td>
<td>Peristaltic Pump</td>
</tr>
<tr>
<td>MW-7</td>
<td>11/3/2010</td>
<td>4.3</td>
<td>12.9</td>
<td>15.46</td>
<td>6.95</td>
<td>1,001</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-9</td>
<td>11/3/2010</td>
<td>3.1</td>
<td>9.3</td>
<td>15.05</td>
<td>5.95</td>
<td>423</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-11</td>
<td>11/3/2010</td>
<td>0.3</td>
<td>0.8</td>
<td>14.60</td>
<td>6.50</td>
<td>465</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-12</td>
<td>11/4/2010</td>
<td>1.0</td>
<td>3.0</td>
<td>16.57</td>
<td>5.64</td>
<td>249</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-14</td>
<td>11/5/2010</td>
<td>24.0</td>
<td>72.0</td>
<td>16.32</td>
<td>7.15</td>
<td>668</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-16</td>
<td>11/5/2010</td>
<td>5.8</td>
<td>17.4</td>
<td>16.35</td>
<td>6.77</td>
<td>800</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-17</td>
<td>11/5/2010</td>
<td>8.6</td>
<td>26.0</td>
<td>15.92</td>
<td>6.24</td>
<td>2,013</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-22</td>
<td>11/4/2010</td>
<td>0.9</td>
<td>2.5</td>
<td>17.23</td>
<td>6.80</td>
<td>1,078</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-23</td>
<td>11/5/2010</td>
<td>11.5</td>
<td>36.7</td>
<td>15.30</td>
<td>7.40</td>
<td>361</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-25</td>
<td>11/3/2010</td>
<td>0.6</td>
<td>1.8</td>
<td>15.87</td>
<td>5.76</td>
<td>196</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-26</td>
<td>11/3/2010</td>
<td>10.9</td>
<td>32.8</td>
<td>15.12</td>
<td>7.26</td>
<td>465</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-30</td>
<td>11/2/2010</td>
<td>1.2</td>
<td>3.6</td>
<td>14.35</td>
<td>7.30</td>
<td>469</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-31</td>
<td>11/2/2010</td>
<td>9.1</td>
<td>27.4</td>
<td>14.93</td>
<td>6.80</td>
<td>368</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-32</td>
<td>11/2/2010</td>
<td>3.2</td>
<td>9.6</td>
<td>15.41</td>
<td>6.72</td>
<td>309</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-33</td>
<td>11/2/2010</td>
<td>9.3</td>
<td>27.9</td>
<td>15.37</td>
<td>7.88</td>
<td>412</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>MW-35</td>
<td>11/2/2010</td>
<td>1.0</td>
<td>3.0</td>
<td>14.23</td>
<td>7.23</td>
<td>1,200</td>
<td>Bailer</td>
</tr>
<tr>
<td>MW-36</td>
<td>11/2/2010</td>
<td>10.0</td>
<td>30.0</td>
<td>15.79</td>
<td>7.12</td>
<td>450</td>
<td>Submersible Pump</td>
</tr>
<tr>
<td>SRW-1</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>16.15</td>
<td>6.78</td>
<td>786</td>
<td>Sample Port</td>
</tr>
<tr>
<td>SRW-2</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>16.97</td>
<td>6.74</td>
<td>967</td>
<td>Sample Port</td>
</tr>
<tr>
<td>SRW-3</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>17.40</td>
<td>6.73</td>
<td>453</td>
<td>Sample Port</td>
</tr>
<tr>
<td>DRW-1</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>15.76</td>
<td>6.65</td>
<td>947</td>
<td>Sample Port</td>
</tr>
<tr>
<td>DRW-2</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>15.66</td>
<td>7.06</td>
<td>461</td>
<td>Sample Port</td>
</tr>
<tr>
<td>DRW-3</td>
<td>11/3/2010</td>
<td>NA</td>
<td>NA</td>
<td>15.53</td>
<td>6.92</td>
<td>446</td>
<td>Sample Port</td>
</tr>
<tr>
<td>VER-1</td>
<td>11/5/2010</td>
<td>NA</td>
<td>NA</td>
<td>16.90</td>
<td>6.50</td>
<td>1425</td>
<td>Peristaltic Pump</td>
</tr>
<tr>
<td>VER-3</td>
<td>11/5/2010</td>
<td>NA</td>
<td>NA</td>
<td>16.03</td>
<td>5.64</td>
<td>1053</td>
<td>Peristaltic Pump</td>
</tr>
<tr>
<td>VER-4</td>
<td>11/5/2010</td>
<td>NA</td>
<td>NA</td>
<td>16.10</td>
<td>7.58</td>
<td>296</td>
<td>Peristaltic Pump</td>
</tr>
</tbody>
</table>

Notes:
µmhos/cm = micromhos per centimeter.
mV = millivolts
NM = not measured
NA = Not applicable as active recovery well
Table 9. Summary of Analytical Results for Groundwater Samples Collected in November 2010, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Duke L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>6000</td>
<td>2,500 µg/L</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Chlorofrom</td>
<td>70</td>
<td>3,400 µg/L</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>3</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>360 µg/L</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>100</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7300*</td>
<td>5,200 µg/L</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>6000</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>1,000 µg/L</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>500 µg/L</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>350 µg/L</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>140 µg/L</td>
</tr>
<tr>
<td>Trichlorofluoroethane</td>
<td>2000</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>200 µg/L</td>
</tr>
</tbody>
</table>

NCAC 2L: North Carolina Administrative Code 2L Groundwater Standard
µg/L: Micrograms per liter
U: Constituent was not detected above the reporting limit.
D: Constituent concentration was quantitated using a secondary dilution.
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 9. Summary of Analytical Results for Groundwater Samples Collected in November 2010, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics (USEPA Method 8260) µg/L</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>100 U</td>
<td>1 U</td>
<td>2</td>
<td>3.4</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>3</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td>100 U</td>
<td>1 U</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>100</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7300*</td>
<td>10 U</td>
<td>46</td>
<td>10 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>1,000</td>
<td>U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5</td>
<td>500 U</td>
<td>U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.6</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td></td>
<td>500 U</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard
µg/L Micrograms per liter.
U Constituent was not detected above the reporting limit.
D Constituent concentration was quantitated using a secondary dilution.
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

[Green background] Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>MW-35</th>
<th>MW-36</th>
<th>VER-1</th>
<th>VER-2</th>
<th>VER-3</th>
<th>VER-4</th>
<th>SRW-1</th>
<th>SRW-2</th>
<th>SRW-3</th>
<th>DRW-1</th>
<th>DRW-2</th>
<th>DRW-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td></td>
<td>6000</td>
<td></td>
<td>25 U</td>
<td>25 U</td>
<td>630 U</td>
<td>25,000 U</td>
<td>6,300 U</td>
<td>25 U</td>
<td>25 U</td>
<td>500 U</td>
<td>250 U</td>
<td>2,500 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td></td>
<td>50</td>
<td>1 U</td>
<td>1 U</td>
<td>54</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>6.5</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td>70</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>21,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Chloromethane</td>
<td></td>
<td>3</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td>6</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1.5</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td>6</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
<td>0.4</td>
<td>1 U</td>
<td>1 U</td>
<td>150</td>
<td>1,700 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>cis,1,2-Dichloroethene</td>
<td></td>
<td>70</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>trans,1,2-Dichloroethene</td>
<td></td>
<td>100</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td></td>
<td>7300*</td>
<td>10 U</td>
<td>1 U</td>
<td>2,400</td>
<td>43,000 U</td>
<td>10,000</td>
<td>10 U</td>
<td>50</td>
<td>1,000</td>
<td>440</td>
<td>3,900</td>
<td>40</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td></td>
<td>600</td>
<td>1 U</td>
<td>1 U</td>
<td>35</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td></td>
<td>20</td>
<td>10 U</td>
<td>1 U</td>
<td>64</td>
<td>250 U</td>
<td>10,000</td>
<td>2,500 U</td>
<td>10 U</td>
<td>10 U</td>
<td>200 U</td>
<td>100 U</td>
<td>1,000 U</td>
</tr>
<tr>
<td>Methylene Chlorodide</td>
<td></td>
<td>5</td>
<td>5 U</td>
<td>5 U</td>
<td>130</td>
<td>12,000 U</td>
<td>1,300 U</td>
<td>5 U</td>
<td>5 U</td>
<td>100 U</td>
<td>50 U</td>
<td>500 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
<td>0.2</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td></td>
<td>0.7</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>600</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td></td>
<td>3</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td></td>
<td>2000</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1.5</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td></td>
<td>0.03</td>
<td>1 U</td>
<td>1 U</td>
<td>25</td>
<td>1,000 U</td>
<td>250 U</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td></td>
<td>500</td>
<td>2 U</td>
<td>2 U</td>
<td>50</td>
<td>2,000 U</td>
<td>500 U</td>
<td>2 U</td>
<td>2 U</td>
<td>40</td>
<td>20 U</td>
<td>200 U</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L: North Carolina Administrative Code 2L Groundwater Standard
µg/L: Micrograms per liter.
U: Constituent was not detected above the reporting limit.
D: Constituent concentration was quantitated using a secondary dilution.
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
<th>MW-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td>05/18/07</td>
<td>30,000 U</td>
<td>30,000 U</td>
<td>25,000 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>10/03/07</td>
<td>100,000 U</td>
<td>27,000 U</td>
<td>26,000 U</td>
<td>19,000 U</td>
<td>31,000 U</td>
<td>25,000 U</td>
<td>25,000 U</td>
<td>14,000 U</td>
<td>1000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>10/03/07</td>
<td>250,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloform</td>
<td>70</td>
<td>10/03/07</td>
<td>350,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>10/03/07</td>
<td>250,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>10/03/07</td>
<td>100,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td>10/03/07</td>
<td>1000 U</td>
<td>100,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>100</td>
<td>10/03/07</td>
<td>100 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7300*</td>
<td>10/03/07</td>
<td>290,000 U</td>
<td>85,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>10/03/07</td>
<td>140,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>10/03/07</td>
<td>100 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>10/03/07</td>
<td>8,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>10/03/07</td>
<td>1,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>0.7</td>
<td>10/03/07</td>
<td>1,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>10/03/07</td>
<td>1,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>10/03/07</td>
<td>14,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td>10/03/07</td>
<td>1,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td>10/03/07</td>
<td>1,000 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>10/03/07</td>
<td>2,500 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.

D Constituent concentration was quantitated using a secondary dilution.

NA Not analyzed.

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
<th>MW-3</th>
<th>MW-5</th>
<th>MW-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/21/04</td>
<td>01/11/07</td>
<td>04/18/07</td>
<td>07/11/07</td>
<td>10/03/07</td>
<td>10/22/08</td>
<td>11/04/09</td>
<td>11/4/10</td>
<td>07/20/04</td>
<td>10/01/07</td>
<td>10/20/08</td>
<td>11/03/09</td>
<td>11/2/2010</td>
<td>11/03/09</td>
<td>11/2/2010</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>MW-3</td>
<td>01/11/07</td>
<td>1</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-3</td>
<td>04/18/07</td>
<td>50</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-3</td>
<td>07/11/07</td>
<td>70</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-3</td>
<td>10/03/07</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-3</td>
<td>10/22/08</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>MW-3</td>
<td>11/04/09</td>
<td>0.4</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>MW-3</td>
<td>11/4/10</td>
<td>70</td>
<td>2.0 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>MW-3</td>
<td>10/01/07</td>
<td>100</td>
<td>NA</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>MW-3</td>
<td>10/20/08</td>
<td>7,300</td>
<td>16 U</td>
<td>2 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>MW-3</td>
<td>11/03/09</td>
<td>600</td>
<td>5 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>MW-3</td>
<td>11/4/10</td>
<td>20</td>
<td>NA</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>MW-3</td>
<td>10/01/07</td>
<td>5</td>
<td>1 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>MW-3</td>
<td>10/20/08</td>
<td>0.2</td>
<td>1 U</td>
<td>5 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>MW-4</td>
<td>11/03/09</td>
<td>0.7</td>
<td>1 U</td>
<td>5 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>MW-4</td>
<td>11/2/2010</td>
<td>600</td>
<td>1 U</td>
</tr>
</tbody>
</table>

Volatile Organics (USEPA Method 8260) ug/L

- **NCAC 2L Groundwater Standard**
- **G**: Constituent was not detected above the reporting limit.
- **U**: Constituent concentration was quantitated using a secondary dilution.
- **NA**: Not analyzed.
- **D**: Constituent was detected above the reporting limit.
- **1**: Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
- **USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).**
- *****: Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled:</th>
<th>Value</th>
<th>NCAC 2L GW Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>MW-6</td>
<td>07/21/04</td>
<td>910</td>
<td>2.0 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>MW-6</td>
<td>02/06/07</td>
<td>690</td>
<td>1.8 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-6</td>
<td>04/18/07</td>
<td>700</td>
<td>3.3 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-6</td>
<td>07/12/07</td>
<td>170</td>
<td>5.9 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-6</td>
<td>10/21/07</td>
<td>260</td>
<td>7.9 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-6</td>
<td>11/04/07</td>
<td>50 U</td>
<td>2.5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-6</td>
<td>11/3/10</td>
<td>1 U</td>
<td>12.0 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>MW-7</td>
<td>07/21/04</td>
<td>1U</td>
<td>10.0 U</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>MW-7</td>
<td>01/11/07</td>
<td>100 U</td>
<td>10.0 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>MW-7</td>
<td>04/18/07</td>
<td>100 U</td>
<td>10.0 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>MW-7</td>
<td>07/12/07</td>
<td>690</td>
<td>1.2 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>MW-7</td>
<td>10/02/07</td>
<td>100 U</td>
<td>10.0 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>MW-7</td>
<td>10/21/08</td>
<td>20,000 D</td>
<td>20.00 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>MW-7</td>
<td>11/04/09</td>
<td>250 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>MW-7</td>
<td>11/3/10</td>
<td>250 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>MW-7</td>
<td>07/21/04</td>
<td>50 U</td>
<td>2.5 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>MW-7</td>
<td>01/11/07</td>
<td>100 U</td>
<td>10.0 U</td>
</tr>
</tbody>
</table>

Notes:
- U: Constituent was not detected above the reporting limit.
- D: Constituent concentration was quantitated using a secondary dilution.
- NA: Not analyzed.
- Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
- USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).
- Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard (USEPA Method 8260) ug/L

Volatile Organics

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-6</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
<th>MW-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled:</td>
<td>07/21/04</td>
<td>02/06/07</td>
<td>04/18/07</td>
<td>07/12/07</td>
<td>10/21/07</td>
<td>11/04/07</td>
<td>11/3/10</td>
<td>07/21/04</td>
<td>01/11/07</td>
<td>04/18/07</td>
<td>07/12/07</td>
<td>10/02/07</td>
<td>10/21/08</td>
<td>11/04/09</td>
<td>11/3/10</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>12,000</td>
<td>10,000 D</td>
<td>20,000 D</td>
<td>8,400</td>
<td>20,000 D</td>
<td>2,700</td>
<td>4,700 D</td>
<td>2,400</td>
<td>3,300 D</td>
<td>2,300</td>
<td>3,400 D</td>
<td>19,000</td>
<td>8,200</td>
<td>10,000 D</td>
<td>3,500</td>
<td>4,300</td>
</tr>
</tbody>
</table>

Notes:
- USEPA Method 8260
- ug/L
- Micrograms per liter.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>07/22/04</td>
<td>10/03/07</td>
<td>10/21/08</td>
<td>11/04/09</td>
<td>11/03/10</td>
<td>07/22/04</td>
<td>01/11/07</td>
<td>04/17/07</td>
<td>07/12/07</td>
<td>10/03/07</td>
<td>10/21/08</td>
<td>11/02/09</td>
<td>11/05/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diallyl ether</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes</td>
<td>MW-9</td>
<td>07/22/04</td>
<td>1 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
<td>50 U</td>
<td>5 U</td>
<td>25 U</td>
<td>10 U</td>
<td>1 U</td>
<td>10 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

Concentration Limits:

- **U**: Constituent was not detected above the reporting limit.
- **D**: Constituent concentration was quantitated using a secondary dilution.
- **NA**: Not analyzed.

Notes:

- Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
- *USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).*
- **Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.**
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID: MW-12</th>
<th>Date Sampled: 07/21/04</th>
<th>MW-12 01/10/07</th>
<th>MW-12 01/10/07</th>
<th>MW-12 01/10/07</th>
<th>MW-12 01/10/07</th>
<th>MW-12 01/10/07</th>
<th>MW-12 01/10/07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>1</td>
<td>6000</td>
<td>500 U</td>
<td>130 U</td>
<td>130 U</td>
<td>25 U</td>
<td>25 U</td>
<td>25 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>470</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>70</td>
<td>50</td>
<td>23 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>21</td>
<td>8.2</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>3.4</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>50</td>
<td>20 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>5 U</td>
<td>20 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>100</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td>100</td>
<td>40 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>70</td>
<td>NA</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7300*</td>
<td>13,000</td>
<td>720 D</td>
<td>300</td>
<td>150</td>
<td>360 D</td>
<td>94</td>
<td>10 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>25 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>20 U</td>
<td>25 U</td>
<td>25 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>5 U</td>
<td>20 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>5 U</td>
<td>20 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>50</td>
<td>20 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>35</td>
<td>5 U</td>
<td>5 U</td>
<td>3.1</td>
<td>4.4</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td>25 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td>20 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
</tr>
</tbody>
</table>

Notes:
- **U** Constituent was not detected above the reporting limit.
- **G** Constituent concentration was quantitated using a secondary dilution.
- **NA** Not analyzed.
- **Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).**
- **Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.**
Table 10: Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>MW-14</td>
<td>07/21/04</td>
<td>600</td>
</tr>
<tr>
<td>Benzene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>1,300</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>50 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>70 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>6 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>6 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>0.4</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>70 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>100 NA</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>MW-14</td>
<td>07/21/04</td>
<td>7,300*</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>600</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>20 NA</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>0.2</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>0.7</td>
</tr>
<tr>
<td>Toluene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>600</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>3 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>3 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>0.05</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>MW-14</td>
<td>07/11/07</td>
<td>500</td>
</tr>
</tbody>
</table>

NCAC 2L Groundwater Standard

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>170</td>
</tr>
<tr>
<td>Benzene</td>
<td>190</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>53</td>
</tr>
<tr>
<td>Chloroform</td>
<td>53</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>42 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>40 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>5 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1,800</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>25 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>25 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>5 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>5 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>5 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>10 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>10 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>5 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>10 U</td>
</tr>
</tbody>
</table>

Notes:
- U: Constituent was not detected above the reporting limit.
- D: Constituent concentration was quantitated using a secondary dilution.
- NA: Not analyzed.
- *: USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).
- Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW-16</td>
<td>07/22/04</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>10/02/07</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>10/21/08</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>11/05/09</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>11/05/10</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>07/20/04</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>10/02/07</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>10/22/08</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>11/02/09</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>11/05/10</td>
</tr>
<tr>
<td></td>
<td>MW-21</td>
<td>07/19/04</td>
</tr>
<tr>
<td></td>
<td>MW-21</td>
<td>11/05/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituent</th>
<th>NCAC 2L GW Standard ug/L</th>
<th>NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,305*</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW-16</td>
<td>07/22/04</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>10/02/07</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>10/21/08</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>11/05/09</td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>11/05/10</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>07/20/04</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>10/02/07</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>10/22/08</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>11/02/09</td>
</tr>
<tr>
<td></td>
<td>MW-17</td>
<td>11/05/10</td>
</tr>
<tr>
<td></td>
<td>MW-21</td>
<td>07/19/04</td>
</tr>
<tr>
<td></td>
<td>MW-21</td>
<td>11/05/09</td>
</tr>
</tbody>
</table>

Notes:
- U: Constituent was not detected above the reporting limit.
- D: Constituent concentration was quantitated using a secondary dilution.
- NA: Not analyzed.
- Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
- USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).
- *: Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>NCAC 2L GW Standard</th>
<th>Concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(USEPA Method 8260) ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>MW-22</td>
<td>07/21/04</td>
<td>50 U</td>
<td>6,800 U</td>
</tr>
<tr>
<td></td>
<td>MW-22</td>
<td>10/02/07</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-22</td>
<td>10/21/08</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-22</td>
<td>11/03/09</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-22</td>
<td>11/04/10</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-23</td>
<td>07/20/04</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-23</td>
<td>10/01/07</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-23</td>
<td>10/20/08</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-23</td>
<td>11/02/09</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-23</td>
<td>11/05/10</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-24</td>
<td>07/22/04</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-24</td>
<td>11/03/09</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>07/21/04</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>10/01/07</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>04/17/07</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>07/12/07</td>
<td>20 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>11/02/09</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-25</td>
<td>11/03/10</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td>Benzeno</td>
<td>1</td>
<td>5 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>11</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1 U</td>
<td>1 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cis-1,2-Dichloroethene</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans-1,2-Dichloroethene</td>
<td>1</td>
<td>25 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyl ether</td>
<td>07/21/04</td>
<td>5 U</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>7,300*</td>
<td>5 U</td>
<td>12</td>
<td>10 U</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>600</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>10 U</td>
</tr>
<tr>
<td></td>
<td>Methylene chloride</td>
<td>5</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>0.5</td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>600</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>3</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Trichloroform</td>
<td>2,000</td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td></td>
<td>Xylenes, Total</td>
<td>500</td>
<td>2</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>Concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Constituent was not detected above the reporting limit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Constituent concentration was quantitated using a secondary dilution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>Not analyzed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cis-1,2-Dichloroethene & Trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10: Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>MW-26</th>
<th>MW-28</th>
<th>MW-28</th>
<th>MW-28</th>
<th>MW-28</th>
<th>MW-29</th>
<th>MW-29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/22/04</td>
<td>01/10/07</td>
<td>04/17/07</td>
<td>07/12/07</td>
<td>10/02/07</td>
<td>10/23/08</td>
<td>11/02/09</td>
</tr>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td></td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

<table>
<thead>
<tr>
<th>Constituent</th>
<th>NCAC 2L GW Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Constituent was not detected above the reporting limit.</td>
</tr>
<tr>
<td>D</td>
<td>Constituent concentration was quantitated using a secondary dilution.</td>
</tr>
<tr>
<td>NA</td>
<td>Not analyzed.</td>
</tr>
</tbody>
</table>

1: Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>MW-30</td>
<td>01/10/07</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-30</td>
<td>04/17/07</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-30</td>
<td>07/11/07</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-30</td>
<td>10/01/07</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-30</td>
<td>10/20/08</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>MW-30</td>
<td>11/03/09</td>
<td>1 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>MW-31</td>
<td>11/02/10</td>
<td>2 U</td>
</tr>
</tbody>
</table>

Volatile Organics (USEPA Method 8260)

<table>
<thead>
<tr>
<th>NCAC 2L</th>
<th>GW Standard</th>
<th>Micrograms per liter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>2.0 U</td>
<td>2.0 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Methoxy-toluene ether</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Toluene</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>MW-30</td>
<td>01/10/07</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>MW-30</td>
<td>04/17/07</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>MW-30</td>
<td>07/11/07</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>MW-31</td>
<td>10/01/07</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>MW-31</td>
<td>10/20/08</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>MW-31</td>
<td>11/03/09</td>
<td>1 U</td>
</tr>
</tbody>
</table>

USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

- U Constituent was not detected above the reporting limit.
- D Constituent concentration was quantitated using a secondary dilution.
- NA Not analyzed.

* Notes:
 - cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
 - USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>07/20/04</td>
<td>01/10/07</td>
<td>04/17/07</td>
<td>07/11/07</td>
<td>10/01/07</td>
<td>10/20/08</td>
<td>11/04/09</td>
<td>11/02/10</td>
<td>07/20/04</td>
<td>01/10/07</td>
<td>04/17/07</td>
<td>07/11/07</td>
<td>10/01/07</td>
<td>10/20/08</td>
<td>11/04/09</td>
</tr>
<tr>
<td>Vapors: Organics (USEPA Method 8260) ug/L</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>2.0 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>100</td>
<td>NA</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>2 U</td>
<td>2.4</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>30</td>
<td>28</td>
<td>16</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>5 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 U</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.2</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>3</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td>1 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.
D Constituent concentration was quantitated using a secondary dilution.
NA Not analyzed.

Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID: MW-35</th>
<th>Date Sampled: 07/20/04</th>
<th>MW-35</th>
<th>10/01/07</th>
<th>MW-35</th>
<th>10/21/08</th>
<th>MW-35</th>
<th>11/04/09</th>
<th>MW-35</th>
<th>11/02/10</th>
<th>MW-35</th>
<th>11/02/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics</td>
<td>NCAC 2L Standard</td>
<td>ug/L</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>1 U</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>70</td>
<td>2 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>70</td>
<td>2 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>2 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>5 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>0.7</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>3</td>
<td>1 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.05</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.

D Constituent concentration was quantitated using a secondary dilution.

NA Not analyzed.

1 Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>VER-1</th>
<th>VER-1</th>
<th>VER-1</th>
<th>Date Sampled:</th>
<th>VER-1</th>
<th>VER-1</th>
<th>VER-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>05/05/06</td>
<td>10/22/08</td>
<td>11/03/09</td>
<td>11/05/10</td>
<td>05/05/06</td>
<td>10/22/08</td>
<td>11/03/09</td>
</tr>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td>NCAC 2L GW Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td>12,000 U</td>
<td>1,200 U</td>
<td>25 U</td>
<td>630 U</td>
<td>50,000 U</td>
<td>50,000 U</td>
<td>2,500 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>7,600</td>
<td>4,800</td>
<td>1 U</td>
<td>460</td>
<td>19,000</td>
<td>18,000</td>
<td>750</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>54</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>50,000 U</td>
<td>100</td>
<td>2</td>
<td>25 U</td>
<td>95,000</td>
<td>41,000</td>
<td>3,500</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>NA</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>NA</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>150</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>70</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>100</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>29,000</td>
<td>1,800</td>
<td>10 U</td>
<td>2,400</td>
<td>119,000</td>
<td>77,000</td>
<td>3,500</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>35</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>500 U</td>
<td>10 U</td>
<td>250 U</td>
<td>NA</td>
<td>20,000 U</td>
<td>1,000 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>15,000</td>
<td>250 U</td>
<td>5 U</td>
<td>150 U</td>
<td>57,000</td>
<td>27,000</td>
<td>1,500</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Vinyl fluoride</td>
<td>2,000</td>
<td>NA</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>NA</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>1,200 U</td>
<td>50 U</td>
<td>1 U</td>
<td>25 U</td>
<td>5,000 U</td>
<td>2,000 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>2,500 U</td>
<td>100 U</td>
<td>2 U</td>
<td>50 U</td>
<td>10,000 U</td>
<td>4,000 U</td>
<td>200 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.

D Constituent concentration was quantitated using a secondary dilution.

NA Not analyzed.

* Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists). Indicates that the reported concentration is above the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>Date Sampled</th>
<th>Date Sampled</th>
<th>Date Sampled</th>
<th>Date Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VER-3</td>
<td>VER-3</td>
<td>VER-3</td>
<td>VER-3</td>
<td>VER-4</td>
<td>VER-4</td>
</tr>
<tr>
<td>NCAC 2L Groundwater Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td>20,000 U</td>
<td>25,000 U</td>
<td>6,200 U</td>
<td>6,300 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>8,400 U</td>
<td>5,500 U</td>
<td>316 U</td>
<td>510 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>2,800 U</td>
<td>21,000 U</td>
<td>250 U</td>
<td>280 U</td>
<td>5.5</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>NA</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>NA</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Cis,1,2-Dichloroethylene</td>
<td>70</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trans,1,2-Dichloroethylene</td>
<td>100</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>58,000 U</td>
<td>40,000 U</td>
<td>23,000 U</td>
<td>10,000 U</td>
<td>15</td>
</tr>
<tr>
<td>Ethybenzene</td>
<td>600</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>10,000 U</td>
<td>2,500 U</td>
<td>2,500 U</td>
<td>NA</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>5,500 U</td>
<td>13,000 U</td>
<td>1,500 U</td>
<td>1,300 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrafluoroethane</td>
<td>0.2</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td>NA</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>NA</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>2,000 U</td>
<td>1,000 U</td>
<td>250 U</td>
<td>250 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>4,000 U</td>
<td>2,000 U</td>
<td>500 U</td>
<td>500 U</td>
<td>2</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L Micrograms per liter.
U Constituent was not detected above the reporting limit.
D Constituent concentration was quantitated using a secondary dilution.
NA Not analyzed.

1 Cis,1,2-Dichloroethylene & trans,1,2-Dichloroethylene were analyzed as one constituent (Cis/Trans,1,2-Dichloroethylene).
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>NCAC 2L Standard (USEPA Method 8260) ug/L</th>
<th>SRW-1</th>
<th>SRW-1</th>
<th>SRW-1</th>
<th>SRW-1</th>
<th>SRW-2</th>
<th>SRW-2</th>
<th>SRW-2</th>
<th>SRW-2</th>
<th>SRW-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>05/04/06</td>
<td>10/02/07</td>
<td>10/22/08</td>
<td>11/03/09</td>
<td>11/03/10</td>
<td>05/04/06</td>
<td>10/02/07</td>
<td>10/22/08</td>
<td>11/03/09</td>
</tr>
<tr>
<td>Volatile Organics</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td>670 U</td>
<td>25 U</td>
<td>25 U</td>
<td>25 U</td>
<td>25 U</td>
<td>2,000 U</td>
<td>25 U</td>
<td>1,200 U</td>
<td>250 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>2.8</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>67 U</td>
<td>11</td>
<td>9.1</td>
<td>6.5</td>
<td>6.5</td>
<td>290 U</td>
<td>11</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>2.1</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>NA</td>
<td>NA</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1.2</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>0.4</td>
<td>100 U</td>
<td>20 U</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>70</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1.6</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Tran-1,2-Dichloroethene</td>
<td>100</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>1,900 U</td>
<td>74</td>
<td>53</td>
<td>31</td>
<td>50</td>
<td>8,200</td>
<td>2,400</td>
<td>1,800</td>
<td>600</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 U</td>
<td>10 U</td>
<td>NA</td>
<td>NA</td>
<td>500 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>67 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>290 U</td>
<td>5 U</td>
<td>250 U</td>
<td>50 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.2</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>8.4</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2,000</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1 U</td>
<td>1 U</td>
<td>NA</td>
<td>NA</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>67 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>290 U</td>
<td>1.1</td>
<td>50 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>130 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
<td>590 U</td>
<td>2 U</td>
<td>100 U</td>
<td>20 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.

D Constituent concentration was quantitated using a secondary dilution.

NA Not analyzed.

1 Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

* Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10. Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
<th>SRW-3</th>
<th>SRW-3</th>
<th>SRW-3</th>
<th>SRW-3</th>
<th>SRW-3</th>
<th>DRW-1</th>
<th>DRW-1</th>
<th>DRW-1</th>
<th>DRW-1</th>
<th>DRW-1</th>
<th>DRW-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>05/03/06</td>
<td>10/02/07</td>
<td>10/22/08</td>
<td>11/03/09</td>
<td>11/03/10</td>
<td>05/03/06</td>
<td>10/02/07</td>
<td>10/22/08</td>
<td>11/03/09</td>
<td>11/03/10</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>SRW-3</td>
<td>6,000</td>
<td>2,000 U</td>
<td>25 U</td>
<td>1,200 U</td>
<td>250 U</td>
<td>250 U</td>
<td>3,800 U</td>
<td>25 U</td>
<td>500 U</td>
<td>1,200 U</td>
<td>2,500 U</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>SRW-3</td>
<td>1</td>
<td>200 U</td>
<td>11 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>160 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>SRW-3</td>
<td>50</td>
<td>200 U</td>
<td>9 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>15 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>SRW-3</td>
<td>70</td>
<td>200 U</td>
<td>1.5 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1.4 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>SRW-3</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NA</td>
<td>NA</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>SRW-3</td>
<td>6</td>
<td>200 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1.6 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>SRW-3</td>
<td>0.4</td>
<td>200 U</td>
<td>0.4 U</td>
<td>50 U</td>
<td>13 U</td>
<td>10 U</td>
<td>380 U</td>
<td>0.4 U</td>
<td>20 U</td>
<td>10 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>SRW-3</td>
<td>70</td>
<td>200 U</td>
<td>3.9 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>3.3 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>SRW-3</td>
<td>100</td>
<td>200 U</td>
<td>4.9 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>4 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>SRW-3</td>
<td>7,300*</td>
<td>6,200</td>
<td>4,900</td>
<td>2,100</td>
<td>860</td>
<td>440</td>
<td>11,000</td>
<td>6,900</td>
<td>610</td>
<td>3,800</td>
<td>3,900</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>SRW-3</td>
<td>600</td>
<td>200 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>SRW-3</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>500 U</td>
<td>100 U</td>
<td>100 U</td>
<td>NA</td>
<td>NA</td>
<td>200 U</td>
<td>500 U</td>
<td>1,000 U</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>SRW-3</td>
<td>5</td>
<td>200 U</td>
<td>5 U</td>
<td>250 U</td>
<td>50 U</td>
<td>50 U</td>
<td>380 U</td>
<td>5 U</td>
<td>20 U</td>
<td>250 U</td>
<td>500 U</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>SRW-3</td>
<td>0.2</td>
<td>200 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>SRW-3</td>
<td>0.7</td>
<td>200 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>SRW-3</td>
<td>600</td>
<td>200 U</td>
<td>1 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>1 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>SRW-3</td>
<td>3</td>
<td>200 U</td>
<td>13 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>17 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>SRW-3</td>
<td>2,000</td>
<td>NA</td>
<td>NA</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NA</td>
<td>NA</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>SRW-3</td>
<td>0.03</td>
<td>200 U</td>
<td>3.6 U</td>
<td>50 U</td>
<td>10 U</td>
<td>10 U</td>
<td>380 U</td>
<td>3.5 U</td>
<td>20 U</td>
<td>50 U</td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>SRW-3</td>
<td>500</td>
<td>400 U</td>
<td>2 U</td>
<td>100 U</td>
<td>20 U</td>
<td>20 U</td>
<td>770 U</td>
<td>2 U</td>
<td>40 U</td>
<td>100 U</td>
<td>200 U</td>
<td></td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L: Micrograms per liter.

- **U** Constituent was not detected above the reporting limit.
- **D** Constituent concentration was quantitated using a secondary dilution.
- **NA** Not analyzed.

1 Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).

* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Table Notes:

- Use EPA Method 8260 (ug/L) for Volatile Organics.
- Concentrations were calculated from results using the USEPA Method 8260.
- Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 10: Historical Groundwater Analytical Data, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID: DRW-2</th>
<th>Date Sampled: 05/03/06</th>
<th>Date Sampled: 10/02/07</th>
<th>Date Sampled: 10/22/08</th>
<th>Date Sampled: 11/03/09</th>
<th>Date Sampled: 11/03/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td>NCAC 2L GW Standard</td>
<td>DRW-3</td>
<td>DRW-3</td>
<td>DRW-3</td>
<td>DRW-3</td>
<td>DRW-3</td>
</tr>
<tr>
<td>Acetone</td>
<td>6,000</td>
<td>59 U</td>
<td>25 U</td>
<td>25 U</td>
<td>25 U</td>
<td>29 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50</td>
<td>5.9 U</td>
<td>1.3</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>70</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>5.9 U</td>
<td>3.3</td>
<td>4.4</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>70</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>100</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>200</td>
<td>470</td>
<td>87</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>20 U</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5</td>
<td>5.9 U</td>
<td>5 U</td>
<td>10 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td>0.2</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.7</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>600</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3</td>
<td>5.9 U</td>
<td>1.5</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>2,000</td>
<td>NA</td>
<td>NA</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.03</td>
<td>5.9 U</td>
<td>1 U</td>
<td>2 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>500</td>
<td>12 U</td>
<td>2 U</td>
<td>4 U</td>
<td>2 U</td>
<td>2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard ug/L Micrograms per liter.

U Constituent was not detected above the reporting limit.
D Constituent concentration was quantitated using a secondary dilution.
NA Not analyzed.
* Cis-1,2-Dichloroethene & trans-1,2-Dichloroethene were analyzed as one constituent (Cis/Trans-1,2-Dichloroethene).
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).
* Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Table 11. Summary of Analytical Results for Surface Water Samples Collected in November 2010, UNC Airport Road Waste Disposal Area, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Sample ID:</th>
<th>Date Sampled:</th>
<th>SW-2</th>
<th>SW-3</th>
<th>SW-4</th>
<th>SW-5</th>
<th>SW-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics (USEPA Method 8260) ug/L</td>
<td></td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ug/L</td>
<td></td>
<td></td>
<td>Micrograms per liter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td></td>
<td>Constituent was not detected above the reporting limit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constituent</td>
<td>Sample ID:</td>
<td>Date Sampled:</td>
<td>NCAC 2L Pre-Injection</td>
<td>Post-Injection</td>
<td>Post-Injection</td>
<td>Post-Injection</td>
<td>Post-Injection</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Volatile Organics</td>
<td>NCAC 2L GW Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>1</td>
<td>2,000 U</td>
<td>1,300 U</td>
<td>1,300 U</td>
<td>2,500 U</td>
<td>1,300 U</td>
<td>2,500 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>50</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>100 U</td>
<td>50 U</td>
<td>50 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>70</td>
<td>4,400 U</td>
<td>4,400 U</td>
<td>4,500 U</td>
<td>4,900 U</td>
<td>780 U</td>
<td>1,000 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>50</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.4</td>
<td>360 U</td>
<td>430 U</td>
<td>490 U</td>
<td>550 U</td>
<td>1,000 U</td>
<td>1,100 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>50</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethene</td>
<td>50</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>7,300*</td>
<td>4,300 U</td>
<td>5,300 E</td>
<td>5,000 U</td>
<td>3,900 U</td>
<td>13,000 U</td>
<td>16,000 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>600</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>240 U</td>
<td>360 U</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>500 U</td>
<td>500 U</td>
<td>1,000 U</td>
<td>500 U</td>
<td>1,000 U</td>
<td>1,000 U</td>
<td>2,000 U</td>
</tr>
<tr>
<td>Methylen chloride</td>
<td>570 U</td>
<td>680 U</td>
<td>720 U</td>
<td>540 U</td>
<td>780 U</td>
<td>890 U</td>
<td>1,300 U</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>500 U</td>
<td>500 U</td>
<td>250 U</td>
<td>500 U</td>
<td>250 U</td>
<td>1,500 U</td>
<td>500 U</td>
</tr>
<tr>
<td>1,2,3-Tetrachloroethene</td>
<td>0.2</td>
<td>530 U</td>
<td>560 U</td>
<td>620 U</td>
<td>620 U</td>
<td>100 U</td>
<td>100 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>200 U</td>
</tr>
<tr>
<td>1,2,4-Tetrachloroethene</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>130 U</td>
<td>160 U</td>
<td>150 U</td>
<td>130 U</td>
<td>140 U</td>
<td>200 U</td>
<td>620 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>50 U</td>
<td>50 U</td>
<td>100 U</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>200 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>50 U</td>
<td>100 U</td>
<td>200 U</td>
<td>100 U</td>
<td>870 U</td>
<td>1,100 U</td>
<td>1,000 U</td>
</tr>
<tr>
<td>Sulfate (USEPA Method 9038 mg/L)</td>
<td>260 U</td>
<td>260 U</td>
<td>290 U</td>
<td>310 U</td>
<td>310 U</td>
<td>280 U</td>
<td>270 U</td>
</tr>
<tr>
<td>Metals (USEPA Method 6010/7470A) µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>33 U</td>
<td>33 U</td>
<td>50 U</td>
<td>50 U</td>
<td>21 U</td>
<td>21 U</td>
<td>50 U</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>3 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Chromium</td>
<td>10 U</td>
</tr>
<tr>
<td>Iron</td>
<td>300 U</td>
<td>5,100 U</td>
<td>8,200 U</td>
<td>6,100 U</td>
<td>4,700 U</td>
<td>5,900 U</td>
<td>6,000 U</td>
</tr>
<tr>
<td>Lead</td>
<td>10 U</td>
</tr>
<tr>
<td>Silver</td>
<td>10 U</td>
</tr>
<tr>
<td>Sodium</td>
<td>870 U</td>
<td>240,000 U</td>
<td>270,000 U</td>
<td>270,000 U</td>
<td>310,000 U</td>
<td>67,000 U</td>
<td>67,000 U</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.2 U</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

ug/L Micrograms per liter.
mg/L Milligrams per liter.
U Constituent was not detected above the reporting limit.
* USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
<table>
<thead>
<tr>
<th>Constituent</th>
<th>NCAC 2L Standard GW Reference</th>
<th>Pre-Injection</th>
<th>Pre-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
<th>Post-Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td></td>
<td>50</td>
<td>1.1</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1.5</td>
<td>2.1</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td>70</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Chloromethane</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,4-Dichlobenzene</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td>6</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
<td>0.4</td>
<td>15</td>
<td>12</td>
<td>20 U</td>
<td>14</td>
<td>8.7</td>
<td>21</td>
<td>22</td>
<td>1 U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td></td>
</tr>
<tr>
<td>Diethanolamine</td>
<td></td>
<td>7,300**</td>
<td>700 E</td>
<td>570 E *</td>
<td>770</td>
<td>220 E</td>
<td>140 E *</td>
<td>390 E</td>
<td>49</td>
<td>10 U</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td></td>
<td>600</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
<td>10 U</td>
<td>10 U</td>
<td>200 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td></td>
<td>5</td>
<td>5 U</td>
<td>5 U</td>
<td>100 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Naphthalene</td>
<td></td>
<td>6</td>
<td>5 U</td>
<td>5 U</td>
<td>100 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2,3-Tetrachloroethane</td>
<td></td>
<td>0.2</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td></td>
<td>70</td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>3</td>
<td>3.9</td>
<td>2.9</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td></td>
<td>1 U</td>
<td>1 U</td>
<td>20 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
<td>1 U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td></td>
<td>500</td>
<td>2 U</td>
<td>2 U</td>
<td>40 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
<td>2 U</td>
</tr>
<tr>
<td>Sulfate</td>
<td>(USEPA Method 9038 mg/L)</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Metals</td>
<td>(USEPA Method 6010/7470A) μg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td></td>
<td>700</td>
<td>31</td>
<td>31</td>
<td>50 U</td>
<td>43</td>
<td>59</td>
<td>50 U</td>
<td>89</td>
<td>69</td>
</tr>
<tr>
<td>Barium</td>
<td></td>
<td>900</td>
<td>570</td>
<td>100 U</td>
<td>200 U</td>
<td>20 U</td>
<td>20 U</td>
<td>20 U</td>
<td>20 U</td>
<td>20 U</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>5</td>
<td>5 U</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>100</td>
<td>10 U</td>
<td>10 U</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>10 U</td>
<td>13</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>300</td>
<td>340</td>
<td>140</td>
<td>150</td>
<td>110,000</td>
<td>16,000</td>
<td>260</td>
<td>140</td>
<td>2,000</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>100</td>
<td>10 U</td>
</tr>
<tr>
<td>Scleumium</td>
<td></td>
<td>20 U</td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td>100</td>
<td>10 U</td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td>10,000</td>
<td>19,000</td>
<td>19,000</td>
<td>41,000</td>
<td>41,000</td>
<td>42,000</td>
<td>43,000</td>
<td>25,000</td>
<td>23,000</td>
</tr>
<tr>
<td>Mercury</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

NCAC 2L North Carolina Administrative Code 2L Groundwater Standard

u g/L Micrograms per liter.

mg/L Milligrams per liter.

U Constituent was not detected above the reporting limit.

*USEPA Risk-Based Concentration (RBC) for tap water (no NCAC 2L Groundwater Standard exists).

Pre Indicates that the reported concentration exceeds the NCAC 2L Groundwater Standard or RBC.
Appendix A

Discharge Monitoring Reports
Subject: Monthly Monitoring Report (October 2010 to December 2010)
OWASA Permit Number 0010
The University of North Carolina at Chapel Hill, Airport Road Waste Disposal Area, Chapel Hill, North Carolina

Dear Mr. Daw:

ARCADIS has prepared the October 2010 to December 2010 monitoring report for the Airport Road Waste Disposal Area located in Chapel Hill, North Carolina. This report is prepared in accordance with permit requirements for the discharge of treated groundwater at the above referenced site. As shown on the attached report (Table 1), the discharge did not exceed any maximum daily concentrations for the samples collected on October 1, 2010, November 5, 2010 or December 14, 2010.

The average daily flow rate was below the permitted average daily maximum during the period. Please feel free to contact me at (919) 854-1282 if you have any questions regarding this work.

Sincerely,

ARCADIS G&M of North Carolina, Inc.

J. Alan Pinnix, L.G.
Senior Scientist
Table 1. Groundwater Discharge Monitoring Report for October-December 2010

The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension, CB #1650
Chapel Hill, North Carolina 27599-1650

OWASA Permit Number 0010

UNC Airport Road Waste Disposal Area
Chapel Hill, North Carolina

Discharge to Manhole # 47C4001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Date</th>
<th>10/1/2010</th>
<th>11/5/2010</th>
<th>12/14/2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Flow (gallons per day)</td>
<td>43,200</td>
<td>21,478*</td>
<td>30,104**</td>
<td>30,646***</td>
</tr>
<tr>
<td>Temperature (degrees Celsius)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>pH (Standard Units)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Benzene (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane (micrograms per liter)</td>
<td>71</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Methylene Chloride (micrograms per liter)</td>
<td>930</td>
<td>< 5.0</td>
<td>< 5.0</td>
<td>< 5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (micrograms per liter)</td>
<td>30</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Arsenic (micrograms per liter)</td>
<td>16</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Chromium (micrograms per liter)</td>
<td>50</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Copper (micrograms per liter)</td>
<td>60</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead (micrograms per liter)</td>
<td>49</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc (micrograms per liter)</td>
<td>635</td>
<td>< 20</td>
<td>< 20</td>
<td>< 100</td>
</tr>
<tr>
<td>Mercury (nanograms per liter)</td>
<td>50</td>
<td>< 0.50</td>
<td>0.68</td>
<td>0.71</td>
</tr>
</tbody>
</table>

NOTE: Discharge initiated on 10/05/2006
< 1.0 Not detected above reporting limit.
NA Not applicable to the permit conditions.
NM Not Measured
** Flow reading based upon data collected between 10/2/2010 and 11/5/2010.

I hereby certify that I have examined and am familiar with the information submitted in this
document and that the information is true, accurate and complete.
I am aware that there are significant penalties for submitting false information.

1/3/2011

[Signature of Official]
Mr. J. Laurence Daw
Geophysicist/Licensed Geologist
The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension
Campus Box 1650
Chapel Hill, NC 27599-1650

Subject:
Monthly Monitoring Report (July 2010 to September 2010)
OWASA Permit Number 0010
The University of North Carolina at Chapel Hill, Airport Road Waste Disposal Area,
Chapel Hill, North Carolina

Dear Mr. Daw:

ARCADIS has prepared the July 2010 to September 2010 monitoring report for the
Airport Road Waste Disposal Area located in Chapel Hill, North Carolina. This
report is prepared in accordance with permit requirements for the discharge of treated
groundwater at the above referenced site. As shown on the attached report (Table 1),
the discharge did not exceed any maximum daily concentrations for the samples

The average daily flow rate was below the permitted average daily maximum during
the period. Please feel free to contact me at (919) 854-1282 if you have any questions
regarding this work.

Sincerely,

ARCADIS G&M of North Carolina, Inc.

J. Alan Pinnix, L.G.
Senior Scientist

Imagine the result
Table 1. Groundwater Discharge Monitoring Report for July-September 2010

The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension, CB #1550
Chapel Hill, North Carolina 27599-1650

OWASA Permit Number 0010

UNC Airport Road Waste Disposal Area
Chapel Hill, North Carolina

Discharge to Manhole # 47C4001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Flow (gallons per day)</td>
<td>43,200</td>
<td>13,188*</td>
<td>23,777**</td>
</tr>
<tr>
<td>Temperature (degrees Celsius)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>pH (Standard Units)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Benzene (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane (micrograms per liter)</td>
<td>71</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Methylene Chloride (micrograms per liter)</td>
<td>930</td>
<td>< 5.0</td>
<td>< 5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (micrograms per liter)</td>
<td>30</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Arsenic (micrograms per liter)</td>
<td>16</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Chromium (micrograms per liter)</td>
<td>50</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Copper (micrograms per liter)</td>
<td>60</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead (micrograms per liter)</td>
<td>49</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc (micrograms per liter)</td>
<td>535</td>
<td>< 100</td>
<td>< 100</td>
</tr>
<tr>
<td>Mercury (nanograms per liter)</td>
<td>50</td>
<td>< 0.50</td>
<td>< 0.50</td>
</tr>
</tbody>
</table>

NOTE: Discharge initiated on 10/05/2006
< 1.0 Not detected above reporting limit.
NA Not applicable to the permit conditions.
NM Not Measured
** Flow reading based upon data collected between 7/23/2010 and 8/18/2010.
*** Flow reading based upon data collected between 8/19/2010 and 9/12/2010.

I hereby certify that I have examined and am familiar with the information submitted in this document and that the information is true, accurate and complete.
I am aware that there are significant penalties for submitting false information.

Date: 9/29/2010
Signature of Official:
Mr. J. Laurence Daw
Geophysicist/Licensed Geologist
The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension
Campus Box 1650
Chapel Hill, NC 27599-1650

Subject:
Monthly Monitoring Report (January 2010 to March 2010)
OWASA Permit Number 0010
The University of North Carolina at Chapel Hill, Airport Road Waste Disposal Area,
Chapel Hill, North Carolina

Dear Mr. Daw:

ARCADIS has prepared the January 2010 to March 2010 monitoring report for the
Airport Road Waste Disposal Area located in Chapel Hill, North Carolina. This
report is prepared in accordance with permit requirements for the discharge of treated
groundwater at the above referenced site. As shown on the attached report (Table 1),
the discharge did not exceed any maximum daily concentrations for the samples

The average daily flow rate was below the permitted average daily maximum during the period. Please feel free to contact me at (919) 854-1282 if you have any questions regarding this work.

Sincerely,

ARCADIS G&M of North Carolina, Inc.

J. Alan Pinnix, L.G.
Senior Scientist

Imagine the result
Table 1. Groundwater Discharge Monitoring Report for January-March 2010

The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension, CB #1650
Chapel Hill, North Carolina 27599-1650

OWASA Permit Number 0010

UNC Airport Road Waste Disposal Area
Chapel Hill, North Carolina

Discharge to Manhole # 47C4001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Flow (gallons per day)</td>
<td>43,200</td>
<td>26,349*</td>
<td>25,664**</td>
<td>26,056***</td>
</tr>
<tr>
<td>Temperature (degrees Celsius)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>pH (Standard Units)</td>
<td>NA</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Benzene (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 2.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform (micrograms per liter)</td>
<td>100</td>
<td>< 1.0</td>
<td>< 2.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane (micrograms per liter)</td>
<td>71</td>
<td>1.5</td>
<td>< 2.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Methylene Chloride (micrograms per liter)</td>
<td>930</td>
<td>< 5</td>
<td>< 10</td>
<td>< 5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (micrograms per liter)</td>
<td>30</td>
<td>< 1.0</td>
<td>< 2.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Arsenic (micrograms per liter)</td>
<td>16</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Chromium (micrograms per liter)</td>
<td>50</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Copper (micrograms per liter)</td>
<td>60</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead (micrograms per liter)</td>
<td>49</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc (micrograms per liter)</td>
<td>535</td>
<td>< 20</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Mercury (nanograms per liter)</td>
<td>50</td>
<td>< 0.50</td>
<td>0.55</td>
<td>< 0.50</td>
</tr>
</tbody>
</table>

NOTE: Discharge initiated on 10/05/2006
< 1.0 Not detected above reporting limit.
NA Not applicable to the permit conditions.
NM Not Measured
** Flow reading based upon data collected between 1/12/2010 and 2/10/2010.

I hereby certify that I have examined and am familiar with the information submitted in this document and that the information is true, accurate and complete.
I am aware that there are significant penalties for submitting false information.

4/2/2010
Signature of Official

Because we care
100% recycled paper produced by wind power energy
Mr. J. Laurence Daw
Geophysicist/Licensed Geologist
The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension
Campus Box 1650
Chapel Hill, NC 27599-1650

Subject:
OWASA Permit Number 0010
The University of North Carolina at Chapel Hill, Airport Road Waste Disposal Area,
Chapel Hill, North Carolina

Dear Mr. Daw:

ARCADIS has prepared the April 2010 to June 2010 monitoring report for the
Airport Road Waste Disposal Area located in Chapel Hill, North Carolina. This report is prepared in accordance with permit requirements for the discharge of treated groundwater at the above referenced site. As shown on the attached report (Table 1), the discharge did not exceed any maximum daily concentrations for the samples collected on April 19, 2010, May 24, 2010 or June 14, 2010.

The average daily flow rate was below the permitted average daily maximum during the period. Please feel free to contact me at (919) 854-1282 if you have any questions regarding this work.

Sincerely,

ARCADIS G&M of North Carolina, Inc.

Alan Pinnix, L.G.
Senior Scientist
Table 1. Groundwater Discharge Monitoring Report for April-June 2010

The University of North Carolina at Chapel Hill
Department of Environment, Health & Safety
1120 Estes Drive Extension, CB #1650
Chapel Hill, North Carolina 27599-1650

OWASA Permit Number 0010

UNC Airport Road Waste Disposal Area
Chapel Hill, North Carolina

Discharge to Manhole # 47C4001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Allowable Daily Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>4/19/2010</td>
</tr>
<tr>
<td>Average Flow (gallons per day)</td>
<td>43,200</td>
</tr>
<tr>
<td>Temperature (degrees Celsius)</td>
<td>NA</td>
</tr>
<tr>
<td>pH (Standard Units)</td>
<td>NA</td>
</tr>
<tr>
<td>Benzene (micrograms per liter)</td>
<td>100</td>
</tr>
<tr>
<td>Chloroform (micrograms per liter)</td>
<td>100</td>
</tr>
<tr>
<td>1,2-Dichloroethane (micrograms per liter)</td>
<td>71</td>
</tr>
<tr>
<td>Methylene Chloride (micrograms per liter)</td>
<td>930</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane (micrograms per liter)</td>
<td>30</td>
</tr>
<tr>
<td>Arsenic (micrograms per liter)</td>
<td>16</td>
</tr>
<tr>
<td>Chromium (micrograms per liter)</td>
<td>50</td>
</tr>
<tr>
<td>Copper (micrograms per liter)</td>
<td>60</td>
</tr>
<tr>
<td>Lead (micrograms per liter)</td>
<td>49</td>
</tr>
<tr>
<td>Zinc (micrograms per liter)</td>
<td>535</td>
</tr>
<tr>
<td>Mercury (nanograms per liter)</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTE: Discharge initiated on 10/05/2006

< 1.0 Not detected above reporting limit.
NA Not applicable to the permit conditions.
NM Not Measured
** Flow reading based upon data collected between 4/20/2010 and 5/24/2010.

I hereby certify that I have examined and am familiar with the information submitted in this document and that the information is true, accurate and complete.
I am aware that there are significant penalties for submitting false information.

7/7/2010

Signature of Official

Because we care
100% recycled paper produced by wind power energy
Appendix B

Laboratory Analytical Data Reports for Groundwater Samples
ANALYTICAL REPORT

Job Number: 680-54137-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
01/22/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE: FL: E87052; GA: 803; Guam; HI: IL; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LA000244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.
TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404
Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com
METHOD SUMMARY:

Client: ARCADIS U.S., Inc.

Job Number: 680-54137-1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water</td>
<td>TAL SAV.</td>
<td>SW846 8260B.</td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (GC/MS). Purge and Trap.</td>
<td>TAL SAV.</td>
<td>SW846 5030B.</td>
<td></td>
</tr>
<tr>
<td>Metals (ICP). Preparation, Total Recoverable or Dissolved Metals.</td>
<td>TAL SAV.</td>
<td>SW846 6010C.</td>
<td>SW846 3005A.</td>
</tr>
</tbody>
</table>

Lab References:

TAL SAV = TestAmerica Savannah.

Method References:

METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc.1
Job Number: 680-54137-1

<table>
<thead>
<tr>
<th>M:</th>
<th>Analyst9</th>
<th>Analyst9D:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846 8260B1</td>
<td>Lanier, Carolyn1</td>
<td>CL1</td>
</tr>
<tr>
<td>SW846 6010C1</td>
<td>Bland, Brian1</td>
<td>BCB1</td>
</tr>
<tr>
<td>Lab</td>
<td>Client2 ample2D2</td>
<td>ClientMa:rix2</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>680-54137-1U</td>
<td>entU</td>
<td>WaterU</td>
</tr>
</tbody>
</table>

TestAmerica : ava: ah2
Analytical Data

Client: ARCADIS U.S., Inc.U
Job Number: 680-54137-1U

Client Sample ID: Effluentd
Lab Sample ID: 680-54137-1R
Lab Matrix: Water

Date Sampled: 01/11/2010 1640R
Date Received: 01/12/2010 0918R

8260B Volatile Organic Compounds (G/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone R</td>
<td>25R</td>
<td>UR</td>
<td>25R</td>
</tr>
<tr>
<td>Benzene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Bromoform R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Bromomethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Carbon disulfide R</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>Carbon tetrachloride R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Chlorobenzene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Chlorodibromomethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Chloroethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Chloroform R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Chloromethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Dichlorobromomethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,1-Dichloroethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,2-Dichloroethane R</td>
<td>1.5R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,1-Dichloroethene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,2-Dichloropropane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Diethyl ether R</td>
<td>130R</td>
<td>ER</td>
<td>10R</td>
</tr>
<tr>
<td>Ethylbenzene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>2-Hexanone R</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>Ethylene Chloride R</td>
<td>5.0R</td>
<td>UR</td>
<td>5.0R</td>
</tr>
<tr>
<td>2-Butanone (MEK)R</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)R</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>Styrene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Tetrachloroethene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Toluene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,2-Dichloroethene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,3-Dichloropropene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Trichloroethene R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Vinyl chloride R</td>
<td>1.0R</td>
<td>UR</td>
<td>1.0R</td>
</tr>
<tr>
<td>Xylenes, TotalR</td>
<td>2.0R</td>
<td></td>
<td>2.0R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate R</th>
<th>%RecR</th>
<th>QualifierR</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene R</td>
<td>86R</td>
<td></td>
<td>75 - 120R</td>
</tr>
<tr>
<td>Dibromofluoromethane R</td>
<td>108R</td>
<td></td>
<td>75 - 121R</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)R</td>
<td>96R</td>
<td></td>
<td>75 - 120R</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (G/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneR</td>
<td>50R</td>
<td>UR</td>
<td>50R</td>
</tr>
<tr>
<td>BenzeneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>BromoformR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>BromomethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>arbon disulfideR</td>
<td>4.0R</td>
<td>UR</td>
<td>4.0R</td>
</tr>
<tr>
<td>arbon tetrachlorideR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>chlorobenzeneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>chlorodibromomethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>chloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>hloroformR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>hloromethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>DichlorobromomethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,1-DichloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,2-DichloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,1-DichloroetheneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,2-DichloropropaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>Diethyl etherR</td>
<td>120R</td>
<td>DR</td>
<td>20R</td>
</tr>
<tr>
<td>EthylbenzeneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>2-HexanoneR</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
<tr>
<td>ethylene ChlorideR</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>2-Butanone (MEK)R</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)R</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
<tr>
<td>StyreneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>TetrachloroetheneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>TolueneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>rans-1,2-DichloroetheneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>rans-1,3-DichloropropeneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>TrichloroetheneR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>Vinyl chlorideR</td>
<td>2.0R</td>
<td>UR</td>
<td>2.0R</td>
</tr>
<tr>
<td>Xylenes, TotalR</td>
<td>4.0R</td>
<td></td>
<td>4.0R</td>
</tr>
<tr>
<td>SurrogateR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-BromofluorobenzeneR</td>
<td>84R</td>
<td>Qualifier</td>
<td>75 - 120R</td>
</tr>
<tr>
<td>DibromofluoromethaneR</td>
<td>108R</td>
<td>Qualifier</td>
<td>75 - 121R</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)R</td>
<td>96R</td>
<td>Qualifier</td>
<td>75 - 120R</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-54137-1R

Sample ID: Effluent

Lab Sample ID: 680-54137-1R

Matrix: Water

Date Sampled: 01/11/2010 1640R

Date Received: 01/12/2010 0918R

Method: 6010CR

Analysis Batch: 680-158713R

Prep Batch: 680-158248R

Instrument ID: N/AR

Lab File ID: N/AR

Dilution: 1.0R

Date Analyzed: 01/19/2010 1832R

Date Prepared: 01/14/2010 1128R

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicR</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
<tr>
<td>ChromiumR</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>CopperR</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
<tr>
<td>LeadR</td>
<td>10R</td>
<td>UR</td>
<td>10R</td>
</tr>
<tr>
<td>Z. cR</td>
<td>20R</td>
<td>UR</td>
<td>20R</td>
</tr>
</tbody>
</table>
DATA REPORT: QUALIFIERSH

<table>
<thead>
<tr>
<th>Lab Section</th>
<th>Ua alifierh</th>
<th>Descriptionh</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS VOAx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ux</td>
<td></td>
<td>cates the analyte was analyzed for but not detected.x</td>
</tr>
<tr>
<td>Ex</td>
<td></td>
<td>Result exceeded calibration range.x</td>
</tr>
<tr>
<td>Dx</td>
<td></td>
<td>Surrogate or matrix spike recoveries were not obtained x because the extract was diluted for analysis; also compounds x analyzed at a dilution may be flagged with a D.x</td>
</tr>
<tr>
<td>Metalsx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ux</td>
<td></td>
<td>cates the analyte was analyzed for but not detected.x</td>
</tr>
</tbody>
</table>
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-54137-1.

Method Blank - Batch: 680-158140P

<table>
<thead>
<tr>
<th>Lab Sample ID:</th>
<th>MB 680-158140/16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrix</td>
<td>Water.</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>01/1/2010 143.</td>
</tr>
<tr>
<td>Date Packed</td>
<td>01/1/2010 143.</td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Re. ult.</th>
<th>Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>5.</td>
<td>U.</td>
</tr>
<tr>
<td>Benzene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Béromoform.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Béromethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Carbon diulfide.</td>
<td>0.</td>
<td>U.</td>
</tr>
<tr>
<td>Carbon tetrachloride.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Chloroethene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Chloromethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>cl. -1,-Dichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>cl. -1,3-Dichloropropene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,-Dichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,-Dichloropropene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Diethyl eth.</td>
<td>10.</td>
<td>U.</td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>-Hexanone.</td>
<td>10.</td>
<td>U.</td>
</tr>
<tr>
<td>Mtylene Chloride</td>
<td>5.0.</td>
<td>U.</td>
</tr>
<tr>
<td>-Butanone (MEK)e</td>
<td>10.</td>
<td>U.</td>
</tr>
<tr>
<td>4-Mt hyl. -pent anone (MBK)e</td>
<td>10.</td>
<td>U.</td>
</tr>
<tr>
<td>Styene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,-Tetrachloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Tetrachloroethene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Toluene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>tran. -1,-Dichloroethene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>tran. -1,3-Dichloropropene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,-Trichloroethane.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Trichloroethene.</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0.</td>
<td>U.</td>
</tr>
<tr>
<td>Xylene, Total.</td>
<td>0.</td>
<td>U.</td>
</tr>
</tbody>
</table>

Surro.a te.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% Rec.</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Béromfluorobenzene.</td>
<td>7.</td>
<td>75 - 1.0.</td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td>109e</td>
<td>75 - 1.1.</td>
</tr>
<tr>
<td>Toluene-de (Surre)</td>
<td>9e</td>
<td>75 - 1.0.</td>
</tr>
</tbody>
</table>

Calculation. ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-54137-1.

Lab Control Sample/P

Lab Control Sample Duplicate Recovery Report - Batch: 680-158140

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>p BatchN/A.</td>
<td>Unit. u./Le</td>
<td>Lab . ile ID:</td>
<td>pq1. 3.de</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Initial Wei.h t/Volume.: 5 mL e</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>01/1/2010 1303.</td>
<td></td>
<td></td>
<td>inal Wei.h t/Volume.: 5 mL e</td>
<td></td>
</tr>
<tr>
<td>Date . pae de</td>
<td>01/1/2010 1303.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>p BatchN/A.</td>
<td>Unit. u./Le</td>
<td>Lab . ile ID:</td>
<td>pq1. 4.de</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Initial Wei.h t/Volume.: 5 mL e</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>01/1/2010 1303.</td>
<td></td>
<td></td>
<td>inal Wei.h t/Volume.: 5 mL e</td>
<td></td>
</tr>
<tr>
<td>Date . pae de</td>
<td>01/1/2010 1303.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>101.</td>
<td>105.</td>
<td>17 - 175.</td>
<td>4.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt zene.</td>
<td>103.</td>
<td>104.</td>
<td>77 - 119e</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmnoform.</td>
<td>11.</td>
<td>108.</td>
<td>- 133.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmmomethane.</td>
<td>133.</td>
<td>145.</td>
<td>1 - 184.</td>
<td>9e</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0.</td>
<td>1.4.</td>
<td>71 - 135.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>108.</td>
<td>106.</td>
<td>5 - 116.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td>107.</td>
<td>105.</td>
<td>75 - 133.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane.</td>
<td>1.9e</td>
<td>13.</td>
<td>40 - 165.</td>
<td>3.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorof orm.</td>
<td>114.</td>
<td>114.</td>
<td>- 1.0</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cl -1, -Dichloroethane.</td>
<td>104.</td>
<td>103.</td>
<td>9 - 134.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ci -1,3-Dichloropropene.</td>
<td>103.</td>
<td>10.</td>
<td>76 - 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>10.</td>
<td>101.</td>
<td>78 - 1.7</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>106.</td>
<td>105.</td>
<td>74 - 1.7</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, -Dichloroethane.</td>
<td>97.</td>
<td>97.</td>
<td>- 13.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>108.</td>
<td>107.</td>
<td>- 141.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, -Dichloropropene.</td>
<td>99e</td>
<td>99e</td>
<td>73 - 1.4</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>113.</td>
<td>110.</td>
<td>- 116.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Hexahane.</td>
<td>100.</td>
<td>97.</td>
<td>34 - 161.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md hylene Chloride</td>
<td>107.</td>
<td>111.</td>
<td>70 - 1.5</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Butane (MEK)e</td>
<td>91.</td>
<td>93.</td>
<td>33 - 157.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mt hyl-,-pent anone (MIBK)e</td>
<td>4.</td>
<td>7.</td>
<td>40 - 151.</td>
<td>3.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styene.</td>
<td>110.</td>
<td>109e</td>
<td>- 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,- -Tetrachloroethane.</td>
<td>906.</td>
<td>9 - 1.9e</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethane.</td>
<td>104.</td>
<td>103.</td>
<td>76 - 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene.</td>
<td>10.</td>
<td>10.</td>
<td>1 - 117.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans. -1,3-Dichloropropene.</td>
<td>10.</td>
<td>10.</td>
<td>73 - 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane.</td>
<td>100.</td>
<td>101.</td>
<td>76 - 1.7</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,- Trichloroethane.</td>
<td>91.</td>
<td>91.</td>
<td>75 - 1.1</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethane.</td>
<td>104.</td>
<td>106.</td>
<td>4 - 115.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation. ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
Quality Control Results

Lab Control Sample/P
Lab Control Sample Duplicate Recovery Report - Batch: 680-158140
Method: 8260BP
preparation: 5030BP

|-------------------|---------------------|----------------|----------------|----------------|-------------------------
| Client Matrixe | Water. | p Batch eN/A. | Unit. u./Le | Lab. ile ID. | pq1. 3.de
| Dilution: | 1.0. | | | Initial Wei.h t/Vomile.: 5 mL
| Date Analyzed | 01/1./2d10 1303. | | | inal Wei.h t/Vomile.: 5 mL
| Date. pae de | 01/1./2d10 1303. | | | |

|-------------------|---------------------|----------------|----------------|----------------|-------------------------
| Client Matrixe | Water. | p Batch eN/A. | Unit. u./Le | Lab. ile ID: | pq1. 4.de
| Dilution: | 1.0. | | | Initial Wei.h t/Vomile.: 5 mL
| Date Analyzed | 01/1./2d10 13. 7. | | | inal Wei.h t/Vomile.: 5 mL
| Date. pae de | 01/1./2d10 13. 7. | | | |

Analyte	% Rec. LCS.	LCS.	Limit.	R. D.	R. D Limit.	LCS Qual.	LCSD Qual.
Vinyl chloride	103.	104.	59 - 144.	50.			
Xylene, Total.	111.	109e	4 - 118.	30.			

<table>
<thead>
<tr>
<th>Surro.a te.</th>
<th>LCS % Rec.</th>
<th>LCSD % Rec.</th>
<th>Acceptance Limit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene.</td>
<td>97.</td>
<td>95.</td>
<td>75 - 1. 0.</td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td>104.</td>
<td>105.</td>
<td>75 - 1. 1.</td>
</tr>
<tr>
<td>Toluene-de (Surr)</td>
<td>89</td>
<td>100.</td>
<td>e</td>
</tr>
</tbody>
</table>

Calculation. as performed before rounding to avoid round-off error. in calculated re. ult.
Quality Control Results

Method Blank - Batch: 680-158181P

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Re. ult.</th>
<th>Qual.</th>
<th>RLe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>5.</td>
<td>U.</td>
<td>5.</td>
</tr>
<tr>
<td>Benzene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Broman.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromoform.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromomethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon disulfide.</td>
<td>0.</td>
<td>U.</td>
<td>0.</td>
</tr>
<tr>
<td>Carbon tetrachloride.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroethene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloromethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl-1,1-Dichloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl-1,3-Dichloropropene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,-Dichloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,-Dichloropropene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Mtylene Chloride.</td>
<td>5.0</td>
<td>U.</td>
<td>5.0</td>
</tr>
<tr>
<td>-Butanone (MEK)e.</td>
<td>10.</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>4-Mt yl- -pent anone (MIBK)e</td>
<td>10.</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>Styene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,-Tetrachloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>tran. -1,-Dichloroethene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>tran. -1,3-Dichloropropene</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,-Trichloroethane.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Trichloroethene.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride.</td>
<td>1.0</td>
<td>U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylene. Total.</td>
<td>0.</td>
<td>U.</td>
<td>0.</td>
</tr>
</tbody>
</table>

Surro.a te. % Rec. Acceptance Limit.

- 4-Bromofluorobenzene. 7. 75 - 1.0
- Dibromofluoromethane. 108. 75 - 1.1
- Toluene-de (Sur)e. 97. 75 - 1.0

Calculation. ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
Lab Control Sample/P

Lab Control Sample Duplicate Recovery Report - Batch: 680-158181P

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Lab. ID:</td>
<td>- .</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>01/13/2010 1037.</td>
<td>Initial Wei. h t/Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date:</td>
<td>01/13/2010 1037.</td>
<td>inal Wei. h t/Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID:</th>
<th>LCSD 680-158181/e</th>
<th>Analysis Batch: 680-158181.</th>
<th>P Batch ID: N/A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Lab. ID:</td>
<td>- .</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>01/13/2010 1058.</td>
<td>Initial Wei. h t/Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date:</td>
<td>01/13/2010 1058.</td>
<td>inal Wei. h t/Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>103</td>
<td>103.</td>
<td>17-175.</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ben zene.</td>
<td>104.</td>
<td>104.</td>
<td>77-119e</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromiform.</td>
<td>105.</td>
<td>101.</td>
<td>-133.</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane.</td>
<td>136.</td>
<td>146.</td>
<td>1-184.</td>
<td>7</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon di.ulfide</td>
<td>5.</td>
<td>55</td>
<td>131.</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>107.</td>
<td>106.</td>
<td>5-116.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>104.</td>
<td>10.</td>
<td>75-133.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene.</td>
<td>1.4</td>
<td>1.5</td>
<td>40-165.</td>
<td>1</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>111.</td>
<td>115.</td>
<td>1.0</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane.</td>
<td>11.</td>
<td>110.</td>
<td>48-14.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ci-1,-Dichloroethene</td>
<td>103.</td>
<td>106.</td>
<td>9-134.</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ci-1,3-Dichloropropene.</td>
<td>101.</td>
<td>100.</td>
<td>76-1</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>99e</td>
<td>100.</td>
<td>78-1.7</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene.</td>
<td>10.</td>
<td>106.</td>
<td>74-1.7</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-,Dichloroethene.</td>
<td>9e</td>
<td>9e</td>
<td>-13.</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>10.</td>
<td>109e</td>
<td>-141.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,-Dichloropropene.</td>
<td>9e</td>
<td>100.</td>
<td>73-1.4</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>113.</td>
<td>11.</td>
<td>-116.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Hexanone.</td>
<td>9e</td>
<td>97.</td>
<td>34-161.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdylene Chloride.</td>
<td>107.</td>
<td>108.</td>
<td>70-1.5</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Butanone (MEK)e</td>
<td>91.</td>
<td>97.</td>
<td>33-157.</td>
<td>7</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methylhydri...</td>
<td>5.</td>
<td>5.</td>
<td>40-151.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene.</td>
<td>110.</td>
<td>109e</td>
<td>-1.</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,-Tetrachloroethane.</td>
<td>7.</td>
<td>7.</td>
<td>9-1.9e</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene.</td>
<td>105.</td>
<td>104.</td>
<td>76-1.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene.</td>
<td>101.</td>
<td>99e</td>
<td>1-117.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans.-1,-Dichloroethene.</td>
<td>10.</td>
<td>105.</td>
<td>7-131.</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans.-1,3-Dichloropropene.</td>
<td>10.</td>
<td>99e</td>
<td>73-1</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethene.</td>
<td>99e</td>
<td>99e</td>
<td>76-1.7</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,-Trichloroethene.</td>
<td>91.</td>
<td>7.</td>
<td>75-1.1</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene.</td>
<td>103.</td>
<td>103.</td>
<td>4-115.</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation. ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
Quality Control Results

Lab Control Sample/P
Lab Control Sample Duplicate Recovery Report - Batch: 680-158181
Method: 8260BP
Preparation: 5030BP

LCS Lab Sample ID: LCS 680-158181/5.
Client Matrixe: Water.
Dilution: 1.0.
Date Analyzed: 01/13/2010 1037.
Analysis Batch: 680-158181.
p BatcheN/A.
Unit: u./Le
In. trume ID: GC/MS Volatile. - .
Lab. ile ID: pq130.de
Initial Weih t/Volume: 5 mL.
inal Weih t/Volume: 5 mL

LCSD Lab Sample ID: LCS 680-158181/e
Client Matrixe: Water.
Dilution: 1.0.
Date Analyzed: 01/13/2010 1058.
Analysis Batch: 680-158181.
p BatcheN/A.
Unit: u./Le
In. trume ID: GC/MS Volatile. - .
Lab. ile ID: pq131.de
Initial Weih t/Volume: 5 mL.
inal Weih t/Volume: 5 mL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chloride</td>
<td>99e</td>
<td>101e</td>
<td>59 - 144</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylene., Total.</td>
<td>109e</td>
<td>109e</td>
<td>4 - 118</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surro.ate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenzene.</td>
<td>9e</td>
<td>9e</td>
<td></td>
<td>75 - 1.0</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td>10.</td>
<td>106.</td>
<td></td>
<td>75 - 1.1</td>
<td>1.1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-de (Sur)</td>
<td>89</td>
<td>97.</td>
<td>e</td>
<td>75 - 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation. ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
Method Blank - Batch: 680-158248P

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Unit. u./Le</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>01/19/2010 1605.</td>
<td></td>
</tr>
<tr>
<td>Date. pae de</td>
<td>01/14/2010 11.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>Re. ult.</th>
<th>Qual.</th>
<th>RLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar. nic.</td>
<td>0.</td>
<td>U.</td>
<td>0.</td>
</tr>
<tr>
<td>Copper</td>
<td>0.</td>
<td>U.</td>
<td>0.</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.</td>
<td>U.</td>
<td>0.</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: 680-158248P

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Unit. u./Le</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>01/19/2010 1609e</td>
<td></td>
</tr>
<tr>
<td>Date. pae de</td>
<td>01/14/2010 11.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>Spike Amount.</th>
<th>Re. ult.</th>
<th>% Rec.</th>
<th>Limit.</th>
<th>Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar. nic.</td>
<td>000.</td>
<td>000.</td>
<td>100.</td>
<td>75 - 1.5.</td>
<td></td>
</tr>
<tr>
<td>Chromium.</td>
<td>00.</td>
<td>05.</td>
<td>10.</td>
<td>75 - 1.5.</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>50.</td>
<td>46.</td>
<td>9e</td>
<td>75 - 1.5.</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>500.</td>
<td>509e</td>
<td>10.</td>
<td>75 - 1.5.</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>500.</td>
<td>507.</td>
<td>101.</td>
<td>75 - 1.5.</td>
<td></td>
</tr>
</tbody>
</table>

Calculation: ae pe formed before roundin. to avoid round-off error. in calculated re. ult.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DATE</th>
<th>TIME</th>
<th>SAMPLE IDENTIFICATION</th>
<th>COMPOSITE ID OR GRAB (INDICATE)</th>
<th>ADVENS (MATERIAL)</th>
<th>SOILS: SEASONED</th>
<th>COMPOUND</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>1/11/10</td>
<td>10:00</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

LABORATORY USE ONLY

<table>
<thead>
<tr>
<th>RECEIVED FOR LABORATORY BY:</th>
<th>DATE</th>
<th>TIME</th>
<th>CUSTODY INTACT</th>
<th>CUSTODY SEAL NO.</th>
<th>SAINT CLAIR LOG NO.</th>
<th>LABORATORY REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/11/10</td>
<td>09:00</td>
<td>YES</td>
<td>0</td>
<td>680-54137</td>
<td>2.4°C</td>
</tr>
</tbody>
</table>
Login Sample Receipt Check ListT

<table>
<thead>
<tr>
<th>Question</th>
<th>T / F / NAT</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below S backgroundS</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or S tampered with S samples were received on ice.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is present.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and S the COC.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>samples are received within Holding Time.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested S MS/MSDs S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in S diameter.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT S needsS</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.S</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.S</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation VerifiedS</td>
<td>TrueS</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-44939-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comments
No additional cb. nts. k

Receipt m
All samples were received in good condition within temperature requirements. k

Metals m
Method 1631E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 400-102262+400-102290 were outside cbntro. k limits. The associated laboratory cbntro. sample (LCS) recovery met acceptance criteria. Data was flagged and reported as is.k

No other analytical or quality issues were noted. k
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: m Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF cury, Low LFvF (CVAFS)F</td>
<td>TAL PEN.</td>
<td>EPAR631EF</td>
<td></td>
</tr>
<tr>
<td>PF pafati6, MF cury, Low LFvF</td>
<td>TAL PEN.</td>
<td>EPAR631EF</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL PEN = TFstAfher.ca PF sac o.aF

Method References:

EPA= US Enviro. me. alFPl6. cti6. .gF cyF
<table>
<thead>
<tr>
<th>M: th</th>
<th>Analyst</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>Jones, Randy</td>
<td>J</td>
</tr>
<tr>
<td>Lab : ample ID2</td>
<td>liqP : ample ID2</td>
<td>liqP Mark2</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1TB.</td>
<td>EFFLUENT.</td>
<td>Water.</td>
</tr>
</tbody>
</table>
SAMPLEc Sc LTSc
Analytical Data

Client: ARCADIS U.S., Inc.
Job Number: 400-44939-1.

<table>
<thead>
<tr>
<th>Lab Sample ID:</th>
<th>400-44939-1TBM</th>
<th>Date Sampled: 01/11/2010 1640M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrix:</td>
<td>terM</td>
<td>Date Received: 01/12/2010 1015M</td>
</tr>
</tbody>
</table>

1631E Mercury, Low Level (CVAFS)

<table>
<thead>
<tr>
<th>Method:</th>
<th>631EM</th>
<th>Analysis Batch: 400-102290M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation:</td>
<td>631EM</td>
<td>Prep Batch: 400-102262M</td>
</tr>
<tr>
<td>Dilution:</td>
<td>.0M</td>
<td>Lab File ID: M</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>01/14/2010 1312M</td>
<td>Instrument ID: M</td>
</tr>
<tr>
<td>Date Prepared:</td>
<td>01/13/2010 1530M</td>
<td>HYDRAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab File ID: N/AM</td>
</tr>
<tr>
<td>Initial Weight/Volume:</td>
<td>40 mL</td>
<td>Final Weight/Volume:</td>
</tr>
<tr>
<td>Analyte:</td>
<td>Mercury</td>
<td>Result (ng/L): <0.50M</td>
</tr>
<tr>
<td>Qualifier:</td>
<td></td>
<td>RLM: 0.50</td>
</tr>
</tbody>
</table>

TestAmerica Pensacola
Page 7 of 13
QUALITY CONTROL RESULTS
QC Association Summary

<table>
<thead>
<tr>
<th>Lab Sample ID-</th>
<th>Client Sample ID-</th>
<th>Report Basis-</th>
<th>Client Matrix-</th>
<th>Method-</th>
<th>Prep Batch-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Batch- 400-102262-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-102262/22-Ah</td>
<td>Lab Control SampleM</td>
<td>Th</td>
<td>W.terM</td>
<td>631Eh</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-102262/23-Ah</td>
<td>Lab Control Sample Duplicateh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td></td>
</tr>
<tr>
<td>MB 400-102262/21-Ah</td>
<td>Method.Blankh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td></td>
</tr>
<tr>
<td>939-1TBh</td>
<td>EFFLUENTh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td></td>
</tr>
<tr>
<td>Analysis Batch-400-102290-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-102262/22-Ah</td>
<td>Lab Control Sampleh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td>102262h</td>
</tr>
<tr>
<td>LCSD 400-102262/23-Ah</td>
<td>Lab Control Sample Duplicateh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td>102262h</td>
</tr>
<tr>
<td>MB 400-102262/21-Ah</td>
<td>Method.Blankh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td>102262h</td>
</tr>
<tr>
<td>939-1TBh</td>
<td>EFFLUENTh</td>
<td>Th</td>
<td>Waterh</td>
<td>1631Eh</td>
<td>102262h</td>
</tr>
</tbody>
</table>

Report Basis

T = Total

TestAmerica Pensacola-
Quality Control Results

MR hodiB RankoB Batch:c400-102262p

<table>
<thead>
<tr>
<th>Lab Sample IDB</th>
<th>Lab Sample MatB</th>
<th>Lab DilutionB</th>
<th>Date AnalyzedB</th>
<th>Date PB paB dB</th>
<th>Analysis Batch</th>
<th>Analysis PB pB</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-102262/21-AB</td>
<td>WatB</td>
<td>/14/2010 .911B</td>
<td>/13/2010 .300B</td>
<td></td>
<td>400-102290B</td>
<td>400-102262B</td>
<td>ng/LB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>RBu ItB</th>
<th>QualB</th>
<th>RLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>curvB</td>
<td><0.50B</td>
<td></td>
<td>50B</td>
</tr>
</tbody>
</table>

Lab Control Samp /p

Lab Control Samp Distinguish Recovery Re- ort -Batch:c400-102262p

<table>
<thead>
<tr>
<th>LCS Lab Sample IDB</th>
<th>LCS Sample MatB</th>
<th>LCS Sample DilutionB</th>
<th>Date AnalyzedB</th>
<th>Date PB paB dB</th>
<th>Analysis Batch</th>
<th>Analysis PB pB</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-102262/22-AB</td>
<td>WatB</td>
<td>/14/2010 .911B</td>
<td>/13/2010 .300B</td>
<td></td>
<td>400-102290B</td>
<td>400-102262B</td>
<td>ng/LB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>LCSB</th>
<th>LCSDB</th>
<th>LimitB</th>
<th>RPDB</th>
<th>RPD LimitB</th>
<th>LCS QualB</th>
<th>LCSD QualB</th>
</tr>
</thead>
<tbody>
<tr>
<td>curvB</td>
<td>96B</td>
<td>96B</td>
<td>79 .21B</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MR hodi:d631Ep

Pre-paration:d631Ep

<table>
<thead>
<tr>
<th>Instrument IDB</th>
<th>Lab File IDB</th>
<th>Initial WBgth/Volume:</th>
<th>Final WBgth/Volume:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOIC FLUORESCENCE</td>
<td>N/AB</td>
<td>40B mLB</td>
<td>40B mLB</td>
</tr>
</tbody>
</table>

Calculations aB pB formed before rounding to avoid round-off errors in calculated results.
DATA RhPORT: m ALIlía RSh

<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifera</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample ID/Location</th>
<th>Matrix</th>
<th>Date/Time Sampled</th>
<th>Lab ID</th>
<th>Remarks</th>
<th>Total No. of Bottles/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>L</td>
<td>1/11/16, 1640</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Matrix: L = Liquid; S = Solid; A = Air

Relinquished by:
- Organization: Arcadis
- Organization: OA-Pen
- Organization:
- Organization:

Received by:
- Organization:
- Organization:
- Organization:
- Organization:

Date: 1/11/16, 1/12/16
Time: 17:10, 10:15
Seal Intact? Yes, Yes, Yes, No

Special Instructions/Remarks:

Delivery Method: □ In Person ☒ Common Carrier FedEx □ Lab Courier □ Other
Login SampIT R-cTipt ChTck ListT

Client: ARCADIS U.S., Inc.M
Job Number: B 9 39-1h
Login NumbTr: 44939b
Creator: Hor, Komab
List Number: 1b

<table>
<thead>
<tr>
<th>Question</th>
<th>/F/ NAb</th>
<th>Commentb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below C backg.oundC</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.C</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or C tampered with.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.C</td>
<td>TrueC 0.2°C</td>
<td></td>
</tr>
<tr>
<td>OC is present.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and C the COC.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Samples are received within Holding.Time.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.C</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested C MS/MSDsc</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in C diameter.C</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT C needsC</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting.or compositing.C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?C</td>
<td>TrueC</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation VerifiedC</td>
<td>TrueC</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-55031-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
02/22/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 9801001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>AL .AVT</td>
<td>WT 4T8.2D BT</td>
<td></td>
</tr>
<tr>
<td>PurgT and apT</td>
<td>AL .AVT</td>
<td>WT 4T50 30B</td>
<td></td>
</tr>
<tr>
<td>MTals (ICP)</td>
<td>AL .AVT</td>
<td>WT 4T6010 CT</td>
<td></td>
</tr>
<tr>
<td>PT patiation, otal RTcovT ablTor . iss olvTd MTalsT</td>
<td>AL .AVT</td>
<td>WT 4T 3005A</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

AL .AV = . stAmerica .avannahT

Method References:

WT 4T = "T st MThods For Evaluating . oild Wast T , Physical/ChTnical MThods", Thi Edition, November 1 9T And .ts . pdatT sT
<table>
<thead>
<tr>
<th>M: thb</th>
<th>Analyst</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846</td>
<td>8260B.</td>
<td>Bearden, Robert.</td>
</tr>
<tr>
<td>SW846</td>
<td>6010C.</td>
<td>Bland, Brian.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>La: Sample ID</th>
<th>Clc</th>
<th>Sample ID 2</th>
<th>Clc</th>
<th>Ma: rbx2</th>
<th>Da: /Tim: Sampled2</th>
<th>R2</th>
<th>v2d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>680-55031-1b</td>
<td>Effluentb</td>
<td>Waterb</td>
<td></td>
<td></td>
<td>02/10/2010 1600.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260Bd/odtial Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Method</th>
<th>8260Bo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>5030Bo</td>
</tr>
<tr>
<td>Dilution</td>
<td>2.0o</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>02/16/2010 1655o</td>
</tr>
<tr>
<td>Date Prepared</td>
<td>02/16/2010 1655o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RL o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>50o</td>
<td>Uo</td>
<td>50o</td>
</tr>
<tr>
<td>Benzeneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Bromoformo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Bromomethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Carbon disulfideo</td>
<td>4.0o</td>
<td>Uo</td>
<td>4.0o</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Chlorodibromomethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Chloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Chloroformo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Chloromethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>cis-1,2-Dichloroetheneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropeneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Dichlorobromomethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,1-Dichloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,2-Dichloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,1-Dichloroetheneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,2-Dichloropropano</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>0o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.8o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>20o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>0o</td>
<td>Uo</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Butanone (MEK)o</td>
<td>20o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)o</td>
<td>20o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>Styreneo</td>
<td>2.0o</td>
<td>U °o</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,2,2-Tetrachloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Tetrachloroetheneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Tolueneo</td>
<td>2.2o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>rans-1,2-Dichloroetheneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>rans-1,3-Dichloropropene</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,1-Trichloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>1,2-Trichloroethaneo</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>2.0o</td>
<td>Uo</td>
<td>2.0o</td>
</tr>
<tr>
<td>Xylenes, Totalo</td>
<td>9o</td>
<td></td>
<td>4.0o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Reco</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>94o</td>
<td></td>
<td>75 - 120o</td>
</tr>
<tr>
<td>Dibromofluoromethaneo</td>
<td>00o</td>
<td></td>
<td>75 - 121o</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>03o</td>
<td></td>
<td>75 - 120o</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-55031-1o

Date Sampled: 02/10/2010 1600o

Date Received: 02/12/2010 0933o

Method: 6010Co

Preparation: 005Ao

Dilution: .0o

Date Analyzed: 02/18/2010 2032o

Date Prepared: 02/18/2010 1225o

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenico</td>
<td>20o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>Chromium</td>
<td>0o</td>
<td>Uo</td>
<td>0o</td>
</tr>
<tr>
<td>Coppero</td>
<td>20o</td>
<td>Uo</td>
<td>20o</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>Uo</td>
<td>0o</td>
</tr>
<tr>
<td>Zinc</td>
<td>22o</td>
<td></td>
<td>20o</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-161225o

Prep Batch: 680-161109o

Instrument ID: N/Ao

Lab File ID: N/Ao

Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifiera</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/k S VOA*</td>
<td>U*</td>
<td>Indic. he analyte wa. analyzed for but not detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCS or LCSD exceeds the control limits*</td>
</tr>
<tr>
<td>Metals*</td>
<td>U*</td>
<td>Indic. he analyte wa. analyzed for but not detected.</td>
</tr>
</tbody>
</table>
MR hodiRanokibatch:c680-161019u

Method: 8260Bu
Preparation: 5030Bu

<table>
<thead>
<tr>
<th>AnalytU</th>
<th>RUbuU</th>
<th>QualU</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>5.</td>
<td></td>
<td>5.</td>
</tr>
<tr>
<td>BenzeneU</td>
<td>1.0.</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>Butaneform.</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ButaneomethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>Carbon disulfideU</td>
<td>0.</td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>Calcium tetrachlorideU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorobenzeneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorodibromomethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ChloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ChloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,3-DichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>EthylbenzeneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>MethylbenzeneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>ButylbenzeneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>4-Methyl-2-ButanoneU</td>
<td>10.</td>
<td>10.</td>
<td>10.</td>
</tr>
<tr>
<td>StyreneU</td>
<td>1.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TolueneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>t-butyl-1,2-DichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>Vinyl chlorideU</td>
<td>1.0.</td>
<td></td>
<td>1.0.</td>
</tr>
<tr>
<td>Xylenes, TotalU</td>
<td>0.</td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

SurrogatU % RUbuU AcuitytanicU LimitsU

4-ButylfluorobenzeneU 95. 5 - 1. 0.
i BromofluoromethaneU 111. 5 - 1. 1.
TolueneU (Sur)U 10. 5 - 1. 0.

Calculations aU pU formed before rounding to avoid round-off errors in calculation results U
Quality Control Results

Lab Control Sample/ii
Lab Control Sample Duplicate Recovery Report - Batch: 680-161019u

<table>
<thead>
<tr>
<th>LCS Lab SamplU</th>
<th>LCS 680-161019/4U</th>
<th>Analysis BatchU 680-161019u</th>
<th>nsttlament . MSOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClUUt MatUlKU</td>
<td>WatU</td>
<td>PU p BatchUN.AU</td>
<td>Lab FillU.</td>
</tr>
<tr>
<td>il utionU</td>
<td>1.0</td>
<td>UnitsU ug/LU</td>
<td>oo16.5.dU</td>
</tr>
<tr>
<td>atU AnalyzUUbU</td>
<td>0. 16. 010 1101.</td>
<td></td>
<td>Initial UWght/Volume:. 5 mLU</td>
</tr>
<tr>
<td>atU PupaUudU</td>
<td>0. 16. 010 1101.</td>
<td></td>
<td>Final UWght/Volume:. 5 mLU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDI Lab SamplU</th>
<th>LCSDI 680-161019/B</th>
<th>Analysis BatchU 680-161019u</th>
<th>nsttlament . MSOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClUUt MatUlKU</td>
<td>WatU</td>
<td>PU p BatchUN.AU</td>
<td>Lab FillU.</td>
</tr>
<tr>
<td>il utionU</td>
<td>1.0</td>
<td>UnitsU ug/LU</td>
<td>oo16...dU</td>
</tr>
<tr>
<td>atU AnalyzUUbU</td>
<td>0. 16. 010 1130.</td>
<td></td>
<td>Initial UWght/Volume:. 5 mLU</td>
</tr>
<tr>
<td>atU PupaUudU</td>
<td>0. 16. 010 1130.</td>
<td></td>
<td>Final UWght/Volume:. 5 mLU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnalytU</th>
<th>LCSU</th>
<th>LCSDU</th>
<th>LimitU</th>
<th>RPDU</th>
<th>RPDU LimitU</th>
<th>LCS QualU</th>
<th>LCSD QualU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>104U</td>
<td>108.</td>
<td>- 1.5.</td>
<td>4U</td>
<td>50.</td>
<td>30.</td>
<td>30.</td>
</tr>
<tr>
<td>BUNzU</td>
<td>1037U</td>
<td>105.</td>
<td>- 1192U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlaUform.</td>
<td>4U</td>
<td>- 133U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlaUomethanU</td>
<td>95.</td>
<td>- 184U</td>
<td>8.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaUion disulfidU</td>
<td>100.</td>
<td>101.</td>
<td>55 - 131.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaUion taUchloridU</td>
<td>4U</td>
<td>- 135.</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzUH</td>
<td>99U</td>
<td>99U</td>
<td>5 - 116.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethanU</td>
<td>97U</td>
<td>9U</td>
<td>5 - 133U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanU</td>
<td>106.</td>
<td>40 - 165.</td>
<td>1</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloriform.</td>
<td>106.</td>
<td>106.</td>
<td>- 1.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethanU</td>
<td>97U</td>
<td>105.</td>
<td>4U - 142U</td>
<td>8</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2Uchi orothethU</td>
<td>106.</td>
<td>10.</td>
<td>9 - 134U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ichi oropUpanU</td>
<td>101.</td>
<td>101.</td>
<td>- 1.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichi orobromomethanU</td>
<td>-1.</td>
<td>-</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ichi orothanU</td>
<td>106.</td>
<td>105.</td>
<td>4 - 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2Uchi orothanU</td>
<td>9U</td>
<td>99U</td>
<td>- 1 32U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ichi orothUH</td>
<td>100.</td>
<td>105.</td>
<td>- 141.</td>
<td>5.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2Uchi oropUpanU</td>
<td>100.</td>
<td>100.</td>
<td>3 - 14U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzUH</td>
<td>105.</td>
<td>105.</td>
<td>- 116.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-UcanonU</td>
<td>104U</td>
<td>104U</td>
<td>34 - 161.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MethylUH/CloridU</td>
<td>10.</td>
<td>100.</td>
<td>0 - 1.5.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ButanonU(MEK)U</td>
<td>112</td>
<td>10.</td>
<td>33 - 15.</td>
<td>5.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MUtyl-. -pUtanonU(MIBK)U</td>
<td>109U</td>
<td>113U</td>
<td>40 - 151.</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyUZnU</td>
<td>1.</td>
<td>-</td>
<td>0.</td>
<td>30.</td>
<td>*U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2U tUchlorothanU</td>
<td>101.</td>
<td>103U</td>
<td>9 - 1.9U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T tUchloethethUH</td>
<td>9U</td>
<td>91.</td>
<td>-</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluEnU</td>
<td>10.</td>
<td>10.</td>
<td>1 - 11.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tUans-1,2Uchi orothethU</td>
<td>105.</td>
<td>10.</td>
<td>- 131.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tUans-1,3-ichi oropUpanU</td>
<td>9U</td>
<td>9U</td>
<td>3 - 1.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-T ichloroethanU</td>
<td>97U</td>
<td>99U</td>
<td>- 1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2U ichloroethanU</td>
<td>1037U</td>
<td>105.</td>
<td>5 - 1.1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T ichloroethUH</td>
<td>100.</td>
<td>100.</td>
<td>4 - 115.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations aU pU formed beof rounding to avoid round-off errors in calculatU results.U
Quality Control Results

Lab Control Sample/ u
Lab Control Sample Duplicate Recovery Report - Batch: 680-161019u

<table>
<thead>
<tr>
<th>LCS Lab Sample</th>
<th>LCS 680-161019/4U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Material</td>
<td>WatU</td>
</tr>
<tr>
<td>Collection Date</td>
<td>0. 16. 010 1101.</td>
</tr>
<tr>
<td>Analyte</td>
<td>Analysis Batch 680-161019U</td>
</tr>
<tr>
<td>PU p BatchUN.AU</td>
<td>Units U ug/LU</td>
</tr>
</tbody>
</table>

Method: 8260Bu
Preparation: 5030Bu

<table>
<thead>
<tr>
<th>LCS Lab Sample</th>
<th>LCS 680-161019/31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Material</td>
<td>WatU</td>
</tr>
<tr>
<td>Collection Date</td>
<td>0. 16. 010 1130.</td>
</tr>
<tr>
<td>Analyte</td>
<td>Analysis Batch 680-161019U</td>
</tr>
<tr>
<td>PU p BatchUN.AU</td>
<td>Units U ug/LU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% RU, U</th>
<th>LCSU</th>
<th>LCSDU</th>
<th>LimitU</th>
<th>RPDU</th>
<th>RPDU LimitU</th>
<th>LCS QualU</th>
<th>LCSDI QualU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chloride</td>
<td>109U</td>
<td>11.</td>
<td>59 - 144U</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylene, Total</td>
<td>10.</td>
<td>10.</td>
<td>4 - 118.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogate | LCS % RU,U | LCSDI% RU,U | Accuplan U Limits U |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-1-fluorobenzene</td>
<td>93U</td>
<td>9U</td>
<td>5 - 1.0.</td>
</tr>
<tr>
<td>1-bromo-1-fluoromethane</td>
<td>104U</td>
<td>105.</td>
<td>5 - 1.1.</td>
</tr>
<tr>
<td>Toluene dU (Surrogate)</td>
<td>103U</td>
<td>105.</td>
<td>5 - 1.0.</td>
</tr>
</tbody>
</table>

Calculations aU pU formed before rounding to avoid round-off errors in calculatUd results U
Quality Control Results

Method Blank - Batch: 680-161109u

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result U</th>
<th>Qual U</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Umic U</td>
<td>0.0</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Ch Umium</td>
<td>10.0</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>Copper U</td>
<td>0.0</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>L Urd U</td>
<td>10.0</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>Zinc U</td>
<td>0.0</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

Method: 6010Cu
Preparation: 3005Au
Total Recoverable

- nstlament : CPDU
- Lab Fill U: N.AU
- Initial W Ught/Volume: 50 mL U
- Final W Ught/Volume: 50 mL U

Lab Control Sample - Batch: 680-161109u

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spike Amount U</th>
<th>Result U</th>
<th>% Result U</th>
<th>Limit U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Umic U</td>
<td>0.000</td>
<td>1930.0</td>
<td>9.0</td>
<td>5 - 1.5</td>
</tr>
<tr>
<td>Ch Umium</td>
<td>0.000</td>
<td>197U</td>
<td>99.0</td>
<td>5 - 1.5</td>
</tr>
<tr>
<td>Copper U</td>
<td>50.0</td>
<td>4U</td>
<td>99.0</td>
<td>5 - 1.5</td>
</tr>
<tr>
<td>L adU</td>
<td>500.0</td>
<td>49U</td>
<td>9.0</td>
<td>5 - 1.5</td>
</tr>
<tr>
<td>Zinc U</td>
<td>500.0</td>
<td>500.0</td>
<td>100.0</td>
<td>5 - 1.5</td>
</tr>
</tbody>
</table>

Calculations aU pU formed before rounding to avoid round-off errors in calculation results.

TestAmerica Savannahu
Page 11 of 13
<table>
<thead>
<tr>
<th>Sample ID/Location</th>
<th>Matrix</th>
<th>Date/Time Sampled</th>
<th>Lab ID</th>
<th>Remarks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>L</td>
<td>210/10, 1600</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Sample Matrix:
L = Liquid;
S = Solid;
A = Air

Total No. of Bottles/Containers

Relinquished by:
signature
Organization: ARCADIS

Received by:
signature
Organization: TH SAV

Date: 2/11/16
Time: 09:00
Seal Intact? Yes
Date: 2/12/16
Time: 09:33
Seal Intact? Yes

Special Instructions/Remarks:
Temp 2.0

Delivery Method:
☐ In Person
☒ Common Carrier Fed Ex
☐ Lab Courier
☐ Other
<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NAb</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below S background</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or S tampered with.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is present.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and S the COC.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples are received within Holding Time.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Amples containers have legible labels.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Amples collection date/times are provided.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Amples bottles are completely filled.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested S MS/MSDsS</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in S diameter.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT S eedsS</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.S</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Amples do not require splitting or compositing.S</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Amples Preservation VerifiedS</td>
<td>TrueS</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-45588-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comments
No additional co. n tS k

ceipt l
All samples we6r6 sc6ved in go6d condition withi6 tSpek raturS r$ uirS n tS S

Metals l
Method 1631E: The matrix spike / matrix spike duplicat$S(MS/MSD) rScouveKes for batch 400-103S 9l 400-10382b weKs out$de contro. k imitS. The associat$ at la boratoty contro. sample (LCS) rScovely me6kacc$ tancS critSria. Data was f-aged and r$ ort$ as isK S

No otheK anaLytical or quality is$S wekrS ot$. S
Method Summary:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT cury, Low LTvTl (CVAFS)</td>
<td>L PEN.</td>
<td>EPA1631ET</td>
<td></td>
</tr>
<tr>
<td>PT paTation, MT cury, Low LTvTl</td>
<td>L PEN.</td>
<td>EPA1631E</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

AL PEN = . stAherica TnsacolaT

Method References:

EPA = US EnviRonmental Protection Agency TncyT
<table>
<thead>
<tr>
<th>M: thb</th>
<th>Analyst ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1C31E.</td>
<td>Jones, RTndS</td>
</tr>
</tbody>
</table>

T: stAml rica P-nsacolap
Sample Summary 2

Client: ARCADIT U.S., Inc.

Job Number: 40045588x1C

<table>
<thead>
<tr>
<th>Lab: Samp e ID2</th>
<th>Caeu Samp e ID2</th>
<th>Caeu Matrix</th>
<th>Date/Time: Samp edb</th>
<th>Date/Time: Received edb</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-45588-1I</td>
<td>NTI</td>
<td>Waterl</td>
<td>02/10/2010 1600I</td>
<td>02/12/2010 0925I</td>
</tr>
</tbody>
</table>

Testamber Peus a: oam:

Page 5 of 14
SAMPL : S L SI
1631E Mercury, low Level (CVAFS) I

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qualifern</th>
<th>RLn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.55n</td>
<td></td>
<td>0.50n</td>
</tr>
</tbody>
</table>

Method: 1631En
Analysis Batch: 400-103827n
Preparation: 1631En
Prep Batch: 400-103779n
Dilution: 1.0n
Date Analyzed: 02/15/2010 1406n
Date Prepared: 02/12/2010 1500n
Instrument ID: n
Lab File ID: n
Initial Weight/Volume: 40 mL
Final Weight/Volume: 40 mL
QUALITYpCuTROLp SULTSp
Quality Control Results

Client: ARCADIS U.S., Inc.

Job Number: 400-45588-1n

QC Association B- mmaryu

<table>
<thead>
<tr>
<th>Lau Saml le ID-</th>
<th>Client Saml le ID-</th>
<th>Result Basisu</th>
<th>Client Matrix-</th>
<th>Method-</th>
<th>Preu Batch-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalsu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preu Batch- 400-103779b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-103779/26-Ac</td>
<td>Lab Control Sample</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-103779/27-Ac</td>
<td>Lab Control Sample Duplicate</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>MB 400-103779/25-Ac</td>
<td>Method Blankc</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>5588-1c</td>
<td>EFFLUENTc</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>680-54863-B-17-B MSc</td>
<td>Matrix Spike</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>680-54863-B-17-C MSDc</td>
<td>Matrix Spike Duplicate</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td></td>
</tr>
<tr>
<td>Analysis Batch-400-103827c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-103779/26-Ac</td>
<td>Lab Control Sample</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
<tr>
<td>LCSD 400-103779/27-Ac</td>
<td>Lab Control Sample Duplicate</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
<tr>
<td>MB 400-103779/25-Ac</td>
<td>Method Blankc</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
<tr>
<td>5588-1c</td>
<td>EFFLUENTc</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
<tr>
<td>680-54863-B-17-B MSc</td>
<td>Matrix Spike</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
<tr>
<td>680-54863-B-17-C MSDc</td>
<td>Matrix Spike Duplicate</td>
<td>Tc</td>
<td>Watun</td>
<td>1631Ec</td>
<td>103779c</td>
</tr>
</tbody>
</table>

Result Basisu

T = Totalc

TestAmerica Bensacolau
Quality Control Results

Method Blank - Batchb 400-103779R

<table>
<thead>
<tr>
<th>Lab Sample</th>
<th>LucTnT acixc</th>
<th>lu.ionT</th>
<th>ac .. n alyzB</th>
<th>ac PI pac</th>
<th>n alysis Bacchl</th>
<th>400-103827c</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 400-103779/25-AT</td>
<td>Wac</td>
<td>1.0</td>
<td>02/15/2010 0919n</td>
<td>02/12/2010 1130</td>
<td>Bacchl</td>
<td>400-103827c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyS</th>
<th>sulc</th>
<th>Qualc</th>
<th>L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyS</td>
<td><0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Lab Control Sample/R

Lab Control Sample Duplicate Recovery Report - Batch: 400-103779R

<table>
<thead>
<tr>
<th>LCS Lab Sample</th>
<th>LucTnT acixc</th>
<th>lu.ionT</th>
<th>ac .. n alyzB</th>
<th>ac PI pac</th>
<th>n alysis Bacchl</th>
<th>400-103827c</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 400-103779/26-AT</td>
<td>Wac</td>
<td>1.0</td>
<td>02/15/2010 0927c</td>
<td>02/12/2010 1130</td>
<td>Bacchl</td>
<td>400-103827c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyS</th>
<th>sulc</th>
<th>Qualc</th>
<th>L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyS</td>
<td><0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Lab Control Sample/R

Lab Control Sample Duplicate Recovery Report - Batch: 400-103779R

<table>
<thead>
<tr>
<th>LCSD Lab Sample</th>
<th>LucTnT acixc</th>
<th>lu.ionT</th>
<th>ac .. n alyzB</th>
<th>ac PI pac</th>
<th>n alysis Bacchl</th>
<th>400-103827c</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCSD 400-103779/27-AT</td>
<td>Wac</td>
<td>1.0</td>
<td>02/15/2010 0935c</td>
<td>02/12/2010 1130</td>
<td>Bacchl</td>
<td>400-103827c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyS</th>
<th>% c.T</th>
<th>LCST</th>
<th>LCSDT</th>
<th>LimitT</th>
<th>PI</th>
<th>PI LimitT</th>
<th>LCS Qualc</th>
<th>LCSD Qualc</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyS</td>
<td>101c</td>
<td>95C</td>
<td>79 - 121c</td>
<td>6c</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculadons ac p. forme. before rounTing .o avoiT rounT-off errors in calculac resuls.T
Quality Control Results

Matrix Spike/R
Matrix Spike Duplicate Recovery Report - Batch: 400-103779R

<table>
<thead>
<tr>
<th>S Lab Sample</th>
<th>CliTntT acixc</th>
<th>CLTntT acixc</th>
<th>nalysis Bacchl</th>
<th>400-103827c</th>
<th>nalysis Bacchl</th>
<th>400-103779n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wac</td>
<td>680-54863-B-17-B</td>
<td>1.0</td>
<td>02/15/2010</td>
<td>1115C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/12/2010</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDLab Sample</th>
<th>CliTntT acixc</th>
<th>CLTntT acixc</th>
<th>nalysis Bacchl</th>
<th>400-103827c</th>
<th>nalysis Bacchl</th>
<th>400-103779n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wac</td>
<td>680-54863-B-17-C</td>
<td>1.0</td>
<td>02/15/2010</td>
<td>1123I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/12/2010</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% c.T nalyS</th>
<th>ST</th>
<th>SDT</th>
<th>LimitT</th>
<th>PI</th>
<th>PI LimitT</th>
<th>S Qualc</th>
<th>SDT Qualc</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyS</td>
<td>59n</td>
<td>58</td>
<td>125C</td>
<td>1c</td>
<td>24B</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Calculations are performed before reviewing, avoiding rounding-off errors in calculations.
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierl</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalsu</td>
<td>Fu</td>
<td>MS or MSD exceeds the control limitsu</td>
</tr>
<tr>
<td>Question</td>
<td>/F/ NA1</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Radioactivity either was not measured or below detection limit.</td>
<td>N/Au</td>
<td></td>
</tr>
<tr>
<td>TUE cooled and if present, is at desired temperature.</td>
<td>N/Au</td>
<td></td>
</tr>
<tr>
<td>TUE cooler or samples were compromised and tampered.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler temperature is acceptable.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler temperature is recorded.</td>
<td>True</td>
<td>0.6°Cu</td>
</tr>
<tr>
<td>COC is present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled with ink and legible.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>TUE is not presently available.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received at the time of the collection.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample containers are legible.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/time are provided.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are sed.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are complete and filled.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>TUE is sufficient for all requested analyses, including un requested TUE</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>MS/MS methodology.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials were un opened at room temperature or bubble point (1/4")</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff was informed when samples should be processed or quick TAT was needed.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Multiples of samples are not present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were submitted for compounding.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Is there a field sampler's name present on COC?</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample preservation verified.</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-55836-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
03/24/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH: CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS).</td>
<td>TAL SAVT</td>
<td>SWUI T8.2DT BT</td>
<td>SWUI T50 30 BT</td>
</tr>
<tr>
<td>PurgT and Ttrapu</td>
<td>TAL SAVT</td>
<td></td>
<td>SWUI T6 010 CU</td>
</tr>
<tr>
<td>M tals (tICP).</td>
<td>TAL SAVT</td>
<td></td>
<td>SWUI T 3005 AU</td>
</tr>
<tr>
<td>Pn pation, Total RUbolv abLV . i ssolvld M talsl</td>
<td>TAL SAVT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL SAV = TbstAmerica Savannah

Method References:

<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846S 8260B4</td>
<td>Lanier, Cu</td>
<td>CLo</td>
</tr>
<tr>
<td>SW846S 6010Cu</td>
<td>Bland, B4</td>
<td>BCB4</td>
</tr>
<tr>
<td>Lab Sample ID2</td>
<td>Caer Sample ID2</td>
<td>Caer Mark2</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>680-55836-1,</td>
<td>ent,</td>
<td>Water,</td>
</tr>
</tbody>
</table>
8260B volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Q, alifier</th>
<th>RLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25</td>
<td>U</td>
<td>25</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>4.7</td>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0</td>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0</td>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>340</td>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes, TotalU</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate,</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>96</td>
<td></td>
<td>75 - 120</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>101</td>
<td></td>
<td>75 - 121</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>109</td>
<td></td>
<td>75 - 120</td>
</tr>
</tbody>
</table>
8260B volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>250</td>
<td>U</td>
<td>250</td>
</tr>
<tr>
<td>Benzene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Bromoform</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>20</td>
<td>U</td>
<td>20</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Chloroform</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>310</td>
<td>D</td>
<td>100</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>100</td>
<td>U</td>
<td>100</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>50</td>
<td>U</td>
<td>50</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>100</td>
<td>U</td>
<td>100</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>100</td>
<td>U</td>
<td>100</td>
</tr>
<tr>
<td>Styrene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Toluene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Xylenes, TotalU</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Surrogate:
- 4-Bromofluorobenzene, 98, 75 - 120
- Dibromofluoromethane, 95, 75 - 121
- Toluene-d8 (Surr), 109, 75 - 120
6010C Metals(ICP)-Total Recoverable 1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Q, a/iier</th>
<th>RLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>20,</td>
<td>U,</td>
<td>20,</td>
</tr>
<tr>
<td>Chromium</td>
<td>10,</td>
<td>U,</td>
<td>10,</td>
</tr>
<tr>
<td>Copper</td>
<td>20,</td>
<td>U,</td>
<td>20,</td>
</tr>
<tr>
<td>Lead</td>
<td>10,</td>
<td>U,</td>
<td>10,</td>
</tr>
<tr>
<td>Zinc</td>
<td>22,</td>
<td></td>
<td>20,</td>
</tr>
</tbody>
</table>

Method: 6010C
Preparation: 3005A
Dilution: 1.0
Date Analyzed: 03/19/2010 0406
Date Prepared: 03/18/2010 1201
Lab Section

<table>
<thead>
<tr>
<th>Section</th>
<th>u alifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS YOA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>In, icate, the ana.yte wa. ana.yze, for but not, etecte, ..</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Re, t e xcee, e, ca.iration range,</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Surrogate or matrix, pike recoverie, were not obtaine, beca. e the extract wa. ilute, for ana.ysl, t. o compoun, ana.yze, at a. ilution maybe fagge, with a.D,</td>
<td></td>
</tr>
<tr>
<td>Meta.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>In, icate, the ana.yte wa. ana.yze, for but not, etecte, ..</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: R0 -1637du

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>25.</td>
<td></td>
<td>25.</td>
</tr>
<tr>
<td>BUHzUnU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Blmform</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>BlomethanolU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Calom disulfid</td>
<td>2.0.</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Calom tUltrachlorid,</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorobenzUUnU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorobromomethanolU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChloroethanolU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-ichloroethUnU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-ichloropropU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ichlorobromomethanolU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-ichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-ichloroetheneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-ichloroetheneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-ichloropropeneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>iU thyl ethU</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>EthylbenzUUnU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2-HI xanonU</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>MethylUUnU Chlorid</td>
<td>5.0.</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>2-ButanolU(MEK)u</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>4-Methyl-2-puchtanoneU(MBrk)u</td>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyT nU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2,2-T, tUchloroethaneU</td>
<td>1.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T, tU chloroetheneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>TolueneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tUms-1,2-ichloroethUnU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tUms-1,3-ichloropropU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-T,ichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-T,ichloroethaneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>T,ichloroetheneU</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>XyUUnU, TotalU</td>
<td>2.0.</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Calculations aU pu formed before rounding to avoid round-off errors in calculation results.U
Quality Control Results

CltUhtU ARCADIS U.S., nc.U

Job Number: 680-5583U1.

Lab Control Bamule/1

Lab Control Bamule BuRlicate Recovery ReRoRt - Batch: R0 -1687Tu

<table>
<thead>
<tr>
<th>LCS Lab SampleU</th>
<th>LCS 680-1637d /4.</th>
<th>Analysis BatchU 680-1637d:</th>
<th>nstlaments.</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cltuht MatUkU</td>
<td>WatU</td>
<td>P p BatchUN/AU</td>
<td>Lab FillU</td>
<td>pq149.d,</td>
</tr>
<tr>
<td>il utionU</td>
<td>1.0.</td>
<td>nitsU ugi/LU</td>
<td>nitial WtUght/Volume:</td>
<td>5 mLU</td>
</tr>
<tr>
<td>atU AnalyzUd,</td>
<td>03/23/2010 0852.</td>
<td></td>
<td>Final WtUght/Volume:</td>
<td>5 mLU</td>
</tr>
<tr>
<td>atU P paU d</td>
<td>03/23/2010 0852.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDI Lab SampleU</th>
<th>LCSDI 80-1637d /5.</th>
<th>Analysis BatchU 680-1637d:</th>
<th>nstlaments.</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cltuht MatUkU</td>
<td>WatU</td>
<td>P p BatchUN/AU</td>
<td>Lab FillU</td>
<td>pq151.d,</td>
</tr>
<tr>
<td>il utionU</td>
<td>1.0.</td>
<td>nitsU ugi/LU</td>
<td>nitial WtUght/Volume:</td>
<td>5 mLU</td>
</tr>
<tr>
<td>atU AnalyzUd,</td>
<td>03/23/2010 0922.</td>
<td></td>
<td>Final WtUght/Volume:</td>
<td>5 mLU</td>
</tr>
<tr>
<td>atU P paU d</td>
<td>03/23/2010 0922.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnalytU</th>
<th>LCSU</th>
<th>LCSDU</th>
<th>LimitU</th>
<th>RP</th>
<th>RP</th>
<th>LimitU</th>
<th>LCS QualU</th>
<th>LCSDI QualU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcUtonU</td>
<td>4.</td>
<td>5.</td>
<td>17 - 175</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUnUthU</td>
<td>108.</td>
<td>107c</td>
<td>77 - 119</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumform.</td>
<td>97c</td>
<td>94.</td>
<td>2 - 133U</td>
<td>3U</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlumomethanU</td>
<td>5.</td>
<td>92.</td>
<td>12 - 184</td>
<td>8</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CalUon disulfid,</td>
<td>102.</td>
<td>104.</td>
<td>55 - 131</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CalUon tUthchlorid,</td>
<td>119,</td>
<td>117c</td>
<td>71 - 135</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzUUn</td>
<td>105.</td>
<td>104.</td>
<td>5 - 116.</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethanU</td>
<td>9,</td>
<td>99.</td>
<td>75 - 133U</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanU</td>
<td>97c</td>
<td>104.</td>
<td>40 - 165</td>
<td>7c</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethanU</td>
<td>104.</td>
<td>104.</td>
<td>2 - 120.</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethanU</td>
<td>108.</td>
<td>108.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2,3,4-UthethanU</td>
<td>101.</td>
<td>103U</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2,3,4-UropuUpanU</td>
<td>105.</td>
<td>105.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyc UroboromethanU</td>
<td>103U</td>
<td>104.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,3,4,5-UthethanU</td>
<td>102.</td>
<td>104.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,5-UthethanU</td>
<td>105.</td>
<td>105.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,5-UropuUpanU</td>
<td>103U</td>
<td>106.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzUUn</td>
<td>107c</td>
<td>106.</td>
<td>4 - 142.</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HUxanU</td>
<td>9.</td>
<td>95.</td>
<td>34 - 161</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnthylUUnUChlorid,</td>
<td>103U</td>
<td>103U</td>
<td>70 - 125.</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButanUUnU(MEK)u</td>
<td>92.</td>
<td>91.</td>
<td>33 - 157c</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mnthyl-2-puantanUU(MrBK)u</td>
<td>97c</td>
<td>100.</td>
<td>40 - 151.</td>
<td>3U</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyT nU</td>
<td>107c</td>
<td>102.</td>
<td>2 - 122.</td>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,2,3-T, tUthchloroethanU</td>
<td>97c</td>
<td>93U</td>
<td>9 - 129.</td>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T, tUthchloroethanU</td>
<td>102.</td>
<td>103U</td>
<td>7 - 129.</td>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluenU</td>
<td>110.</td>
<td>110.</td>
<td>1 - 117c</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tUthan-1,2,3-UthethanU</td>
<td>105.</td>
<td>104.</td>
<td>72 - 131</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tUthan-1,2,3-UropuUpanU</td>
<td>109.</td>
<td>110.</td>
<td>72 - 131</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-T,ichloroethanU</td>
<td>113U</td>
<td>112.</td>
<td>7 - 129.</td>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,3-T,ichloroethanU</td>
<td>103U</td>
<td>103U</td>
<td>72 - 131</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tIchloethanU</td>
<td>104.</td>
<td>104.</td>
<td>4 - 115.</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations aU pu formed before rounding to avoid round-off errors in calculatU results.U
Quality Control Results

Lab Control Bamule/1
Lab Control Bamule Burilate Recovery Report - Batch: R0 -1687/\(\cup \)

LCS Lab SampleU	LGCS 680-1637/\(\cup \) /4.	Analysis BatchU 680-1637/\(\cup \)	nsl\(\text{m} \)ent.	MSP
CluHt Mat\(\text{le} \)U	WatU	P p BatchUN/AU	Lab FillU	pq149.d,
il utionU	1.0.	nitsU ug/LU	nitial WUght/Volume.: 5 mLU	
atU Analyz\(\text{U} \)d,	03/23/2010 0852.		Final WUght/Volume.: 5 mLU	
atU P paU d	03/23/2010 0852.			

LCSDI\(\text{le} \) Lab Samp\(\text{le} \)U	LCSDI\(\text{le} \) 80-1637/\(\cup \) /5.	Analysis BatchU 680-1637/\(\cup \)	nsl\(\text{m} \)ent.	MSP
CluHt Mat\(\text{le} \)U	WatU	P p BatchUN/AU	Lab FillU	pq151.d,
il utionU	1.0.	nitsU ug/LU	nitial WUght/Volume.: 5 mLU	
atU Analyz\(\text{U} \)d,	03/23/2010 0922.		Final WUght/Volume.: 5 mLU	
atU P paU d	03/23/2010 0922.			

<table>
<thead>
<tr>
<th>AnalytU</th>
<th>% RU U</th>
<th>LCSU</th>
<th>LCSDU</th>
<th>LimitU</th>
<th>RP</th>
<th>RP</th>
<th>LimitU</th>
<th>LCS QualU</th>
<th>LCSDI QualU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chlorid.</td>
<td>7c</td>
<td>116.</td>
<td>59 - 144.</td>
<td>29.</td>
<td>50.</td>
<td>108.</td>
<td>106.</td>
<td>4 - 118.</td>
<td>2.</td>
</tr>
<tr>
<td>XylUnUs, TotalU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SurrogatU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogatU</th>
<th>LCS % RU U</th>
<th>LCSDI% RU U</th>
<th>AcctUplancU LimitsU</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bl(\text{m})ofluorobenzU U</td>
<td>106.</td>
<td>9.</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>i bromofluoromethanU</td>
<td>102.</td>
<td>102.</td>
<td>75 - 121.</td>
</tr>
<tr>
<td>Toluenu d, (Surr)U</td>
<td>108.</td>
<td>109.</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>

Calculations aU pu formed before rounding to avoid round-off errors in calculatU d results.U
Quality Control Results

Job Number: 680-5583U1

Method Blank - Batch: R0 -1683991

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qual (ng/L)</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>20.</td>
<td>20.</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>10.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>20.</td>
<td>20.</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>10.</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>20.</td>
<td>20.</td>
<td></td>
</tr>
</tbody>
</table>

Lab Control Blank - Batch: R0 -1683991

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spik (ng/L)</th>
<th>Amount (ng/L)</th>
<th>Result (ng/L)</th>
<th>% RUL</th>
<th>Limit (ng/L)</th>
<th>Qual (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>200.</td>
<td>207c</td>
<td>103U</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>250.</td>
<td>259.</td>
<td>104.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>500.</td>
<td>509.</td>
<td>102.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>500.</td>
<td>524.</td>
<td>105.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations are performed before rounding to avoid round-off errors in calculated results.
Project Reference: UNC- Airport Rd.
Project No: NC008239-0019-0001
Project Location: NC
Matrix Type: VOCs
Required Analysis: Metals 600
Sample: Effluent
Date: 3/12/10
Time: 13:45

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/12/10</td>
<td>13:45</td>
<td>Report: As, Cr, Cu, Pb, and Zn.</td>
</tr>
<tr>
<td>Question</td>
<td>/F/ NA1</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Radioactivity other, au not meau re dâr, if sneau re d' i, at or belo, backgroundS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler's âu, tody seau if're, ent, i, intact,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>The cooler or, ampâe, do not appear to have been compori, edâr, tamperedS ith,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sampâe, e re received ân ice,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature i, acceptable,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature i, recorded,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC i, pre, ent,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC i, filled but in ink and segible,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC i, filled but, ithau pertinent information,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There are no di, crepancie, bet, een the , ampâe ID, on the container, andS the COC.,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sampâe, are received ân Holding Time,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sampâe container, have legible label,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Container, are not broken or leaking,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sampâe collection date/time, are provided,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Appropriate, ampâe container, are u, ed.,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sampâe bottle, are completely filled,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There i, efficient vol. for au reqâe, tedânaysâe incl. any seqâe, tedS MS/MSD,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>VOA, ampâe viau do not have headsâace or bubble i, <6mm (1/4")ün, diameter,</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>If seece, any S taflâe have been informed âf âny Short holdâme or qâc kâATS needsS</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>MS phauci, ampâe, are not pre, ent,</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sampâe, do not reqâe, p'étingâr compo, iting,</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>I, the FieldS Sampâe's Same pre, ent on COC?u</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sampâe Pre, evation VerifiedS</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-46183-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comment:
No additional co. n tS k

ceipt D
All samples weK S rSved in g ood condition within tSpek ratSrS rSaS k irS n tS S

Metals D
Method 1631E: The matrix spike / matrix spike dk duplicatS(MS/MSD) rScoveNes for batch 400-1056451 400-105673 weK S o. tSde contro. k
imtS. The assSociatS la boratory contro. sample (LCS) rScoveNy meltacc$ tancS critSria. Data was fugged and rS ortS as isk S

No othek analytKl or qkality issk weK rSn otS. S
METHOD SUMMARY:

Matrix: Water

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT cury, Low LTvTl (CVAFS)</td>
<td>L PEN.</td>
<td>EPA631ET</td>
<td></td>
</tr>
<tr>
<td>PT paTati, MT cury, Low LTvTl</td>
<td>L PEN.</td>
<td>EPA631E</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

L PEN = StAmer.ca PT sac olaT

Method References:

EPA US EnvTb. me. al P'Tb. ctTb. .g.T cyT
<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631Eb</td>
<td>Jones, Randyb</td>
<td>Rjb</td>
</tr>
<tr>
<td>Lab Sample I2</td>
<td>C</td>
<td>l</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>00-46183-1.</td>
<td>EFFLUENT.</td>
<td>Water.</td>
</tr>
</tbody>
</table>
SAMPL : S L SD
1631E Mercury, low Level (CVAFS)D

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qualifier</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><0.50</td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Client Sample ID: EFFLUENTa
Lab Sample ID: 00-46183-1.
Client Matrix: Water.
Date Sampled: 03/12/2010 1345b
Date Received: 03/13/2010 0930.

Method: 1631E.
Analysis Batch: 400-105b3.
Preparation: 1631E.
Prep Batch: 400-105b 5b
Instrument ID: HYDRA.
Lab File ID: /A.
Dilution: 1.0.
Date Analyzed: 03/22/2010 1113.
Date Prepared: 03/15/2010 1200.
Initial Weight/Volume: 0 mL.
Final Weight/Volume: 0 mL.
QUALITY CONTROL

SULTS
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 400-46183-1.

QC Association Summary

<table>
<thead>
<tr>
<th>LaR Sample</th>
<th>Client Sample</th>
<th>eR ort Basis</th>
<th>Client Matrix</th>
<th>Method</th>
<th>PreR Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreR Batch- 400-105645m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-105645/2-A0</td>
<td>Lab Control Sample</td>
<td>Water</td>
<td>1631E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCSD 40 -105645/3-A0</td>
<td>Control Sample Duplicate0</td>
<td>Water0</td>
<td>1631E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 40 -105645/1-A0</td>
<td>Method Blank0</td>
<td>Water0</td>
<td>1631E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 -46183-10</td>
<td>EFFLUENT0</td>
<td>Water0</td>
<td>1631E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 -46209-A-1-B MS0</td>
<td>Matrix Spike0</td>
<td>Water0</td>
<td>1631E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 -46209-A-1-C MSD0</td>
<td>Matrix Spike Duplicate0</td>
<td>Water0</td>
<td>1631E0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch-400-105673D					
LCS 40 -105645/2-A0	Control Sample0	Water0	1631E0	40 -1056450	
LCSD 40 -105645/3-A0	Control Sample Duplicate0	Water0	1631E0	40 -1056450	
MB 40 -105645/1-A0	Method Blank0	Water0	1631E0	40 -1056450	
40 -46183-10	EFFLUENT0	Water0	1631E0	40 -1056450	
40 -46209-A-1-B MS0	Matrix Spike0	Water0	1631E0	40 -1056450	
40 -46209-A-1-C MSD0	Matrix Spike Duplicate0	Water0	1631E0	40 -1056450	

eR ort Basis = Total0
Quality Control Results

Method Blank - Batch 400-105645R

<table>
<thead>
<tr>
<th>LUB</th>
<th>STmplT</th>
<th>IDTMB 400-105645/1-AT</th>
<th>lys s Baohb</th>
<th>400-105673T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTT</td>
<td>MT</td>
<td>xU WU</td>
<td>Pb p Baohb</td>
<td>400-1056450</td>
</tr>
<tr>
<td>Dilu.</td>
<td>o.</td>
<td>1.0</td>
<td>Unit$^{g/LU}$</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>lyzUdb</td>
<td>03/22/2010 1049.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>Pb pu</td>
<td>db 03/15/2010 1200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IyT</th>
<th>suitT</th>
<th>Qu. IRT</th>
<th>LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT curryT</td>
<td><0.50</td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Method: 1631ER

Preparation: 1631ER

Lab Control Sample/R

Lab Control Sample Duplicate Recovery Report - Batch: 400-105645R

<table>
<thead>
<tr>
<th>LCS</th>
<th>LUB</th>
<th>STmplT</th>
<th>IDTLCS 400-105645/2-AT</th>
<th>lys s Baohb</th>
<th>400-105673T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTT</td>
<td>MT</td>
<td>xU WU</td>
<td>Pb p Baohb</td>
<td>400-1056450</td>
<td></td>
</tr>
<tr>
<td>Dilu.</td>
<td>o.</td>
<td>1.0</td>
<td>Unit$^{g/LU}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>lyzUdb</td>
<td>03/22/2010 10570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>Pb pu</td>
<td>db 03/15/2010 1200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS</th>
<th>LUB</th>
<th>STmplT</th>
<th>IDTLCS 400-105645/3-AT</th>
<th>lys s Baohb</th>
<th>400-105673T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTT</td>
<td>MT</td>
<td>xU WU</td>
<td>Pb p Baohb</td>
<td>400-1056450</td>
<td></td>
</tr>
<tr>
<td>Dilu.</td>
<td>o.</td>
<td>1.0</td>
<td>Unit$^{g/LU}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>lyzUdb</td>
<td>03/22/2010 11050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>Pb pu</td>
<td>db 03/15/2010 1200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IyT</th>
<th>%</th>
<th>cT</th>
<th>LCST</th>
<th>LCSDT</th>
<th>Lth.</th>
<th>PDT</th>
<th>PD Lth.</th>
<th>LCS Qu. IT</th>
<th>LCSD Qu. IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT curryT</td>
<td>970</td>
<td>100</td>
<td>79 - 1210</td>
<td>3T</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Matrix Spike/R

Matrix Spike Duplicate Recovery Report - Batch: 400-105645R

<table>
<thead>
<tr>
<th>MS LUb STmplT IDT</th>
<th>400-46209-A-1-B MST</th>
<th>lys s Baðhb</th>
<th>400-105673T</th>
<th>In∫ ume.</th>
<th>IDT</th>
<th>HYDRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliT xU WU</td>
<td>Pb p Baðhb</td>
<td>400-1056450</td>
<td>PSI F2T IDT</td>
<td>N/u</td>
<td>InitiT WUghbVolume:</td>
<td>40 mL</td>
</tr>
<tr>
<td>Dil. o. 0.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT iyUdb</td>
<td>03/22/2010</td>
<td>12250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT Pb pu db</td>
<td>03/17/2010</td>
<td>0930</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSD LUb STmplT IDT</th>
<th>400-46209-A-1-C MSDT</th>
<th>lys s Baðhb</th>
<th>400-105673T</th>
<th>In∫ ume.</th>
<th>IDT</th>
<th>HYDRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliT xU WU</td>
<td>Pb p Baðhb</td>
<td>400-1056450</td>
<td>PSI F2T IDT</td>
<td>N/u</td>
<td>InitiT WUghbVolume:</td>
<td>40 mL</td>
</tr>
<tr>
<td>Dil. o. 0.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT iyUdb</td>
<td>03/22/2010</td>
<td>1233T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT Pb pu db</td>
<td>03/17/2010</td>
<td>0930</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>c T</th>
<th>%</th>
<th>c T</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B</td>
<td>53T</td>
<td>71</td>
<td>1250</td>
</tr>
<tr>
<td>84B</td>
<td>24B</td>
<td>F0</td>
<td></td>
</tr>
</tbody>
</table>

CalðuiT o s. pu formed before rou. db g.o. v o.d rou. d-off errors. cTcuiT d resultS.T

TestAmerica PensacolaR
Lab Section

<table>
<thead>
<tr>
<th>u alifierD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalsb</td>
<td></td>
</tr>
<tr>
<td>Fb</td>
<td>MS or MSD exceeds the control limits</td>
</tr>
<tr>
<td>Fb</td>
<td>RPD of the MS and MSD exceeds the control limits</td>
</tr>
</tbody>
</table>
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Client: ARCADIS
Address: 801 Corporate Center Dr. Raleigh, NC 27607

Sampled by: Dave Tuamley
Sampled Date: 3/12/10
Sample Time: 1345

Sample Description: Effluent

Preservative:
- None, Preservative

Matrix:
- Aerobic Water, SW, WW

Sampling Location: Low Temp. Mercury (LTH)

Number of Containers Submitted: 3

Requested Analysis:

Possible Hazard Identification:
- Non-Hazard

No. of Coolers Per Shipment: 1

Special Instructions/Conditions of Receipt:

Relinquished By: (Signature)
Date: 3/12/10
Time: 1700

Received By: (Signature)
Date: 3/13/10
Time: 9:30

Temperature: 2.7°C

Remarks:
Logb Sam1 le 1 eci1 Check List1

Client: ARCADIS U.S., Inc.

Logb Number: 46183P
Creator: Chea, VandaP
List Number: 1P

List Source: TestAmerica PensacolaP

<table>
<thead>
<tr>
<th>Question</th>
<th>T / F</th>
<th>NAP</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either measured or not measured</td>
<td>N/Ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler’s cubic decal is intact</td>
<td>N/Ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler or bampleb dSnot have been compromised</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampleb were received at iceb</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable</td>
<td>Trueb</td>
<td>2.7°Cb</td>
<td></td>
</tr>
<tr>
<td>COC is present</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled in in kSandSible</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled with all pertinent information</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the bample ID and the container and the COC</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampleb were received within Holding Time</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample containerb have legible labelb</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containerb are not broken or leaking</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample collection date/timeb are providedb</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate bample containerb are usedb</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample bottleb are completely filled</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is sufficient bS. IfS all requebted analybeb, incl. any bequestedb</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA bample bialb dSnot have beads or bubles</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA bample bialb dSnot have beads or bubles</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IfS the staff have been informed</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple bampleb are not present</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampleb dSnot require bplitting or compelling</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib the Field Sampler’s name is present on COC</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Prebervation Verified</td>
<td>Trueb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-56888-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
04/30/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI: IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
METHOD SUMMARY:

Matrix: Water:

Volatile, anic, Compou ds (GC/MS), Pur. and T,ap, M, tals (ICP), P, pa,atip. Total R, ov. abl, or Dissolv, d M, tals,

Lab Location: Method: Preparation Method:

TAL SAV, SWB4, 8.2,0 B, SW, 4, 50 30B,

TAL SAV, SW, 4, 60 10C,

TAL SAV, SW, 4, 3005A,

Lab References:

TAL SAV = T, stAmer. a Savannah,

Method References:

SW, 4, = "T, st M, thods For Evaluating, Solid Wast, Physical/Ch, m. al M, thods", Thi, d Editip. Nov,ember 19, And Its. Updat, s.,
<table>
<thead>
<tr>
<th>M: thP</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846</td>
<td>Bearden, RobertN</td>
<td>BN</td>
</tr>
<tr>
<td>SW846</td>
<td>Bland, BrianN</td>
<td>BCBN</td>
</tr>
<tr>
<td>Lab Sample I2</td>
<td>CIQR Sample I2</td>
<td>CIQR Mark2</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>680-56888-1U</td>
<td>luentU</td>
<td>WaterU</td>
</tr>
</tbody>
</table>
8260Bd/volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>25</td>
<td>U</td>
<td>25U</td>
</tr>
<tr>
<td>BenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>BromoformU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>BromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Carbon disulfideU</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
<tr>
<td>Carbon tetrachlorideU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChlorobenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChlorodibromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloroformU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloromethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>DichlorobromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloroetheneU</td>
<td>1.7U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloropropaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Diethyl etherU</td>
<td>64N</td>
<td></td>
<td>10U</td>
</tr>
<tr>
<td>EthylbenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-HeptanoneU</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>Methylene ChlorideU</td>
<td>0.0</td>
<td>5.0U</td>
<td></td>
</tr>
<tr>
<td>2-Butanone (MEK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>StyreneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TetrachloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TolueneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Vinyl chlorideU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Xylenes, TotalU</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogateU</th>
<th>%RecU</th>
<th>Qualifier</th>
<th>Acceptance LimitsU</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneU</td>
<td>95U</td>
<td></td>
<td>75 - 120U</td>
</tr>
<tr>
<td>DibromofluoromethaneU</td>
<td>9U</td>
<td></td>
<td>75 - 121U</td>
</tr>
<tr>
<td>Toluene-d8(Surr)U</td>
<td>103U</td>
<td></td>
<td>75 - 120U</td>
</tr>
</tbody>
</table>
6010C Metals(ICP)-Total Recoverable P

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>20</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td></td>
<td>10U</td>
</tr>
<tr>
<td>Copper</td>
<td>23U</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td></td>
<td>10U</td>
</tr>
<tr>
<td>Zinc</td>
<td>97U</td>
<td></td>
<td>20U</td>
</tr>
</tbody>
</table>

Method: 6010CU
Preparation: 3005AU
Analysis Batch: 680-166990U
Prep Batch: 680-166555U
Lab File ID: N/AU
Instrument ID: ICPDU
Initial Weight/Volume: 0 mL
Final Weight/Volume: 0 mL

Client: ARCADIS U.S., Inc.

Sample ID: 680-56888-1U
Effluent: Water

Client Matri:

Lab Sample ID: 680-56888-1U
Date Sampled: 04/19/2010 0830U
Date Received: 04/20/2010 0915U
Date Prepared: 04/23/2010 124N
Date Analyzed: 04/27/2010 1804N
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS VOA1</td>
<td>U1</td>
<td>indicates the analyte was analyzed for but not detected.1</td>
</tr>
<tr>
<td>Metals1</td>
<td>U1</td>
<td>indicates the analyte was analyzed for but not detected.1</td>
</tr>
</tbody>
</table>
Quality Control Results

MethP Blank - Batch hP 0 -1P 96u

<table>
<thead>
<tr>
<th></th>
<th>Result1</th>
<th>Qual1</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actto</td>
<td>25.</td>
<td>U1</td>
<td>25.</td>
</tr>
<tr>
<td>B1 z</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Bromofom</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Bromomethan</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>CaNo. dHulf</td>
<td>2.0</td>
<td>U1</td>
<td>2.0</td>
</tr>
<tr>
<td>CaNo. tTclor.d</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Chlorob. z</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>ChlorodNromometha</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Chloroetha</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Chlorometha</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>c8-1,2-Dichloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>c8-1,3-Dichloro,op</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Dichlorobromometha</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,1-Dichloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dichloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,1-Dichloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dichloro,opNaN</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Di, thyl eth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Ethylbe. zB</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>2-H1 aNb.</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>M1thyl1 Chlor.dN</td>
<td>5.0</td>
<td>U1</td>
<td>5.0</td>
</tr>
<tr>
<td>2-ButaNB. (MEK)1</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>4-M1thyl-2-p, tNaB.</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Sty</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetracloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Tetracloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Tolue</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>tNaNs-1,2-Dichloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>tNaNs-1,3-Dichloro,op</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,1-Tr.chloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,2-Tr.chloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Tr.chloroeth</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>V1 yl chlor.dN</td>
<td>0.</td>
<td>U1</td>
<td>.0</td>
</tr>
<tr>
<td>Xyl1 s, Total1</td>
<td>2.0</td>
<td>U1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>% R1c1</th>
<th>Acc1ptaN: L.m.ts1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobe. zB</td>
<td>91</td>
<td>75 - .20</td>
</tr>
<tr>
<td>DibromofluoromethaN</td>
<td>95.</td>
<td>75 - .2N</td>
</tr>
<tr>
<td>Tolue. - dN(Surr)1</td>
<td>02N</td>
<td>75 - .20</td>
</tr>
</tbody>
</table>
Quality Control Results

LabControl Sample/P

LabControl Sample Duplicate Recovery Report - Batch hP 0 -1P 96

<table>
<thead>
<tr>
<th>LCS Lab Samp1 ID</th>
<th>LCS 680-</th>
<th>91/4N</th>
<th>Analys b$ Batch1 680-</th>
<th>91</th>
<th>1st time. t ID,</th>
<th>MSP2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1 t Mat1</td>
<td>Wat1</td>
<td>.0</td>
<td>P1 p Batch1N/A,</td>
<td>U1 ts1 ug/L.</td>
<td>Lab F11 ID,</td>
<td>pq1 dN</td>
</tr>
<tr>
<td>Dilut b.</td>
<td>04/27/20</td>
<td>0 . 2N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
<tr>
<td>Dat1 AnalyzBdN</td>
<td>04/27/20</td>
<td>0 . 2N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
<tr>
<td>Dat1 P1 paN dN</td>
<td>04/27/20</td>
<td>0 . 2N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS Lab Samp1 ID</th>
<th>LCS 680-</th>
<th>91/5.</th>
<th>Analys b$ Batch1 680-</th>
<th>91</th>
<th>1st time. t ID,</th>
<th>MSP2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1 t Mat1</td>
<td>Wat1</td>
<td>.0</td>
<td>P1 p Batch1N/A,</td>
<td>U1 ts1 ug/L.</td>
<td>Lab F11 ID,</td>
<td>pq1 dN</td>
</tr>
<tr>
<td>Dilut b.</td>
<td>04/27/20</td>
<td>0 . 42N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
<tr>
<td>Dat1 AnalyzBdN</td>
<td>04/27/20</td>
<td>0 . 42N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
<tr>
<td>Dat1 P1 paN dN</td>
<td>04/27/20</td>
<td>0 . 42N</td>
<td></td>
<td></td>
<td>I1 t bt W, ght/Volume.: 5 mL.</td>
<td>F1 al W, ght/Volume.: 5 mL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, alyt1</th>
<th>% R 1c.1</th>
<th>LCS1</th>
<th>LCSD,</th>
<th>L.m.t1</th>
<th>RPD,</th>
<th>RPD L.m.t1</th>
<th>LCS Qual1</th>
<th>LCS Qual1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act1o.</td>
<td>0</td>
<td>77N</td>
<td>7 . . . 75.</td>
<td>4N</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1 zB</td>
<td>95.</td>
<td>91</td>
<td>77 - 191</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'monoform</td>
<td>04N</td>
<td>08.</td>
<td>2 - 1331</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'monomethaN</td>
<td>491</td>
<td>0.</td>
<td>2 - . 4N</td>
<td>8</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbco. diulf1N</td>
<td>74N</td>
<td>74N</td>
<td>55 - 131</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbco. t1'thior.dN</td>
<td>04N</td>
<td>031.</td>
<td>7N - 135</td>
<td>130.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro. zB</td>
<td>91</td>
<td>04N</td>
<td>5 - .</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethaN</td>
<td>06.</td>
<td>75 - 1331</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorothaN</td>
<td>75.</td>
<td>731</td>
<td>40 - . . 5.</td>
<td>2N</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>91</td>
<td>95.</td>
<td>2 - . 20</td>
<td>130.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethaN</td>
<td>7N</td>
<td>4N</td>
<td>4N - . 42N</td>
<td>2N</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cb1,1,2-Dichloeth1</td>
<td>4N</td>
<td>4N</td>
<td>9 - 134N</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cb1,1,3-Dichlorop.op</td>
<td>7N</td>
<td>7N - . 2</td>
<td>130.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DichlorobromomethaN</td>
<td>31</td>
<td>7N - . 27N</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>,1-DichloroethaN</td>
<td>90.</td>
<td>7N</td>
<td>74 - . 27N</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DichloroethaN</td>
<td>091</td>
<td>07N</td>
<td>- 132N</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroeth1</td>
<td>77N</td>
<td>77N</td>
<td>2 - . 4N</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorop.opaN</td>
<td>091</td>
<td>05.</td>
<td>73 - . 24N</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbe. zB</td>
<td>05.</td>
<td>07N</td>
<td>- .</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-H1 aNh.</td>
<td>07N</td>
<td>2N</td>
<td>34 - .</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1thyl1 Chlor.dN</td>
<td>791</td>
<td>70 - . 25.</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButaNh. (MEK)1</td>
<td>92N</td>
<td>91</td>
<td>33 - . 57N</td>
<td>31</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-M1thyl-2-p, taNh. (MGBK)1</td>
<td>31</td>
<td>0</td>
<td>40 - . 5.</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styb</td>
<td>0.</td>
<td>04N</td>
<td>2 - . 22N</td>
<td>31</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>,1,2,2-Tet'chlooroethaN</td>
<td>05.</td>
<td>08.</td>
<td>9 - . 291</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tet'chlooroeth1</td>
<td>95.</td>
<td>991</td>
<td>7N - . 2N</td>
<td>4N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue.</td>
<td>00.</td>
<td>00.</td>
<td>- . 7N</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t11Ns-1,2-Dichloeth1</td>
<td>7N</td>
<td>791</td>
<td>72 - . 131</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t11Ns-1,3-Dichlorop.op,</td>
<td>24N</td>
<td>73 - . 2N</td>
<td>7N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>,1,1-Tr.chloroethaN</td>
<td>02N</td>
<td>04N</td>
<td>7N - . 27N</td>
<td>31</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tr.chloroethaN</td>
<td>06.</td>
<td>05.</td>
<td>75 - . 2N</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tr.chloroeth1</td>
<td>931</td>
<td>91</td>
<td>4 - . 5.</td>
<td>31</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 yl chlor.dN</td>
<td>77N</td>
<td>74N</td>
<td>59 - . 44N</td>
<td>4N</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample/P
Lab Control Sample Duplicate Recovery Report - Batch hP 0 -1P 96u

<table>
<thead>
<tr>
<th>LCS Lab Sample ID,</th>
<th>LCS 680-</th>
<th>91/4N</th>
<th>Analys % Batch1 680-</th>
<th>91</th>
<th>1st Vime. t ID, MSP2N</th>
<th>Lab F1 ID, pq1.dN</th>
<th>11 t&l W, ght/Volume: 5 mL</th>
<th>F1 al W, ght/Volume: 5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1 t Mat1</td>
<td>Wat1</td>
<td>1.0</td>
<td>P1 p Batch1N/A, U1 t1</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilut b</td>
<td>04/27/20.0 . 0.2N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dat1 Analyze DilN</td>
<td>04/27/20.0 . 0.2N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dat1 P1 p Ab N</td>
<td>04/27/20.0 . 0.2N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID,</th>
<th>LCSD 680-</th>
<th>91/5</th>
<th>Analys % Batch1 680-</th>
<th>91</th>
<th>1st Vime. t ID, MSP2N</th>
<th>Lab F1 ID, pq170.dN</th>
<th>11 t&l W, ght/Volume: 5 mL</th>
<th>F1 al W, ght/Volume: 5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1 t Mat1</td>
<td>Wat1</td>
<td>1.0</td>
<td>P1 p Batch1N/A, U1 t1</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilut b</td>
<td>04/27/20.0 . 0.42N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dat1 Analyze DilN</td>
<td>04/27/20.0 . 0.42N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dat1 P1 p Ab N</td>
<td>04/27/20.0 . 0.42N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, alyt1 | % R1c.1 | LCS1 | LCSD | L.m.11 | RPD | RPD L.m.11 | LCS Qual1 | LCSD Qual1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyl1 s, Total1</td>
<td>02N</td>
<td>06</td>
<td>4 -</td>
<td>4N</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogate 1 | LCS % R1c1 | LCSD % R1c1 | Acc1 pN1 L.m.1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-B Bromofluorobenzene (B)</td>
<td>031</td>
<td>06</td>
<td>75 - 20</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>95</td>
<td>94N</td>
<td>75 - 2N</td>
</tr>
<tr>
<td>Toluene - dN(Surr1)</td>
<td>05</td>
<td>02N</td>
<td>75 - 20</td>
</tr>
</tbody>
</table>
MethP Blank - Batch P 0 -1P555u

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>t Mat</td>
<td>Wat</td>
<td>P1 p Batch</td>
<td>680-</td>
<td>555.</td>
</tr>
<tr>
<td>Dilut b.</td>
<td>.0.</td>
<td></td>
<td>U1 ts1 ug/L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>04/27/20.</td>
<td>0 .754N</td>
<td>Date P1 pan vN</td>
<td>04/23/20.</td>
<td>0 .24N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, alyt1</th>
<th>R1sult1</th>
<th>Qual1</th>
<th>RL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, s1</td>
<td>c1</td>
<td>20.</td>
<td>U1</td>
</tr>
<tr>
<td>Chlom. um.</td>
<td></td>
<td>0.</td>
<td>U1</td>
</tr>
<tr>
<td>Copp.</td>
<td></td>
<td>20.</td>
<td>U1</td>
</tr>
<tr>
<td>L, adN</td>
<td></td>
<td>0.</td>
<td>U1</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch P 0 -1P555u

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>t Mat1</td>
<td>Wat</td>
<td>P1 p Batch</td>
<td>680-</td>
<td>555.</td>
</tr>
<tr>
<td>Dilut b.</td>
<td>.0.</td>
<td></td>
<td>U1 ts1 ug/L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>04/27/20.</td>
<td>0 .7591</td>
<td>Date P1 pan vN</td>
<td>04/23/20.</td>
<td>0 .24N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, alyt1</th>
<th>Spik1 Amou. t1</th>
<th>R1sult1</th>
<th>% R1c.1</th>
<th>L.m.t1</th>
<th>Qual1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, s1</td>
<td>c1</td>
<td>2000.</td>
<td>2060.</td>
<td>031</td>
<td>75 . .25.</td>
</tr>
<tr>
<td>Chlom. um.</td>
<td>31</td>
<td>200.</td>
<td>1</td>
<td>2</td>
<td>07N</td>
</tr>
<tr>
<td>Copp.</td>
<td></td>
<td>250.</td>
<td></td>
<td>2N4N</td>
<td>05.</td>
</tr>
<tr>
<td>L, adN</td>
<td></td>
<td>500.</td>
<td></td>
<td>52N</td>
<td>06.</td>
</tr>
<tr>
<td>Z, c1</td>
<td></td>
<td>500.</td>
<td></td>
<td>531</td>
<td>07N</td>
</tr>
</tbody>
</table>
Analysis Request and Chain of Custody Record

TestAmerica

The Leader in Environmental Testing

<table>
<thead>
<tr>
<th>Project Reference</th>
<th>Project No.</th>
<th>Project Location (State)</th>
<th>Matrix Type</th>
<th>REQUIRED ANALYSIS</th>
<th>PAGE</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNC-Airport Rd.</td>
<td>NC000239.0018.00001</td>
<td>NC</td>
<td></td>
<td>Metals (Co-60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vocs (8268)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESERVATIVE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Sample Identification</th>
<th>Composite (or) Grab Sample</th>
<th>Aqueous Water</th>
<th>Solid or Semisolid</th>
<th>Air</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/19/10</td>
<td>830</td>
<td>Effluent</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relinquished By: Signature

Date: 4/19/10
Time: 12:30

Received By: Signature

Date: 4/19/10
Time: 09:15

Laboratory Use Only

Received for Laboratory By: Signature

Date: 4/19/10
Time: 09:15

Custody Intact: Yes
Custody Seal No.: 558888

Laboratory Remarks: Temp 0.4
<table>
<thead>
<tr>
<th>Question</th>
<th>/ F/ NA1</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below 1</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>background or backround is incorrect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4e cooler's custody seal, if present, is intact.</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>T4e cooler or samples do not appear to have been compromised or tampered</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>cooler was received on ice.</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink a legible</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>COC is filled out all pertinent information</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>T4ere are no discrepancies between the sample IDs on the containers and</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>the COC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples are received within 5% of the time.</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Sample containers are legible</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are complete and filled</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>T4ere are sufficient volumes for all requested containers, including</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>the facilities, aC requested 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS/MSDSc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO sample vials do not have a lead space or bubble ≤ 6mm (1/4") in the</td>
<td>N/</td>
<td></td>
</tr>
<tr>
<td>diameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of the quick test time or quick T</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>T4T test time or quick T4T test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiples of samples are not present.</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or composting</td>
<td>True1</td>
<td></td>
</tr>
<tr>
<td>s The field sampler's name is present on COC?N</td>
<td>N/</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified</td>
<td>N/</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-46949-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LA00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comments
No additional co. n tS k

ceipt L
All samples wekS rScSved in g ood condition within tSpek raturS rSuirS n tSS

Metals L
Method 1631E: The matrix spike / matrix spike duplicatS(MS/MSD) rScoveNes for batch 400-107595/400-107637 wekS outside contro. k imminent. The assiciatS la boratory contro. sample (LCS) rScovey mekacc$ tancS critSria. Data was flagged and rS ortS as iskS

No otheK analytical or quality isKs1 wekrSn ortS S
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>M) cury, Low L v I (CVAFS)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
<tr>
<td>P) paatio., M) cury, Low L v I)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL PEN = T) stAmerica P) sac ola)

Method References:

EPA= US Environment al P)io. ctio. .g) cy)
METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc.1
Job Number: 400-46949-1c

<table>
<thead>
<tr>
<th>M: thP</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>1631Ec</td>
<td>Jones, Randyc</td>
</tr>
</tbody>
</table>

T: stAmLrica PLnsacll ap
SAMPc SUMMARY2

Client: ARCADIS U.S., Inc.
Job Number: 400-46949-1c

<table>
<thead>
<tr>
<th>ab Sample l2</th>
<th>CIDR Sample l2</th>
<th>CIDR Mark2</th>
<th>a:e/Time : Sampledb</th>
<th>a:e/Time : Redb</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-46949-1l</td>
<td>NTI</td>
<td>Waterl</td>
<td>04/19/2010 0830l</td>
<td>04/20/2010 1013l</td>
</tr>
</tbody>
</table>
1631E Mercury, lowLevel(RCVAFS)l

<table>
<thead>
<tr>
<th>Method:</th>
<th>1631E</th>
<th>Analysis Batch: 400-107637</th>
<th>Instrument ID: HYDRAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation:</td>
<td>1631E</td>
<td>PrepBatch: 400-107595l</td>
<td>Lab File ID: N/A</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0</td>
<td></td>
<td>Initial Weight/Volume: 40 mLc</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>04/22/2010 1329l</td>
<td></td>
<td>Final Weight/Volume: 40 mLc</td>
</tr>
<tr>
<td>Date Prepared:</td>
<td>04/20/2010 1445l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qualifier</th>
<th>RLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><0.50l</td>
<td></td>
<td>0.50l</td>
</tr>
</tbody>
</table>
Quality Control Results

Client: ARCADIS U.S., Inc.

Job Number: 400-46949-11

QC Association Summary

Metals

<table>
<thead>
<tr>
<th>LaR Sample ID</th>
<th>Client Sample ID</th>
<th>eR Gradient</th>
<th>rR Gradient</th>
<th>Client Matrix</th>
<th>Method</th>
<th>PreR Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreR Batch - 400-107595h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-107595/26-A4</td>
<td>Lab Control Sample</td>
<td>Water</td>
<td>16I</td>
<td>1I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSD 400-107595/27-A4</td>
<td>Control Sample Duplicate</td>
<td>W.ter</td>
<td>1631E4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 400-107595/25-A4</td>
<td>Method Blank</td>
<td>W.ter</td>
<td>1631E4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00-46923-A-2-B MS4</td>
<td>Matrix Spike</td>
<td>W.ter</td>
<td>1631E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-46923-A-2-C MSD4</td>
<td>Matrix Spike Duplicate</td>
<td>W.ter</td>
<td>1631E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-46949-14</td>
<td>EFFLUENT4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch - 400-107637d

<table>
<thead>
<tr>
<th>LaR Sample ID</th>
<th>Client Sample ID</th>
<th>eR Gradient</th>
<th>rR Gradient</th>
<th>Client Matrix</th>
<th>Method</th>
<th>PreR Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Batch - 400-107637d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 400-107595/26-A4</td>
<td>Control Sample4</td>
<td>W.ter</td>
<td>1631E4</td>
<td></td>
<td></td>
<td>00-1075954</td>
</tr>
<tr>
<td>CSD 400-107595/27-A4</td>
<td>Control Sample Duplicate4</td>
<td>W.ter</td>
<td>1631E4</td>
<td></td>
<td></td>
<td>00-1075954</td>
</tr>
<tr>
<td>MB 400-107595/25-A4</td>
<td>Method Blank4</td>
<td>W.ter</td>
<td>1631E4</td>
<td></td>
<td></td>
<td>00-1075954</td>
</tr>
<tr>
<td>00-46923-A-2-B MS4</td>
<td>Matrix Spike4</td>
<td>W.ter</td>
<td>1631E</td>
<td></td>
<td></td>
<td>400-1075954</td>
</tr>
<tr>
<td>00-46923-A-2-C MSD4</td>
<td>Matrix Spike Duplicate4</td>
<td>W.ter</td>
<td>1631E</td>
<td></td>
<td></td>
<td>400-1075954</td>
</tr>
<tr>
<td>00-46949-1</td>
<td>EFFLUENT4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400-1075954</td>
</tr>
</tbody>
</table>

=R Basis

= Total4

TestAmerica Rensac-LaR
Quality Control Results

MethP Blank - Batch hP 400-107595c

<table>
<thead>
<tr>
<th>L. b S</th>
<th>mpl4 ID</th>
<th>MB 400-107595/25-A</th>
<th>Ilysis Bc chc 400-107637c</th>
<th>In§ ume.</th>
<th>ID) HY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clj)</td>
<td>M1 1x4</td>
<td>W,</td>
<td>Pc p Bc chc 400-1075954</td>
<td>L. b F114 ID</td>
<td>N/c</td>
</tr>
<tr>
<td>i lu.io</td>
<td></td>
<td></td>
<td>Unit§ g/L.</td>
<td>Initij W, ighdVolume: 40 mL</td>
<td>Finij W, ighdVolume: 40 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L. b S</th>
<th>mpl4 ID</th>
<th>MB 400-107595/26-A</th>
<th>Ilysis Bc chc 400-107637c</th>
<th>In§ ume.</th>
<th>ID) HY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clj)</td>
<td>M1 1x4</td>
<td>W,</td>
<td>Pc p Bc chc 400-1075954</td>
<td>L. b F114 ID</td>
<td>N/c</td>
</tr>
<tr>
<td>i lu.io</td>
<td></td>
<td></td>
<td>Unit§ g/L.</td>
<td>Initij W, ighdVolume: 40 mL</td>
<td>Finij W, ighdVolume: 40 mL</td>
</tr>
</tbody>
</table>

Lab Control Sample/c

Lab Control Sample Duplicate Recovery Report - Batch: 400-107595c

<table>
<thead>
<tr>
<th>L. b S</th>
<th>mpl4 ID</th>
<th>LCS 400-107595/26-A</th>
<th>Ilysis Bc chc 400-107637c</th>
<th>In§ ume.</th>
<th>ID) HY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clj)</td>
<td>M1 1x4</td>
<td>W,</td>
<td>Pc p Bc chc 400-1075954</td>
<td>L. b F114 ID</td>
<td>N/c</td>
</tr>
<tr>
<td>i lu.io</td>
<td></td>
<td></td>
<td>Unit§ g/L.</td>
<td>Initij W, ighdVolume: 40 mL</td>
<td>Finij W, ighdVolume: 40 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L. b S</th>
<th>mpl4 ID</th>
<th>LCS 400-107595/27-A</th>
<th>Ilysis Bc chc 400-107637c</th>
<th>In§ ume.</th>
<th>ID) HY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clj)</td>
<td>M1 1x4</td>
<td>W,</td>
<td>Pc p Bc chc 400-1075954</td>
<td>L. b F114 ID</td>
<td>N/c</td>
</tr>
<tr>
<td>i lu.io</td>
<td></td>
<td></td>
<td>Unit§ g/L.</td>
<td>Initij W, ighdVolume: 40 mL</td>
<td>Finij W, ighdVolume: 40 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L. b S</th>
<th>mpl4 ID</th>
<th>LCS 400-107595/27-A</th>
<th>Ilysis Bc chc 400-107637c</th>
<th>In§ ume.</th>
<th>ID) HY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clj)</td>
<td>M1 1x4</td>
<td>W,</td>
<td>Pc p Bc chc 400-1075954</td>
<td>L. b F114 ID</td>
<td>N/c</td>
</tr>
<tr>
<td>i lu.io</td>
<td></td>
<td></td>
<td>Unit§ g/L.</td>
<td>Initij W, ighdVolume: 40 mL</td>
<td>Finij W, ighdVolume: 40 mL</td>
</tr>
</tbody>
</table>

Method: 1631Ec

Preparation: 1631Ec

<table>
<thead>
<tr>
<th>l yt</th>
<th>sul</th>
<th>Qual4</th>
<th>L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 cury)</td>
<td><0.504</td>
<td></td>
<td>0.504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l yt</th>
<th>LCS (%)</th>
<th>LCS (%)</th>
<th>Limit</th>
<th>Pc</th>
<th>Pc</th>
<th>LCS Qu.4</th>
<th>LCS Qu.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 cury)</td>
<td>84)</td>
<td>86)</td>
<td>79 - 1214</td>
<td>2c</td>
<td>204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Spike/c
Matrix Spike Duplicate Recovery Report - Batch: 400-107595c

<table>
<thead>
<tr>
<th>Description</th>
<th>Batch Number</th>
<th>Concentration</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS L. b S) mpl4 ID</td>
<td>400-46923-A-2-B MS</td>
<td>400-107637c</td>
<td>1.04</td>
</tr>
<tr>
<td>Cli) M1 ix4</td>
<td>W,</td>
<td>Lysis Bc chc</td>
<td>Pc p Bc chc 400-1075954</td>
</tr>
<tr>
<td>i lu.io.</td>
<td></td>
<td></td>
<td>04/22/2010 1116</td>
</tr>
<tr>
<td>. l yzBdN</td>
<td>04/22/2010 1116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc p, dN</td>
<td>04/21/2010 15154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD(L. b S) mpl4 ID</td>
<td>400-46923-A-2-C MSD</td>
<td>400-107637c</td>
<td>1.04</td>
</tr>
<tr>
<td>Cli) M1 ix4</td>
<td>W,</td>
<td>Lysis Bc chc</td>
<td>Pc p Bc chc 400-1075954</td>
</tr>
<tr>
<td>i lu.io.</td>
<td></td>
<td></td>
<td>04/22/2010 1124</td>
</tr>
<tr>
<td>. l yzBdN</td>
<td>04/22/2010 1124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc p, dN</td>
<td>04/21/2010 15154</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 1631Ec
Preparation: 1631Ec
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>aliquierL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalsu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.</td>
<td></td>
<td>MS or MSD exceeds the control limits</td>
</tr>
<tr>
<td>Fb</td>
<td></td>
<td>RPD of the MS and MSD exceeds the control limits</td>
</tr>
</tbody>
</table>
Analysis Request and Chain of Custody Record

TestAmerica Pensacola
3355 McLemore Drive
Pensacola, FL 32514

Quote No.

Bottle Order No.

Order Log-In No.

Client: ARCADIS
Address: 801 Corporate Center Dr., Raleigh, NC 27607

Project Name: UNC-Airport Rd.
Project No.: NC000239.0001

Client Project Manager: Alan Pinnix

Contract/P.O. No.:

Client Phone: 919-854-1282
Client E-mail or Fax: apinnix@arcadis-us.com

TAT Requested: Rush needs lab preapproval (R) Normal - 10 business days

- 1 day
- 2 days
- 3 days
- 5 days
- 10 days
- Other:

Sample Disposal: See contract or return to client or disposal by lab

Preservative: No Preservative
Matrix: Drinking Water

Sample Date: 4/19/10
Sample Time: 8:30
Sample Identification: Effluent

Number of Containers Submitted: 3

Special Instructions/Conditions of Receipt:

Relinquished By: (Signature):
Date: 4/19/10
Time: 12:30

Received By: (Signature):
Date:
Time:

Remarks:

- Temperature: 22°C
Logb SamP le ReceiP Check ListP

Client: ARCADIS U.S., Inc.b
Job Number: 400-46949-1b

Logb Number: 469491
List Source: TestAmerica Pensacola1

<table>
<thead>
<tr>
<th>Question</th>
<th>/ F/ NA1</th>
<th>Comment1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity etib r was not measured or, if measured, is at or below b</td>
<td>N/Ab</td>
<td></td>
</tr>
<tr>
<td>ackgroundC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb cooler's custody sCal, if prebCt, is intact.b</td>
<td>N/Ab</td>
<td></td>
</tr>
<tr>
<td>Tb cooler or sampleb do not appear to havC been compromi scD or b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>tampered with.b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ampleb recei v Cd on ice.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recordCd.b</td>
<td>Trueb</td>
<td>2.2°Cb</td>
</tr>
<tr>
<td>COC is prebCt.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in int aCd legible.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Tb re are no discrepancies betwC tb sample IDs on tb containers aCd b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Tb COC.b</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>ampleb are receivqCd within Holding Time.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>ample containers bavCt legible la el s.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Containers are not broke or lebaking.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>ample collection date/timeb are providCd.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are usCd.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>ampleb are completely filled.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Tb re i s sufficient vol. for all requested aCalyGs, incl. aQy requested</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>MS/MSDsC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not bavC b adspace or bub le is <6mm (1/4") in b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>diameter.b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff bavCt been informed of aQy shQt bold time or quick TAT</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>lbs aCt and not bavCt.</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Multipb aCt sampleb are not prebCt.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>ampleb do not require splitting or composting.b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>Is tb Field Sampber's name prebCt on CQ?b</td>
<td>Trueb</td>
<td></td>
</tr>
<tr>
<td>ample PrebCt vation Verifiedb</td>
<td>Trueb</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-57949-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
06/07/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH: CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LA000244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WV/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.
TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404
Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com
METHOD SUMMARY:

Client: ARCADIS U.S., Inc.
Job Number: 680-57949-1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (GC/MS).</td>
<td>TAL SAV.</td>
<td>SW84. 8260B.</td>
<td></td>
</tr>
<tr>
<td>Purge and Trap.</td>
<td>TAL SAV.</td>
<td>SW84. 50 30B.</td>
<td></td>
</tr>
<tr>
<td>Metals (ICP).</td>
<td>TAL SAV.</td>
<td>SW84. 60 10C.</td>
<td></td>
</tr>
<tr>
<td>P. paration, Extractable Metals.</td>
<td>TAL SAV.</td>
<td>SM 3030C.</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL SAV. TestAmerica Sa. anna.

Method References:

SM . . Standard Met. ods For T. Examination Of Water And Wastewater..

<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846 8260B.</td>
<td>Lanier, Carolyn.</td>
<td>CL.</td>
</tr>
<tr>
<td>SW846 8260B.</td>
<td>Waldorf, Jonathan.</td>
<td>JW.</td>
</tr>
<tr>
<td>SW846 6010C.</td>
<td>Bland, Brian.</td>
<td>BCB.</td>
</tr>
<tr>
<td>ab Sample</td>
<td>ClO<sub>3</sub></td>
<td>Sample</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
Analytical Atac

Client: ARCADIS U.S., Incb
Job Number: 680-57949-1.

Sample ID:
Lab Sample ID: 680-57949-1.
Client: Water.
Date Sampled: 05/24/2010 0700.
Date Received: 05/25/2010 0928.

8260B volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifier</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>8.4</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>330</td>
<td>E4</td>
<td>10.</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0</td>
<td>U "b</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10.</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>ethylene Chloride</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>2-Butanone (c EK)b</td>
<td>10.</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>4- ethyl-2-pentanone (c IBK)b</td>
<td>10.</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrogate:

<table>
<thead>
<tr>
<th>Name</th>
<th>%Recb</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>93.</td>
<td></td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>99.</td>
<td></td>
<td>75 - 121.</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)j</td>
<td>111.</td>
<td></td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Analytical Method

- **Method:** 8260B
- **Analysis Batch:** 680-170470
- **Instrument ID:** SO2N

Preparation
- **Lab Sample ID:** 680-57949-1
- **Client:** ARCADIS U.S., Incb
- **Sample:** Water
- **Date Sampled:** 05/24/2010 0700
- **Date Received:** 05/25/2010 0928

Dilution
- **Dilution:** 5.0

Date
- **Date Analyzed:** 06/03/2010 1151
- **Date Prepared:** 06/03/2010 1151

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>130</td>
<td>U</td>
<td>130</td>
</tr>
<tr>
<td>Benzene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>10.0</td>
<td>D</td>
<td>10.0</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>9.4</td>
<td>D</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>440</td>
<td>D</td>
<td>50.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>50.0</td>
<td>U</td>
<td>50.0</td>
</tr>
<tr>
<td>Ethylene Chloride</td>
<td>25.0</td>
<td>U</td>
<td>25.0</td>
</tr>
<tr>
<td>2-Butanone (c EK)b</td>
<td>50.0</td>
<td>U</td>
<td>50.0</td>
</tr>
<tr>
<td>4-ethyl-2-pentanone (c IBK)b</td>
<td>50.0</td>
<td>U</td>
<td>50.0</td>
</tr>
<tr>
<td>Styrene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>10.0</td>
<td>U</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Surrogate

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recb</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>96</td>
<td></td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>86</td>
<td></td>
<td>75 - 121.</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>96</td>
<td></td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>

TestAmerica Savannah:
Page 6 of 17
Analytical atac

Client: ARCADIS U.S., Incb
Job Number: 680-57949-1.

Client Sample ID: 680-57949-1.
Date Sampled: 05/24/2010 0700.
Date Received: 05/25/2010 0928.

Effluent
Lab Sample ID: 680-57949-1.
Client Site: Water.

6010C Metals (ICP):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifier</th>
<th>RL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>10</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>Zincb</td>
<td>100</td>
<td>U.</td>
<td>100.</td>
</tr>
</tbody>
</table>

Method: 6010C
Preparation: 3030C
Analysis Batch: 680-170001.
Prep Batch: 680-169693.
Instrument ID: 169693.chr.
Lab File ID: 169693.chr.
Initial Weight/Volume: 50 mL.
Final Weight/Volume: 50 mL.

TestAmerica Savannah:
Page 7 of 17
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS VOA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.</td>
<td></td>
<td>Indicates the analyte was analyzed for but not detectedM</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>LCS or LCSD exceeds the control limits,</td>
</tr>
<tr>
<td>Ec</td>
<td></td>
<td>Result exceeded calibration range.</td>
</tr>
<tr>
<td>D.</td>
<td></td>
<td>Sample results are obtained from a dilution; the surrogate or . matrix spike recoveries reported are calculated from diluted . samples,</td>
</tr>
<tr>
<td>Metals,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.</td>
<td></td>
<td>Indicates the analyte was analyzed for but not detectedM</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: c0 -170190u

<table>
<thead>
<tr>
<th>Lab Sample ID.</th>
<th>MB 680-170190/7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>05/30/2010 1210.</td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/30/2010 1210.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual.</th>
<th>RLe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bz n z&c</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>CaBON Disulfide</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>CaBON Tetrachloride</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-Dichlorop.ene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichlorop.ene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>MT hylene Chlorid.</td>
<td>5.0.</td>
<td>U.</td>
<td>5.0</td>
</tr>
<tr>
<td>Styene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Tolueno</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>trans-1,3-Dichlorop.ene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.</td>
<td>1 U.</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2 G.</td>
<td>U.</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrogate

<table>
<thead>
<tr>
<th>% Rec.</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>95.</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>105.</td>
</tr>
<tr>
<td>Toluene-d. (Surr)4</td>
<td>111.</td>
</tr>
</tbody>
</table>
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-57949-1.

LabControl Sample/1
LabControl Sample Duplicate Recovery RepRt - Batch: c 0 -170190u
Method: c2R Bc
Preparation: 8030Bc

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution.:</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Initial Weight/Volume.:</td>
<td>5 mL.</td>
</tr>
<tr>
<td>Date Analyz4d.</td>
<td>05/30/2010 1012</td>
<td></td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mL.</td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/30/2010 1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution.:</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Initial Weight/Volume.:</td>
<td>5 mL.</td>
</tr>
<tr>
<td>Date Analyz4d.</td>
<td>05/30/2010 1042</td>
<td></td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mL.</td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/30/2010 1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>% Rec.</th>
<th>LCS.</th>
<th>LCSD.</th>
<th>Limit.</th>
<th>RPD.</th>
<th>RPD Limit.</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td></td>
<td>9.</td>
<td>17 - 175.</td>
<td>3n</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B(1)-zine.</td>
<td></td>
<td>110.</td>
<td>77 - 119.</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromform.</td>
<td></td>
<td>105.</td>
<td>2 - 133n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane.</td>
<td></td>
<td>92.</td>
<td>12 - 1.4</td>
<td>16</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca. bon disulfid.</td>
<td></td>
<td>104.</td>
<td>55 - 131</td>
<td>5.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca. bon tetrachlorid.</td>
<td></td>
<td>111.</td>
<td>71 - 135</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td></td>
<td>112.</td>
<td>5 - 11</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td></td>
<td>112.</td>
<td>75 - 133n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane.</td>
<td></td>
<td>123n</td>
<td>40 - 1.5</td>
<td>3n</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td></td>
<td>112.</td>
<td>2 - 120</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane.</td>
<td></td>
<td>109.</td>
<td>4 - 142</td>
<td>7.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethane.</td>
<td></td>
<td>105.</td>
<td>9 - 134</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichlorop.</td>
<td></td>
<td>106.</td>
<td>7. - 12</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td></td>
<td>111.</td>
<td>7. - 127</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td></td>
<td>110.</td>
<td>74 - 127</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane.</td>
<td></td>
<td>109.</td>
<td>- 132</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene.</td>
<td></td>
<td>99.</td>
<td>2 - 141</td>
<td>9.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorop.</td>
<td></td>
<td>109.</td>
<td>73 - 124</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td></td>
<td>121.</td>
<td>- 11</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-H) xanone.</td>
<td></td>
<td>95.</td>
<td>34 - 1.1</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md. hylene Chlorid.</td>
<td></td>
<td>102.</td>
<td>70 - 125</td>
<td>5.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone (MEK)4</td>
<td></td>
<td>5.</td>
<td>33 - 157</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mt hyl-2-p.nit anone (MIBK)4</td>
<td></td>
<td>91.</td>
<td>40 - 151</td>
<td>7.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene.</td>
<td></td>
<td>11.</td>
<td>114.</td>
<td>2 - 122</td>
<td>2</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane.</td>
<td></td>
<td>9.</td>
<td>9 - 129</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene.</td>
<td></td>
<td>11.</td>
<td>7 - 12</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene.</td>
<td></td>
<td>113n</td>
<td>111.</td>
<td>1 - 117</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene.</td>
<td></td>
<td>108.</td>
<td>72 - 131</td>
<td>3n</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichlorop.</td>
<td></td>
<td>100.</td>
<td>73 - 12</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane.</td>
<td></td>
<td>113n</td>
<td>7 - 127</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane.</td>
<td></td>
<td>95.</td>
<td>75 - 121</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene.</td>
<td></td>
<td>1108.</td>
<td>111.</td>
<td>4 - 115</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid.</td>
<td></td>
<td>107.</td>
<td>59 - 144</td>
<td>7.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/1
Lab Control Sample Duplicate Recovery Report - Batch: c 0 -170190u
Method: c2/F Bc
Preparation: 8030Bc

LCS Lab Sample ID: LCS 680-170190/4.
- **Client Matrix:** Water.
- **Dilution:** 1.0.
- **Date Analyzed:** 05/30/2010 1012
- **Date P. pa. d.:** 05/30/2010 1012
- **Analysis Batch:** 680-170190.
- **Units:** ug/L.

LCS Lab Sample ID: LCS 680-170190/5.
- **Client Matrix:** Water.
- **Dilution:** 1.0.
- **Date Analyzed:** 05/30/2010 1042
- **Date P. pa. d.:** 05/30/2010 1042
- **Analysis Batch:** 680-170190.
- **Units:** ug/L.

Analyte
<table>
<thead>
<tr>
<th>Analyte</th>
<th>% Rec.</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes, Total.</td>
<td></td>
<td>112</td>
<td>109</td>
<td>4 - 11.</td>
<td>2</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenzene.</td>
<td></td>
<td>109</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td></td>
<td>101</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d. (Surr)4</td>
<td></td>
<td>113n</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument ID: MSP.
Lab File ID: pq353rd.
Initial Weight/Volume: 5 mL.
Final Weight/Volume: 5 mL.
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-57949-1.

Lab Control Sample/1

Lab Control Sample Duplicate Recovery RepRt - Batch: c 0 -170470u

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) N/A.</td>
<td>ug/Le</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>06/03/2010 0858.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>06/03/2010 0858.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID:</th>
<th>LCSD 680-170470/5.</th>
<th>Analysis Batch)</th>
<th>680-170470.</th>
<th>Instrument ID:</th>
<th>MS02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) N/A.</td>
<td>ug/Le</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>06/03/2010 0941.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>06/03/2010 0941.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>104</td>
<td>101</td>
<td>17 - 175</td>
<td>3n</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'n 2nhe.</td>
<td>97</td>
<td>9</td>
<td>77 - 119</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'jnomiform.</td>
<td>102</td>
<td>100</td>
<td>2 - 133n</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'jnomethane.</td>
<td>112</td>
<td>113n</td>
<td>12 - 1.4</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca.bon disulfid.</td>
<td>9</td>
<td>9</td>
<td>55 - 131</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca.bon tetrachlorid.</td>
<td>99</td>
<td>9</td>
<td>71 - 135</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>105</td>
<td>105</td>
<td>5 - 11</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td>112</td>
<td>109</td>
<td>75 - 133n</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane.</td>
<td>9</td>
<td>92</td>
<td>40 - 1.5</td>
<td>4</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>107</td>
<td>104</td>
<td>2 - 120</td>
<td>3n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane.</td>
<td>101</td>
<td>99</td>
<td>4. - 142</td>
<td>2</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene.</td>
<td>93n</td>
<td>91</td>
<td>9 - 134</td>
<td>3n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichlorop.opene.</td>
<td>108</td>
<td>108</td>
<td>7. - 12</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>94</td>
<td>95</td>
<td>7. - 127</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>95</td>
<td>94</td>
<td>74 - 127</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane.</td>
<td>99</td>
<td>100</td>
<td>- 132</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene.</td>
<td>99</td>
<td>97</td>
<td>2 - 141</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorop.opane.</td>
<td>99</td>
<td>99</td>
<td>73 - 124</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>92</td>
<td>92</td>
<td>- 11</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-H) xanone.</td>
<td>106</td>
<td>102</td>
<td>34 - 1.1</td>
<td>3n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md hyylene Chlorid.</td>
<td>105</td>
<td>105</td>
<td>70 - 125</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone (MEK)4</td>
<td>104</td>
<td>102</td>
<td>33 - 157</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Md hy-2-p.nt anone (MIBK)4</td>
<td>101</td>
<td>99</td>
<td>40 - 151</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styene.</td>
<td>102</td>
<td>101</td>
<td>2 - 122</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane.</td>
<td>103n</td>
<td>102</td>
<td>9 - 129</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene.</td>
<td>93n</td>
<td>92</td>
<td>7. - 12</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene.</td>
<td>9</td>
<td>9</td>
<td>1 - 117</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene.</td>
<td>106</td>
<td>104</td>
<td>72 - 131</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichlorop.opene.</td>
<td>93n</td>
<td>93n</td>
<td>73 - 12</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane.</td>
<td>94</td>
<td>95</td>
<td>7. - 127</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane.</td>
<td>9</td>
<td>97</td>
<td>75 - 121</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene.</td>
<td>93n</td>
<td>94</td>
<td>4 - 115</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid.</td>
<td>94</td>
<td>95</td>
<td>59 - 144</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/1

Lab Control Sample Duplicate Recovery RepRt - Batch: c 0 -170470u

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) N/A.</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Units) ug/Le</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed d.</td>
<td>06/03/2010 0858.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>06/03/2010 0858.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument ID:	MSO2
Lab File ID:	oqj 0. d.
Initial Weight/Volume:	5 mL
Final Weight/Volume:	5 mL

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID:</th>
<th>LCSD 680-170470/5.</th>
<th>Analysis Sample (Batch)</th>
<th>680-170470.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) N/A.</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Units) ug/Le</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed d.</td>
<td>06/03/2010 0941.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>06/03/2010 0941.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument ID:	MSO2
Lab File ID:	oqj 2. d.
Initial Weight/Volume:	5 mL
Final Weight/Volume:	5 mL

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>% Rec.</th>
<th>LCS.</th>
<th>LCSD.</th>
<th>Limit.</th>
<th>RPD.</th>
<th>RPD Limit.</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
</table>

| Xylenes, Total. | 105. | 103n | 4 - 11. | 1. | 30. |

<table>
<thead>
<tr>
<th>Surrogate.</th>
<th>LCS % Rec.</th>
<th>LCSD % Rec.</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene.</td>
<td>100.</td>
<td>9.</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td>97.</td>
<td>9.</td>
<td>75 - 121.</td>
</tr>
<tr>
<td>Toluene-d. (Sur)4</td>
<td>95.</td>
<td>95.</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Resultsc

Client: ARCADIS U.S., Inc.
Job Number: 680-57949-1.

Method Blank - Batch: c0 -1P9c93m

<table>
<thead>
<tr>
<th>Lab Sample ID:</th>
<th>MB 680-1. 9. 93/2-A.</th>
<th>Analysis Batch) 680-170001.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) 680-1. 9. 93n</td>
</tr>
<tr>
<td>Dilution.:</td>
<td>1.0.</td>
<td>Units) ug/Le</td>
</tr>
<tr>
<td>Date Analyzd.</td>
<td>05/2 /2010 2125.</td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/25/2010 1537.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>Result.</th>
<th>Qual.</th>
<th>RLe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.s.nic.</td>
<td>20.</td>
<td>U.</td>
<td>20.</td>
</tr>
<tr>
<td>Ch)omium.</td>
<td>10.</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>Zinc.</td>
<td>100.</td>
<td>U.</td>
<td>100.</td>
</tr>
</tbody>
</table>

Method: d10Cc
Preparation: 8030Cc

<table>
<thead>
<tr>
<th>Instrument ID.:</th>
<th>ICPD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab File ID.:</td>
<td>1. 9. 93.ch)</td>
</tr>
<tr>
<td>Initial Weight/Volume.:</td>
<td>50 mLe</td>
</tr>
<tr>
<td>Final Weight/Volume.:</td>
<td>50 mLe</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: c0 -1P9c93m

<table>
<thead>
<tr>
<th>Lab Sample ID.:</th>
<th>LCS 680-1. 9. 93/3-A.</th>
<th>Analysis Batch) 680-170001.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) 680-1. 9. 93n</td>
</tr>
<tr>
<td>Dilution.:</td>
<td>1.0.</td>
<td>Units) ug/Le</td>
</tr>
<tr>
<td>Date Analyzd.</td>
<td>05/2 /2010 2131.</td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/25/2010 1537.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.s.nic.</td>
<td>2000.</td>
<td>2090.</td>
<td>104.</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Ch)omium.</td>
<td>200.</td>
<td>209.</td>
<td>105.</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Copp.</td>
<td>250.</td>
<td>254.</td>
<td>102.</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Lead.</td>
<td>500.</td>
<td>52.</td>
<td>106.</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Zinc.</td>
<td>500.</td>
<td>525.</td>
<td>105.</td>
<td>75 - 125.</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-57949-1.

Matrix Spike/1
Matrix Spike Duplicate Recovery RepRt - Batch: c 0 -1P9c93m

<table>
<thead>
<tr>
<th>MS Lab Sample ID:</th>
<th>0-5 7949-1.</th>
<th>Analysis Batch) 680-170001.</th>
<th>Method: d0 10Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) 680-1. 9. 93n</td>
<td>Preparation: 8030Cc</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Instrument ID.: ICPD.</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>05/2 /2010 2152</td>
<td>Lab File ID.: 1. 9. 93.ch)</td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/25/2010 1537</td>
<td>Initial Weight/Volume: 50 mLe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSD Lab Sample ID:</th>
<th>0-5 7949-1.</th>
<th>Analysis Batch) 680-170001.</th>
<th>Instrument ID.: ICPD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>P. p Batch) 680-1. 9. 93n</td>
<td>Lab File ID.: 1. 9. 93.ch</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0.</td>
<td>Lab File ID.: 1. 9. 93.ch)</td>
<td></td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>05/2 /2010 2158</td>
<td>Initial Weight/Volume: 50 mLe</td>
<td></td>
</tr>
<tr>
<td>Date P. pa. d.</td>
<td>05/25/2010 1537</td>
<td>Final Weight/Volume: 50 mLe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% Rec.</th>
<th>MS.</th>
<th>MSD.</th>
<th>Limit.</th>
<th>RPD.</th>
<th>RPD Limit.</th>
<th>MS Qual.</th>
<th>MSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. S/nic.</td>
<td>105.</td>
<td>105.</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium.</td>
<td>104.</td>
<td>103n</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper.</td>
<td>105.</td>
<td>104.</td>
<td>75 - 125.</td>
<td>1.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead.</td>
<td>105.</td>
<td>104.</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc.</td>
<td>105.</td>
<td>104.</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Savannah
5102 LaRoche Avenue
Savannah, GA 31404

Website: www.testamericainc.com
Phone: (912) 354-7855
Fax: (912) 352-0165

Client Site/PM:
Alan Pinnix
Client Name: ARCADIS
Phone Number: 919-854-1282
E-Mail: apinnix@arcadis-us.com
Address: 801 Corporate Center Dr., Raleigh, NC 27607

Project Reference: UNC - Airport Rd.
P.O. Number: NC000259.0018.00001
Contract No.: NC

Matrix Type:
- AQUEOUS (WATER)
- SOLID OR SEMI-SOLID
- NONAQUEOUS LIQUID (GIL SOLVENT)
- HCL VOCs (BGC)
- HG, Metals (C620)

Required Analysis:
- STANDARD REPORT DELIVERY
- DATE DUE
- EXPEDITED REPORT DELIVERY (SURCHARGE)
- DATE DUE

Cooler Information:
- NUMBER OF COOLERS SUBMITTED PER SHIPMENT:

SAMPLE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>SAMPLE IDENTIFICATION</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/24/10</td>
<td>0700</td>
<td>Effluent</td>
<td>3</td>
</tr>
</tbody>
</table>

*Report: Arsenic, chromium, copper, lead, and zinc.

Received By:
Date: 5/24/10
Time: 1200

Relinquished By:
Date: 5/24/10
Time: 1200

Received By:
Date: 5/25/10
Time: 0928

Custody Intact:
- Yes: ☐
- No: ☐

Custody Seal No.:
- 696-57449

Laboratory Remarks:
- 2.1°C

Laboratory Use Only

Received For Laboratory By:
Date: 5/25/10
Time: 0928

Laboratory Log No.: 696-57449

Serial Number: 019810
<table>
<thead>
<tr>
<th>Question</th>
<th>/F/ NA1</th>
<th>Comment1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity. eit. er was not measured or, if measured, is at or below . background</td>
<td>N/A.</td>
<td></td>
</tr>
<tr>
<td>Thè cooler's custodbl seal, if present, is intact.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Thè cooler or samples do not appear to .av e been compromised or . tampered wit.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recordedb</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>COC is filled out wit. all pertinent information.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Thère are no discrepancies between t. e sample IDs on t. e containers and . t. e COC.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Samples are received wit. in Holding Time.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Sample containers .av e legible labelsC</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leakingS</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are providedb</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are usedb</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are complelet. filledb</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Thère is sufficient vol. for all requested anal. ses, incl. an. requested . MS/MSDsC</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not .av e . eadspace or bubble is <6mm (1/4") in . diameter.</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>If necessar. , staff .av e been informed of an. sQort . old time or quick TAT . needsC</td>
<td>True.</td>
<td></td>
</tr>
<tr>
<td>Multiplic sic samples are not present.</td>
<td>N/A.</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing</td>
<td>N/A.</td>
<td></td>
</tr>
<tr>
<td>Is t. e Field Sampler's name present on COC?)</td>
<td>N/A.</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verifiedb</td>
<td>True.</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-47770-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Marty Edwards
Senior Project Manager
marty.edwards@testamericainc.com
06/04/2010

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>M)cury, Low L)vl (CVAFS)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
<tr>
<td>P) patio., M)cury, Low L)vl)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL PEN = T) stAmerica P) sacola)

Method References:

EPA= US Envi(o. me. al P)j(o. cti. .g) cy)

TestAmerica Pensacola:
<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631Ec</td>
<td>Jones, Randyc</td>
<td>Jc</td>
</tr>
<tr>
<td>Sample</td>
<td>Client Code</td>
<td>Sample</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>400-47770-1,</td>
<td>NT,</td>
<td>Water,</td>
</tr>
</tbody>
</table>
Client: ARCADIS U.S., Inc.

Job Number: 400-47770-1,

Sample ID: EFFLUENTa

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Date Sampled</th>
<th>Client Matrix</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-47770-1c</td>
<td>05/24/2010</td>
<td>Waterc</td>
<td>05/25/2010</td>
</tr>
</tbody>
</table>

Method: 1631Ec

Preparation: 1631Ec

Dilution: 1.0c

Date Analyzed: 05/27/2010 1155c

Date Prepared: 05/26/2010 1600c

Analysis Batch: 400-109746c

Prep Batch: 400-109722c

Lab File ID: 052710b.PRNC

Initial Weight/Volume: 40 mLc

Final Weight/Volume: 40 mLc

1631E Mercury, Low Level (CVAFS)L

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qualifier</th>
<th>RLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1.2c</td>
<td></td>
<td>0.50c</td>
</tr>
</tbody>
</table>
QUALITYpCtROLp SULTSp
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 400-47770-1c

QC Association Summary

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Client Sample ID</th>
<th>Rec rt Basic</th>
<th>Client Matrix</th>
<th>Method</th>
<th>Prec Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-109722/2-Ai</td>
<td>Lab Control Sample</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
<tr>
<td>D 400-109722/3-Ai</td>
<td>ab Control Sample Duplicatei</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
<tr>
<td>MB 400-109722/1-Ai</td>
<td>Method Blanki</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
<tr>
<td>400-47770-1i</td>
<td>FFLUENTi</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
<tr>
<td>400-47808-A-1-B MSi</td>
<td>Matrix Spikei</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
<tr>
<td>400-47808-A-1-C MSDi</td>
<td>Matrix Spike Duplicatei</td>
<td>Ti</td>
<td>Wateri</td>
<td>1631Ei</td>
<td>400-109722i</td>
</tr>
</tbody>
</table>

| **Analysis Batch 400-10-7461** |
400-109722/2-Ai	ab Control Samplei	Ti	Wateri	1631Ei	400-109722i
D 400-109722/3-Ai	ab Control Sample Duplicatei	Ti	Wateri	1631Ei	400-109722i
MB 400-109722/1-Ai	Method Blanki	Ti	Wateri	1631Ei	400-109722i
400-47770-1i	FFLUENTi	Ti	Wateri	1631Ei	400-109722i
400-47808-A-1-B MSi	Matrix Spikei	Ti	Wateri	1631Ei	400-109722i
400-47808-A-1-C MSDi	Matrix Spike Duplicatei	Ti	Wateri	1631Ei	400-109722i

Rec rt Basic

T = Total
Quality Control Results

Meth1 Blank - Batc h1 400-1097R

<table>
<thead>
<tr>
<th>Analyt</th>
<th>Result</th>
<th>Qualh</th>
<th>RLh</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyh</td>
<td><0.50h</td>
<td></td>
<td>50h</td>
</tr>
</tbody>
</table>

Lab Control Sample/1

Lab Control Sample Duplicate Recovery Report - Batch1 400-1097R

<table>
<thead>
<tr>
<th>LCS Lab Samplh IDLCS 400-109722/2-Ah</th>
<th>Analysis Batch 400-109746h</th>
<th>Instrument Idh HYDRAh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clhnt Mathxh Wath</td>
<td>Ph p Batch 400-109722h</td>
<td>Lab Filh Idh 52710lb.PRN.</td>
</tr>
<tr>
<td>Dilutionh</td>
<td>Untitsh ng/Lh</td>
<td>Initial Wight/Volume:.40h mLh</td>
</tr>
<tr>
<td>Dath Analyzhdh 5/27/2010h . 7h</td>
<td></td>
<td>Final Wight/Volume:. 40h mLh</td>
</tr>
<tr>
<td>Dath Ph pah dh 5/25/2010h .500h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Samplh IDLCSD 400-109722/3-Ah</th>
<th>Analysis Batch 400-109746h</th>
<th>Instrument Idh HYDRAh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clhnt Mathxh Wath</td>
<td>Ph p Batch 400-109722h</td>
<td>Lab Filh Idh 52710lb.PRN.</td>
</tr>
<tr>
<td>Dilutionh</td>
<td>Untitsh ng/Lh</td>
<td>Initial Wight/Volume:. 40h mLh</td>
</tr>
<tr>
<td>Dath Analyzhdh 5/27/2010h . 5h</td>
<td></td>
<td>Final Wight/Volume:. 40h mLh</td>
</tr>
<tr>
<td>Dath Ph pah dh 5/25/2010h .500h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meth1 631Ec

Preparation: 1631Ec

<table>
<thead>
<tr>
<th>Analyt</th>
<th>% Rhc,h</th>
</tr>
</thead>
<tbody>
<tr>
<td>curyh</td>
<td>8h</td>
</tr>
</tbody>
</table>
Matrix Spike/1

Matrix Spike Duplicate Recovery Report - Batch1 400-1097R

<table>
<thead>
<tr>
<th>S</th>
<th>Lab Sample IDh</th>
<th>Analysis Batch</th>
<th>Instrument IDh</th>
<th>Lab Filh IDh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400-47808-A-1-B .Sh</td>
<td>400-109746h</td>
<td>HYDRAh</td>
<td>52710b .PRN.</td>
</tr>
<tr>
<td></td>
<td>Wath</td>
<td>Ph p Batch</td>
<td>Lab Filh IDh</td>
<td>52710b .PRN.</td>
</tr>
<tr>
<td></td>
<td>5/27/2010h .31h</td>
<td>400-109722h</td>
<td>Initial Whight/Volume:. 40h mLh</td>
<td>Final Whight/Volume:. 40h mLh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SD</th>
<th>Lab Sample IDh</th>
<th>Analysis Batch</th>
<th>Instrument IDh</th>
<th>Lab Filh IDh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400-47808-A-1-C .SDh</td>
<td>400-109746h</td>
<td>HYDRAh</td>
<td>52710b .PRN.</td>
</tr>
<tr>
<td></td>
<td>Wath</td>
<td>Ph p Batch</td>
<td>Lab Filh IDh</td>
<td>52710b .PRN.</td>
</tr>
<tr>
<td></td>
<td>5/27/2010h .306h</td>
<td>400-109722h</td>
<td>Initial Whight/Volume:. 40h mLh</td>
<td>Final Whight/Volume:. 40h mLh</td>
</tr>
<tr>
<td></td>
<td>5/26/2010h .600h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% RHC h</th>
<th>Sh</th>
<th>SDh</th>
<th>Limith</th>
<th>RPDh</th>
<th>RPD Limith</th>
<th>S Qualh</th>
<th>SD Qualh</th>
</tr>
</thead>
<tbody>
<tr>
<td>curnh</td>
<td></td>
<td>84h</td>
<td>80h</td>
<td>71h .25h</td>
<td>3h</td>
<td>24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierL</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

CLIENT

ARCADIS

ADDRESS

801 Corporate Center Dr. Raleigh, N.C. 27607

PROJECT NAME

UNC-Airport Rd., NC 0000239, 00018, 00001

PROJECT NO.

G400-427770

PROJECT LOC. (STATE)

N.C.

REQUESTED ANALYSIS

POSSIBLE HAZARD IDENTIFICATION

Δ NON-HAZARD
Δ FLAMMABLE
Δ RADIOACTIVE
Δ POISON B
Δ UNKNOWN
Δ OTHER:

NO. OF COOLERS PER SHIPMENT:

SPECIAL INSTRUCTIONS/CONDITIONS OF RECEIPT:

DATE

5/24/10

TIME

0700

SAMPLE IDENTIFICATION

Effluent

PRESERVATIVE

- HCL - Hydrochloric Acid
- HNO3 - Nitric Acid
- H2SO4 - Sulfuric Acid
- H3PO4 - Phosphoric Acid
- CH3OH - Methanol
- NaOH - Sodium Hydroxide
- Na2SO3 - Sodium Thiosulfate
- Other:

MATRIX

- Drinking Water
- Sediment
- Non-aqueous (Oil, Solvent, etc.)
- Low Level Neutrons (LLN)

NUMBER OF CONTAINERS SUBMITTED

3

RELINQUISHED BY: (SIGNATURE)

5/24/10 1200

RECEIVED BY: (SIGNATURE)

5/25/10 10:14

CUSTODY INTACT?

Δ YES □ NO

CUSTODY SEAL NO.

S-8C

REMARKS:

Δ NON-HAZARD
Δ FLAMMABLE
Δ RADIOACTIVE
Δ POISON B
Δ UNKNOWN
Δ OTHER:

Δ NON-HAZARD
Δ FLAMMABLE
Δ RADIOACTIVE
Δ POISON B
Δ UNKNOWN
Δ OTHER:

LABORATORY USE ONLY
Logb Sam1 le Recei1 Check List1

Logb Number: 477701
Creator: Chea, Vanda1
List Source: TestAmerica Pensacola1

<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NA1</th>
<th>Comment1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below S</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>backgroundS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.S</td>
<td>N/AS</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>tampered with.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>samples were received on ice.S</td>
<td>TrueS</td>
<td>5.8°C</td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is present.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>the COC.S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples are received within Holding Time.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>MS/MSDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>diameter.S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>needsS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.S</td>
<td>TrueS</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?S</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation VerifiedS</td>
<td>TrueS</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-58582-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
06/24/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

METHOD SUMMARY:

CltntTARCADIST.S., nc.T

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>AL .AVT</td>
<td>WT 4T8.2B BT</td>
<td></td>
</tr>
<tr>
<td>PurgT and apT</td>
<td>AL .AVT</td>
<td>WT 4T50.30B</td>
<td></td>
</tr>
<tr>
<td>MTals (ICP)</td>
<td>AL .AVT</td>
<td>WT 4T6010 CT</td>
<td></td>
</tr>
<tr>
<td>PT extraction, Ext'l albaT MTalsT</td>
<td>AL .AVT</td>
<td>M 3030C</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

AL .AV = StAmerica.avannahT

Method References:

M = "Standards Methods For ThT Examination Of WatT And Wastewater ",T

WT 4T= "T st MTMethods For Evaluating Physical/Chemical Methods", Third Edition, November 19 And .ts pdatT s.T

TestAmerica Savannah:
<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846</td>
<td>8260Bc Bearden, Robertc</td>
<td>Bc</td>
</tr>
<tr>
<td>SW846</td>
<td>6010Cc Bland, Brian c</td>
<td>BCBc</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Client</td>
<td>Sample ID</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>680-58582-1c</td>
<td>luentc</td>
<td>Waterc</td>
</tr>
<tr>
<td>Analyte</td>
<td>Result (ug/L)</td>
<td>Qualifier</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Acetone</td>
<td>25c</td>
<td>Uc</td>
</tr>
<tr>
<td>Benzenec</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Bromoformc</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloroformc</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>3.4c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,2-Dichloropropanec</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>190c</td>
<td>Ec</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10c</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>2-Butanone (MEK)c</td>
<td>10c</td>
<td>Uc</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)c</td>
<td>10c</td>
<td>Uc</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Xylenes, Totalc</td>
<td>2.0c</td>
<td>Uc</td>
</tr>
</tbody>
</table>

Surrogates:

- 4-Bromofluorobenzene: 97c
- Dibromofluoromethane: 106c
- Toluene-d8 (Surr): 102c
Analytical Data

Client: ARCADIS U.S., Inc.
Job Number: 680-58582-1c
Date Sampled: 06/14/2010 0800c
Date Received: 06/15/2010 0914c

Sample ID: 680-58582-1c
Client Matrix: Waterc

8260Bd/volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Method</th>
<th>Analysis Batch</th>
<th>Instrument ID</th>
<th>MSOc</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260Bc</td>
<td>680-172112c</td>
<td>ab File ID: o0177.dc</td>
<td></td>
</tr>
</tbody>
</table>

Preparation: 5030Bc
Dilution: 5.0c
Date Analyzed: 06/20/2010 1606c
Date Prepared: 06/20/2010 1606c

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>130c</td>
<td>Uc</td>
</tr>
<tr>
<td>Benzenec</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Bromoformc</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>10c</td>
<td>Uc</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloroformc</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>is-1,2-Dichloroethene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>180c</td>
<td>Dc</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>50c</td>
<td>Uc</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>25c</td>
<td>Uc</td>
</tr>
<tr>
<td>2-Butanone (MEK)c</td>
<td>50c</td>
<td>Uc</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)c</td>
<td>50c</td>
<td>Uc</td>
</tr>
<tr>
<td>Styrene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>5.0c</td>
<td>Uc</td>
</tr>
<tr>
<td>Xylenes, Totalc</td>
<td>10c</td>
<td>Uc</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>97c</td>
<td></td>
<td>75 - 120c</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>101c</td>
<td></td>
<td>75 - 121c</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)c</td>
<td>101c</td>
<td></td>
<td>75 - 120c</td>
</tr>
</tbody>
</table>
Client: ARCADIS U.S., Inc.

Client Sample ID: d Effluent
ab Sample ID: c 680-58582-1c Date Sampled: 06/14/2010 0800c
Client Matrix: c Waterc Date Received: 06/15/2010 0914c

Method: c	6010Cc
Preparation: c	3030Cc
Dilution: c	1.0c
Date Analyzed: c	06/21/2010 2042c
Date Prepared: c	06/16/2010 1436c

<table>
<thead>
<tr>
<th>Analyte: c</th>
<th>Result (ug/ c) c</th>
<th>Qualifier: c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic: c</td>
<td>20c</td>
<td>Uc</td>
</tr>
<tr>
<td>Chromium: c</td>
<td>10c</td>
<td>Uc</td>
</tr>
<tr>
<td>Copper: c</td>
<td>20c</td>
<td>Uc</td>
</tr>
<tr>
<td>Lead: c</td>
<td>10c</td>
<td>Uc</td>
</tr>
<tr>
<td>Zn: c</td>
<td>100c</td>
<td>Uc</td>
</tr>
</tbody>
</table>
Lab Section | u_alifierL | Description
---|---|---
GC/MS VOAc

Uc	Indicates, the a. alyte was,a. alyzed but not detected.
E,	e. result ex ee dedNalibration ra. ge.c
Dc	Surrogate or matrix spike recoveries, were not obtainedN because the extract was,diluted for a. alysis; also compounds, a. alyzed at a. dilution may, be flagged with a. D.c

Metals,

| Uc | Indicates, the a. alyte was,a. alyzed but not detected. |
Quality Control Results

Method: 8260BI
Preparation: 5030BI

Meth1 Blank - Batc h1 0 -17º 98L

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>su IT</th>
<th>QualIT</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcTtonT</td>
<td>25.</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>BcnzUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Bømiform</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>BømomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbon tTbcchloridic</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorobenzUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorodibromomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChloromethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2.-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3.-ic hloropåpcnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorobromomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic hloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2.-ic hloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2.-ic hloropåpanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>iT thi eth,</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>EthylbenzUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2-Hi anonT</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>M) thyTnT Chloridc</td>
<td>5.0.</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>2-ButanoneT (MEK)S</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>4-M) thyl-2-pcTanonT (MJB)S</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>l y, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-TctbchloethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>TctbChloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ToluenT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tåns-1,2.-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tåns-1,3.-ic hloropåpcnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-TåcchloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-TåcchloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Tåcchloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>XyTnB , TotalT</td>
<td>2.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>urrogatT</th>
<th>%</th>
<th>cT</th>
<th>AccTptancT Limits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BømofluorobenzUnT</td>
<td>97c</td>
<td></td>
<td>75 - 120.</td>
</tr>
<tr>
<td>i bromofluoromethanT</td>
<td>108.</td>
<td></td>
<td>75 - 121.</td>
</tr>
<tr>
<td>ToluenT dc (hurr)S</td>
<td>101.</td>
<td></td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample 1
Lab Control Sample Duplicate Recovery Report - Batch: 680-1720981

<table>
<thead>
<tr>
<th>LCS T Lab . amplT.</th>
<th>LCS T 680-17209h/c</th>
<th>Analysis Batch, 680-17209h</th>
<th>nst Tement . M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliTnt MatTT</td>
<td>WatT</td>
<td>Pc p Batch, N/AT</td>
<td>Lab Fill . oo83.dC</td>
</tr>
<tr>
<td>il utionT</td>
<td>1.0</td>
<td>nlt s: ug/Lc</td>
<td>nitial W Tight/Volume: 5 mLc</td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/18/2010 0958.</td>
<td></td>
<td>Final W Tight/Volume: 5 mLc</td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/18/2010 0958.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS D Lab . amplT.</th>
<th>LCS D 680-17209h/7c</th>
<th>Analysis Batch, 680-17209h</th>
<th>nst Tement . M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliTnt MatTT</td>
<td>WatT</td>
<td>Pc p Batch, N/AT</td>
<td>Lab Fill . oo85.dC</td>
</tr>
<tr>
<td>il utionT</td>
<td>1.0</td>
<td>nlt s: ug/Lc</td>
<td>nitial W Tight/Volume: 5 mLc</td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/18/2010 1029h</td>
<td></td>
<td>Final W Tight/Volume: 5 mLc</td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/18/2010 1029h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>LCST</th>
<th>LCSDT</th>
<th>LimitT</th>
<th>Pc</th>
<th>Pc LimitT</th>
<th>LCS D QualT</th>
<th>LCSD QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcTtonT</td>
<td>108.</td>
<td>105.</td>
<td>17 - 175.</td>
<td>2T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BcnuHnT</td>
<td>100.</td>
<td>101.</td>
<td>77 - 119h</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmnform.</td>
<td>93S</td>
<td>104S</td>
<td>2 - 133S</td>
<td>11.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmnomethanT</td>
<td>1.</td>
<td>3S</td>
<td>12 - 184S</td>
<td>3S</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfidc</td>
<td>119h</td>
<td>116.</td>
<td>55 - 131.</td>
<td>3S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon nT bichloridc</td>
<td>102T</td>
<td>103S</td>
<td>71 - 135.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenznHnT</td>
<td>92T</td>
<td>103S</td>
<td>5 - 116.</td>
<td>12T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethanT</td>
<td>94S</td>
<td>104S</td>
<td>75 - 133S</td>
<td>10.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanT</td>
<td>150.</td>
<td>147c</td>
<td>40 - 165.</td>
<td>2T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloriform.</td>
<td>111.</td>
<td>106.</td>
<td>2 - 120.</td>
<td>4S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethanT</td>
<td>100.</td>
<td>93S</td>
<td>4S - 142T</td>
<td>7c</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ic hloroeth, nT</td>
<td>111.</td>
<td>105.</td>
<td>9 - 134S</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ic hloroαρφncT</td>
<td>105.</td>
<td>107c</td>
<td>7c - 12 T</td>
<td>2T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorobromomethanT</td>
<td>102T</td>
<td>102T</td>
<td>7c - 127c</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloroethanT</td>
<td>113S</td>
<td>109h</td>
<td>74 - 127c</td>
<td>3S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroethanT</td>
<td>9h</td>
<td>94S</td>
<td>-1 32T</td>
<td>2T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloroth, nT</td>
<td>113S</td>
<td>109h</td>
<td>2 - 141.</td>
<td>4S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroαρφpanT</td>
<td>101.</td>
<td>103S</td>
<td>73 - 124S</td>
<td>2T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzlnHnT</td>
<td>9h</td>
<td>107C</td>
<td>-1 116.</td>
<td>11.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hi annonT</td>
<td>79h</td>
<td>90.</td>
<td>34 - 161.</td>
<td>13S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M) thylTnT Chloridc</td>
<td>116.</td>
<td>112T</td>
<td>70 - 125.</td>
<td>4S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButanT (MEK)S</td>
<td>93S</td>
<td>93S</td>
<td>33 - 157c</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-M) thyl-2-pctanT (M)βK)S</td>
<td>9h</td>
<td>93S</td>
<td>40 - 151.</td>
<td>5.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t y. nT</td>
<td>94S</td>
<td>104S</td>
<td>2 - 122T</td>
<td>11.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tct bichloroethanT</td>
<td>4S</td>
<td>9h</td>
<td>9 - 129h</td>
<td>15.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tct bichloroth, nT</td>
<td>91.</td>
<td>101.</td>
<td>7c - 12 s</td>
<td>11.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TolueneT</td>
<td>105.</td>
<td>104S</td>
<td>1 - 117c</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΤΑns-1,2-ic hloroeth, nT</td>
<td>110.</td>
<td>107c</td>
<td>72 - 131.</td>
<td>3S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΤΑns-1,3-ic hloroαρφcnT</td>
<td>102T</td>
<td>105.</td>
<td>73 - 12 T</td>
<td>3S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tcd chlorideT</td>
<td>101.</td>
<td>102T</td>
<td>7c - 127c</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tcd chlorideT</td>
<td>94S</td>
<td>9h</td>
<td>75 - 121.</td>
<td>4S</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tcd chloride, nT</td>
<td>99h</td>
<td>99h</td>
<td>4 - 115.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>101.</td>
<td>95.</td>
<td>59 - 144S</td>
<td>6</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Analysis Batch	680-17209h
LCS'ToLab amplT.	LCS'To80-17209h/c
LCS'DoLab amplT.	LCS'Do80-17209h/7c
LCS'ToVialT	WatT
LCS'DoVialT	WAT
LCS'ToAnalyzUt	1.0
LCS'DoAnalyzUt	06/18/2010 0958.
LCS'ToPc pac dc	06/18/2010 0958.
LCS'DoPc pac dc	06/18/2010 0958.
LCS'ToPc	06/18/2010 1029h
LCS'DoPc	06/18/2010 1029h
LCS'ToLimit	4 - 118
LCS'DoLimit	12T
LCS'ToPc	30
LCS'DoPc	75 - 120
LCS'ToPc	12T
LCS'DoPc	30
LCS'ToPc	75 - 120

Method: 8260BI
Preparation: 5030BI

<table>
<thead>
<tr>
<th>M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab FiiT.</td>
</tr>
<tr>
<td>nitial WTight/Volume.:</td>
</tr>
<tr>
<td>Final WTight/Volume.:</td>
</tr>
</tbody>
</table>

TestAmerica Savannah
Quality Control Results

Method Blank - Batch: 680-172112l

<table>
<thead>
<tr>
<th>Lab . amplT.</th>
<th>MB 680-172112/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliTnt Mat'T</td>
<td>WatT</td>
</tr>
<tr>
<td>il uTionT</td>
<td>1.0.</td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/20/2010 1422T</td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/20/2010 1422T</td>
</tr>
</tbody>
</table>

Analysis Batch, 680-172112T

<table>
<thead>
<tr>
<th>nit s.: ug/Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pc p Batch, N/AT</td>
</tr>
</tbody>
</table>

Method: 8260BI

<table>
<thead>
<tr>
<th>nstTument . M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab FillT. q100.doc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nitial WTight/Volume.: 5 mLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final WTight/Volume.: 5 mLc</td>
</tr>
</tbody>
</table>

AnalyT

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>su IT</th>
<th>QualRT</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcTtonT</td>
<td>25.</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>BcnZUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Bømform.</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>BømomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Cadbon disulfidc</td>
<td>2.0.</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Cadbon ITBchloridc</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorobenzUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorodibromomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ChloromethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2.-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3.-ic hloroαpcnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorobromomethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic hloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2.-ic hloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,-ic hloropαpanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>iT thyl eth,</td>
<td>10.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>EthylbenzUnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2-Hi anomT</td>
<td>10.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>M) thyl(TnT Chloridc</td>
<td>5.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2-ButanonT (MEK)S</td>
<td>10.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>4-M) thyl-2-pcnTanonT (MJBK)S</td>
<td>10.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>t y. nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-TctβcholoroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Tctβcholoroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>ToluenT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tßns-1,2,-ic hloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>tßns-1,3,-ic hloroαpcnT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-TöchloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-TöchloroethanT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Töchloroeth, nT</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloridc</td>
<td>1.0.</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>XyTnTβs, TotalT</td>
<td>2.0.</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>urrogatT</th>
<th>.% cT AccTptancT Limits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BømofluoroazenUnT</td>
<td>97c 75 - 120.</td>
</tr>
<tr>
<td>i bromofluoromethanT</td>
<td>109h 75 - 121.</td>
</tr>
<tr>
<td>ToluenT dc (hurr)S</td>
<td>101. 75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-172112I

<table>
<thead>
<tr>
<th>LCST Lab. amplT.</th>
<th>LCSTB80-172112/5.</th>
<th>Analysis Batch, 680-172112T</th>
<th>nstment</th>
<th>M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl\textsubscript{17}TnT MatTT</td>
<td>WatT</td>
<td>Pc p Batch, N\textsubscript{AT}</td>
<td>nit s.: ug/Lc</td>
<td></td>
</tr>
<tr>
<td>ill utionT</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/20/2010 1259h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/20/2010 1259h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCST Lab. amplT.</th>
<th>LCSTB80-172112/c</th>
<th>Analysis Batch, 680-172112T</th>
<th>nstment</th>
<th>M) Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl\textsubscript{17}TnT MatTT</td>
<td>WatT</td>
<td>Pc p Batch, N\textsubscript{AT}</td>
<td>nit s.: ug/Lc</td>
<td></td>
</tr>
<tr>
<td>ill utionT</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/20/2010 1319h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/20/2010 1319h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>PC</th>
<th>PC</th>
<th>LimitT</th>
<th>LCST QualT</th>
<th>LCST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcTtonT</td>
<td>99h</td>
<td>93S</td>
<td>17 - 175</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>BcnzUHt</td>
<td>100.</td>
<td>99h</td>
<td>77 - 119h</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>Benzofom.</td>
<td>109h</td>
<td>109h</td>
<td>2 - 133S</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>BenzomethanT</td>
<td>57c</td>
<td>2T</td>
<td>12 - 184S</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Carbon disulfidec</td>
<td>113S</td>
<td>113S</td>
<td>55 - 131.</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>Carbon tT\textsubscript{C} bchloridc</td>
<td>110.</td>
<td>110.</td>
<td>71 - 135.</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>ChlorobenzUHt</td>
<td>103S</td>
<td>102T</td>
<td>5 - 116.</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>Chloro dibromomethanT</td>
<td>109h</td>
<td>107c</td>
<td>75 - 133S</td>
<td>2T</td>
<td>30</td>
</tr>
<tr>
<td>ChloroethanT</td>
<td>102T</td>
<td>104S</td>
<td>40 - 165.</td>
<td>2T</td>
<td>50</td>
</tr>
<tr>
<td>Chlorofom.</td>
<td>104S</td>
<td>105.</td>
<td>2 - 120.</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>ChloromethanT</td>
<td>9h</td>
<td>4S - 142T</td>
<td>3S</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ic hloroeth, nT</td>
<td>105.</td>
<td>106.</td>
<td>9 - 134S</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,3-ic hloro\textsubscript{ox}pcnT</td>
<td>107c</td>
<td>106.</td>
<td>7c - 12T</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>ic hloro dibromomethanT</td>
<td>102T</td>
<td>103S</td>
<td>7c - 127c</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>1,1-ic hloroethanT</td>
<td>107c</td>
<td>108.</td>
<td>74 - 127c</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>1,2-ic hloroethanT</td>
<td>94S</td>
<td>94S</td>
<td>-1-32T</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>1,1-ic hloroeth, nT</td>
<td>108.</td>
<td>103S</td>
<td>2 - 141.</td>
<td>5.</td>
<td>30</td>
</tr>
<tr>
<td>1,2-ic hloro\textsubscript{ox}pcnT</td>
<td>100.</td>
<td>99h</td>
<td>73 - 124S</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>EthylbenzUHt</td>
<td>106.</td>
<td>106.</td>
<td>-116.</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>2-Hi ananT</td>
<td>7c</td>
<td>4S</td>
<td>34 - 161.</td>
<td>4S</td>
<td>30</td>
</tr>
<tr>
<td>M) thylTnT Chloridc</td>
<td>115.</td>
<td>116.</td>
<td>70 - 125.</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>2-ButanoneT (MEK)S</td>
<td>9h</td>
<td></td>
<td>33 - 157c</td>
<td>3S</td>
<td>30</td>
</tr>
<tr>
<td>4-M) thyl-2-pctanalT (MBK)S</td>
<td>9h</td>
<td>7c</td>
<td>40 - 151.</td>
<td>2T</td>
<td>30</td>
</tr>
<tr>
<td>t y. nT</td>
<td>103S</td>
<td>103S</td>
<td>2 - 122T</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2,2-Tct\textsubscript{C} bchloroethanT</td>
<td>92T</td>
<td>91.</td>
<td>9 - 129h</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>Tct\textsubscript{C} bchloroth, nT</td>
<td>101.</td>
<td>100.</td>
<td>7c - 12T</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>ToluenT</td>
<td>102T</td>
<td>104S</td>
<td>1 - 117c</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>3\textsubscript{-}ns-1,2-ic hloroeth, nT</td>
<td>110.</td>
<td>109h</td>
<td>72 - 131.</td>
<td>0.</td>
<td>30</td>
</tr>
<tr>
<td>3\textsubscript{-}ns-1,3-ic hloro\textsubscript{ox}pcnT</td>
<td>105.</td>
<td>103S</td>
<td>73 - 12T</td>
<td>2T</td>
<td>30</td>
</tr>
<tr>
<td>1,1,1-Tct chloroethanT</td>
<td>106.</td>
<td>104S</td>
<td>7c - 127c</td>
<td>2T</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2-Tct chloroethanT</td>
<td>9h</td>
<td>95.</td>
<td>75 - 121.</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>Tct chloroth, nT</td>
<td>99h</td>
<td>99h</td>
<td>4 - 115.</td>
<td>1.</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>7c</td>
<td>9h</td>
<td>59 - 144S</td>
<td>2T</td>
<td>50</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-172112

<table>
<thead>
<tr>
<th>LCSLab amplT</th>
<th>LCS80-172112/5</th>
<th>Analysis Batch</th>
<th>680-172112T</th>
<th>nstament M</th>
<th>Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilTnt MatTl</td>
<td>WatT</td>
<td>Pc p Batch, N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il uTionT</td>
<td>1.0</td>
<td>nit s: ug/Lc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/20/2010 1259h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/20/2010 1259h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDLab amplT</th>
<th>LCSD80-172112/c</th>
<th>Analysis Batch</th>
<th>680-172112T</th>
<th>nstament M</th>
<th>Oi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilTnt MatTl</td>
<td>WatT</td>
<td>Pc p Batch, N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il uTionT</td>
<td>1.0</td>
<td>nit s: ug/Lc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/20/2010 1319h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/20/2010 1319h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>% c.T</th>
<th>LCST</th>
<th>LCSDT</th>
<th>LimitT</th>
<th>Pc</th>
<th>Pc LimitT</th>
<th>LCSQualT</th>
<th>LCSDQualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>XylTnB, TotalT</td>
<td>103S</td>
<td>104S</td>
<td>4 - 118.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>urrogatT</td>
<td>LCS% . cT</td>
<td>LCSDT% . cT</td>
<td>AccTpancT Limits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-BrorofluorobenzLnT</td>
<td>105.</td>
<td>105.</td>
<td>75 - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofluoromethanT</td>
<td>106.</td>
<td>109h</td>
<td>75 - 121.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene dc (hurr)S</td>
<td>103S</td>
<td>103S</td>
<td>75 - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-171730I

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>su ltT</th>
<th>QualRT</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AβenicT</td>
<td>20.</td>
<td></td>
<td>20.</td>
</tr>
<tr>
<td>Ch.oximium.</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>Coppc</td>
<td>20.</td>
<td></td>
<td>20.</td>
</tr>
<tr>
<td>Lcadc</td>
<td>10.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>ZincT</td>
<td>100.</td>
<td></td>
<td>100.</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: 680-171730I

<table>
<thead>
<tr>
<th>AnalyT</th>
<th>plkc AmountT</th>
<th>su ltT</th>
<th>%</th>
<th>c.T</th>
<th>LimitT</th>
<th>QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AβenicT</td>
<td>2000.</td>
<td>2090.</td>
<td>105.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coppc</td>
<td>250.</td>
<td>211.</td>
<td>104S</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lcadc</td>
<td>500.</td>
<td>521.</td>
<td>104S</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZincT</td>
<td>500.</td>
<td>531.</td>
<td>106.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Matrix Spike/l

<table>
<thead>
<tr>
<th>Method: 6010CI</th>
<th>Preparation: 3030CI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Analysis Batch</th>
<th>Analysis Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>M) Lab . amplT.</td>
<td>0-5858. 2-1.</td>
<td>680-172185.</td>
<td>680-171730.</td>
</tr>
<tr>
<td>CliTnt MatIT</td>
<td>WatT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>il utionT</td>
<td>1.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT AnalyzUdc</td>
<td>06/21/2010 2058.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT Pc pac dc</td>
<td>06/16/2010 143S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>nstUment .</th>
<th>CPc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Fill.</td>
<td>171730.ch,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitial WTight/Volume:</td>
<td>50 mlC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final WTight/Volume:</td>
<td>50 mlC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>M) QualT</th>
<th>M) QualT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AnalytT</th>
<th>% . c.T</th>
<th>M)</th>
<th>M)</th>
<th>LimitT</th>
<th>Pc</th>
<th>Pc</th>
<th>LimitT</th>
<th>M) QualT</th>
<th>M) QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsenicT</td>
<td>106.</td>
<td>106.</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.romium.</td>
<td>105.</td>
<td>105.</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copperc</td>
<td>107c</td>
<td>107c</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lcadc</td>
<td>104S</td>
<td>104S</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZincT</td>
<td>102T</td>
<td>102T</td>
<td>75 - 125.</td>
<td>0.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample ID/Location</td>
<td>Matrix</td>
<td>Date/Time Sampled</td>
<td>Lab ID</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effluent</td>
<td>L</td>
<td>6/14/10, 8:00</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report: Arsenic, chromium, copper, lead, and zinc.

Sample Matrix:
L = Liquid;
S = Solid;
A = Air

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Organization:</th>
<th>Date</th>
<th>Time</th>
<th>Seal Intact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinhart Thomas</td>
<td>ARCADIS</td>
<td>6/14/10</td>
<td>12:00</td>
<td>Yes</td>
</tr>
<tr>
<td>Received by:</td>
<td></td>
<td>6/14/10</td>
<td>9:14</td>
<td>No N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Seal Intact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Temp 3.4 | 680.38562

Delivery Method:
☑ Common Carrier
☐ In Person
☐ Lab Courier
☐ Other
<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NA1</th>
<th>Comment1</th>
</tr>
</thead>
<tbody>
<tr>
<td>dio ctivity(either w)s, ot mec suredor, if(measuredcis, 1 or below)</td>
<td>N/Ac</td>
<td></td>
</tr>
<tr>
<td>bc kgroundc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's, u stody/secl, lft/present, is,int cl.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>The cooler or e, mples,do not cppecr to babe been compromisedor c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>tcmperedawith.c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiples,were receivedaon ice.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Cooler temperature is ce ptable.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Cooler temperature is,recorded.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>COC is,present.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>COC is,filladout in inkS ddegible.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>COC is,filladout with ll pertinent information.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>There cre no discrep bie s,between the e, mple lD5s,on the contciners, dc</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>the COC.c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiples, re receiveda with holding Time.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Smple continers,hae legible Icvels.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Contciners, re not broken or lecking.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Smple collection dceetimes, re provided.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Appropriate e, mple contciners, re used.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>Smple bottles, re completely/ffilled.c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>There is,sufficient vol. for all requestedc lyses, incl. c y-Requestedc</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>MS/MSDs,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA e, mple wics,do not bae becdsp ce or bubble is,<6mm (1/4")in c</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>dicmeter,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifbece ss, ry staffthabve been informedaofb y)short boldtme or quickSATc</td>
<td>Truec</td>
<td></td>
</tr>
<tr>
<td>ee ds,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphatic e, mples, re not present.c</td>
<td>N/Ac</td>
<td></td>
</tr>
<tr>
<td>Smiples,do not require splittingb compositing.c</td>
<td>N/Ac</td>
<td></td>
</tr>
<tr>
<td>Is, the FieldSmpler's, me present on COC?,</td>
<td>F. Isec</td>
<td></td>
</tr>
<tr>
<td>Smple Preservation Verifiedc</td>
<td>Truec</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-48250-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LA00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comment:
No additional co. n tS k

Receipt D
All samples weks rSved in g ood condition within tSpek raturS rS uirS n tSS

Metals D
Method 1631E: The matrix spike / matrix spike duplicatS(MS/MSD) rScoevses for batch 400-111162\ 400-111279 weks outSde contro. k
imSle. The assblciatiS la boratory contro. samples (LCS\LCSD) rScoevses mekacc$ tancScritSria. Data was fagged and r$i rS as iskS

No othe analytiS or quality isS evS wekrS ot$. S
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF cury, Low LFvFl (CVAFS)F</td>
<td>TAL PEN.</td>
<td>EPAR631EF</td>
<td></td>
</tr>
<tr>
<td>PF pařatiš. MF cury, Low LFvFl</td>
<td>TAL PEN.</td>
<td></td>
<td>EPAR631EF</td>
</tr>
</tbody>
</table>

Lab References:
TAL PEN = TFSťAřer.ca PF sac olaF

Method References:
EPAR= US Enviř. me. al Přo. ctiš. .gF cyF
<table>
<thead>
<tr>
<th>M: th1</th>
<th>Analyst1</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631EU</td>
<td>Jones, RandyU</td>
<td>RJU</td>
</tr>
</tbody>
</table>
SAMPLD SUMMARY2

Client: ARCADIS U.S., Inc.U
Job Number: 400-48250-1U

<table>
<thead>
<tr>
<th>Lab Sample I2</th>
<th>Client Sample I2</th>
<th>Client Mark2</th>
<th>a:e/Ti²he : Sampledb</th>
<th>a:e/Ti²he : Rel elvedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-48250-1,</td>
<td>EFFLUENT,</td>
<td>Water,</td>
<td>06/14/2010 0800U</td>
<td>06/15/2010 1005U</td>
</tr>
</tbody>
</table>

Test@mer1 a Pels a: ola:
Client: ARCADIS U.S., Inc.
Job Number: 400-48250-1,

Sample ID: EFFlUENTa

<table>
<thead>
<tr>
<th>Lab Sample ID:</th>
<th>400-48250-1,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrix:</td>
<td>Water,</td>
</tr>
</tbody>
</table>

Date Sampled: 06/14/2010 0800-

Received: 06/15/2010 1005-

1631E Mercury, low Level (CVAFS)D

<table>
<thead>
<tr>
<th>Method:</th>
<th>1631E-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation:</td>
<td>1631E-</td>
</tr>
<tr>
<td>dilution:</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzed:</th>
<th>06/21/2010 1236-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared:</td>
<td>06/18/2010 1100-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte:</th>
<th>Result (ng/L):</th>
<th>Qualifier:</th>
<th>RL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><0.50-</td>
<td></td>
<td>0.50-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis Batch:</th>
<th>400-111279-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep Batch:</td>
<td>400-11162-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument ID:</th>
<th>HYDRA-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab File ID:</td>
<td>062110b.PRN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Weight/Volume:</th>
<th>40 mL-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Weight/Volume:</td>
<td>40 mL-</td>
</tr>
</tbody>
</table>
QUALITYpCI TROLp SULTSp
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 400-48250-1-

QC Association Summary

<table>
<thead>
<tr>
<th>Sample</th>
<th>Relortal Basis</th>
<th>Client Matrix</th>
<th>Method</th>
<th>Prel</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 400-111162/2-AM</td>
<td>Lab Control Sample-</td>
<td>TM</td>
<td>Wc r-</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-111162/3-AM</td>
<td>Lab Control Sample DuplicateM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td></td>
</tr>
<tr>
<td>B 400-111162/1-AM</td>
<td>Ethanol BlankM</td>
<td>TM</td>
<td>WaterM</td>
<td>31E</td>
<td></td>
</tr>
<tr>
<td>400-48250-1M</td>
<td>EFFLUENTM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td></td>
</tr>
<tr>
<td>400-48348-A-4-B MSM</td>
<td>Matrix SpikeM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td></td>
</tr>
<tr>
<td>400-48348-A-4-C MSDM</td>
<td>Matrix Spike DuplicateM</td>
<td>TM</td>
<td>WaterM</td>
<td>31EM</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch 400-111279C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Relortal Basis</th>
<th>Client Matrix</th>
<th>Method</th>
<th>Prel</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 400-111162/2-AM</td>
<td>Lab Control SampleM</td>
<td>TM</td>
<td>WaterM</td>
<td>31EM</td>
<td>400-111162M</td>
</tr>
<tr>
<td>LCSD 400-111162/3-AM</td>
<td>Lab Control Sample DuplicateM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td>400-111162M</td>
</tr>
<tr>
<td>B 400-111162/1-AM</td>
<td>Ethanol BlankM</td>
<td>TM</td>
<td>WaterM</td>
<td>31E</td>
<td>400-111162M</td>
</tr>
<tr>
<td>400-48250-1M</td>
<td>EFFLUENTM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td>400-111162M</td>
</tr>
<tr>
<td>400-48348-A-4-B MSM</td>
<td>Matrix SpikeM</td>
<td>T</td>
<td>WaterM</td>
<td>31EM</td>
<td>400-111162M</td>
</tr>
<tr>
<td>400-48348-A-4-C MSDM</td>
<td>Matrix Spike DuplicateM</td>
<td>TM</td>
<td>WaterM</td>
<td>31EM</td>
<td>400-111162M</td>
</tr>
</tbody>
</table>

Report Basis

T = TotalM

TestAmerica PensacolaC
Method Blank - Batch: 400-111162y

<table>
<thead>
<tr>
<th>aly.</th>
<th>sultF</th>
<th>QualRF</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.50M</td>
<td>0.50M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab Control Sample/y

Lab Control Sample Duplicate Recovery Report - Batch: 400-111162y

<table>
<thead>
<tr>
<th>LCS Lab SampIIF IDLCS 400-111162/2-AF</th>
<th>alys-s BamlhM 400-111279, P, p BamlhM 400-111162</th>
<th>Inß- ume. IDFHYDRAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliF</td>
<td>MaM</td>
<td>Lab F,IF IDF 062110b,P, N.</td>
</tr>
<tr>
<td>Dilu. o.</td>
<td>1.0M</td>
<td>Initilàl WT ghM/olume.: 40 mLc</td>
</tr>
<tr>
<td>DaM. alyzUd-</td>
<td>06/21/2010 0939,</td>
<td>F, al WT ghM/olume.: 40 mLc</td>
</tr>
<tr>
<td>DaM P, paMd-</td>
<td>06/18/2010 1100M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab SampIIF IDLCSD 400-111162/3-AF</th>
<th>alys-s BamlhM 400-111279, P, p BamlhM 400-111162</th>
<th>Inß- ume. IDF HYDRAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliF</td>
<td>MaM</td>
<td>Lab F,IF IDF 062110b,P, N.</td>
</tr>
<tr>
<td>Dilu. o.</td>
<td>1.0M</td>
<td>Initilàl WT ghM/olume.: 40 mLc</td>
</tr>
<tr>
<td>DaM. alyzUd-</td>
<td>06/21/2010 0947M</td>
<td>F, al WT ghM/olume.: 40 mLc</td>
</tr>
<tr>
<td>DaM P, paMd-</td>
<td>06/18/2010 1100M</td>
<td></td>
</tr>
</tbody>
</table>

% c.F

<table>
<thead>
<tr>
<th>aly.</th>
<th>LCSF</th>
<th>LCSDF</th>
<th>Lm.</th>
<th>PDF</th>
<th>PD Lm.</th>
<th>LCS QualF</th>
<th>LCSD QualF</th>
</tr>
</thead>
<tbody>
<tr>
<td>>94h</td>
<td>95M</td>
<td>79 - 121</td>
<td>1.</td>
<td>20M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Matrix Spike/y
Matrix Spike Duplicate Recovery Report - Batch: 400-111162y

<table>
<thead>
<tr>
<th>MS Lab Sample IDF</th>
<th>400-48348-A-4-B MSF</th>
<th>alys-s BaMhM 400-111279, P, p BaMhM 400-111162</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliF MaM</td>
<td>WaM</td>
<td></td>
</tr>
<tr>
<td>Dilu. o.</td>
<td>1.0M</td>
<td></td>
</tr>
<tr>
<td>DaM alyzUd</td>
<td>06/21/2010 1108F</td>
<td></td>
</tr>
<tr>
<td>DaM P, paMd</td>
<td>06/18/2010 1100M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSD Lab Sample IDF</th>
<th>400-48348-A-4-C MSDF</th>
<th>alys-s BaMhM 400-111279, P, p BaMhM 400-111162</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliF MaM</td>
<td>WaM</td>
<td></td>
</tr>
<tr>
<td>Dilu. o.</td>
<td>1.0M</td>
<td></td>
</tr>
<tr>
<td>DaM alyzUd</td>
<td>06/21/2010 1116,</td>
<td></td>
</tr>
<tr>
<td>DaM P, paMd</td>
<td>06/18/2010 1100M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>aly.</th>
<th>% c.F</th>
<th>MSF</th>
<th>MSDF</th>
<th>Lm.</th>
<th>PDF</th>
<th>PD Lm.</th>
<th>MS QualF</th>
<th>MSD QualF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M) cury.</td>
<td>43</td>
<td>41.</td>
<td>71 - 125M</td>
<td>4h</td>
<td>24h</td>
<td>F, F,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 1631Ey
Preparation: 1631Ey

In- ume. IDF HYDRAF
Lab F,IF IDF 062110b.P, N.
InitiWTghMVolume: 40 mLc
F, alWTghMVolume: 40 mLc
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>etalsb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fb</td>
<td>S or MSD eMeeds the control limitsb</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Sample Identification</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>6/14/10</td>
<td>800</td>
<td>Effluent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Signature</th>
<th>DATE</th>
<th>Time</th>
<th>Signature</th>
<th>DATE</th>
<th>Time</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/6/08</td>
<td>1320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/14/10</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL INSTRUCTIONS/CONDITIONS OF RECEIPT:

REMARKS: 0.02
L1gin Sam1le Recei1t CheckList

Client: ARCADIS U.S., Inc.
Job Number: 400-48250-1M

L1gin Number: 48250N
List Source: TestAmerica PensacolaN

Creator: Hor, KomaN
List Number: 1N

<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NAN</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMtiehty either w) s not meMured or, if meMured, is M or below M</td>
<td>N/AM</td>
<td></td>
</tr>
<tr>
<td>bMkgroumdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seM, if present, is intMbt.-</td>
<td>N/AM</td>
<td></td>
</tr>
<tr>
<td>The cooler or s, mple do not MpeM to have been compromised or M tMpered with.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmples were received on ice.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperMure is MceptMble.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperMure is recorded.-</td>
<td>TrueM</td>
<td>0.0°C M</td>
</tr>
<tr>
<td>COC is present.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink Md legible.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with Md pertinent information.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>There Me no discrep Meies between the s, mple IDs on the contMners Md M</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>the COC.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmples Me received within Holding Time.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmple contMners habe legible lMbels.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>ContMners Me not broken or leMing.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmple collection dcte/times Me provided.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>AppropriMe s, mple contMners Me used.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmple bottles Me completely filled.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for Md requested MMyes, incl. MMy requested M</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>MS/MSDs,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA s, mple vMls do not have heMisp ce or bubble is <6mm (, /4") in M</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>diMheter.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necess, ry, stIf have been informed of MMy short hold time or quick TAT M needs,</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>Multiplabic s, mple Me not present.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmples do not require splitting or compositing.-</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>Is the Field SMplier's nMne present on COC?M</td>
<td>TrueM</td>
<td></td>
</tr>
<tr>
<td>SMmple PreservStion Verifiedc</td>
<td>TrueM</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-59824-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
08/10/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS: NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
METHOD SUMMARY:

Client: ARCADIS U.S., Inc.
Job Number: 680-59C24-1C

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile: a nic Com. oun. (GC/MS)C</td>
<td>TAL SAVC</td>
<td>SW84C0.25 BC</td>
<td></td>
</tr>
<tr>
<td>Pur. an. TqaPc</td>
<td>TAL SAVC</td>
<td>SW84C20 30BC</td>
<td></td>
</tr>
<tr>
<td>M£al. (ICP)C</td>
<td>TAL SAVC</td>
<td>SW84O80 10C.</td>
<td>SM 3030C.</td>
</tr>
<tr>
<td>PrepaQtion, Extractable M£al.</td>
<td>TAL SAVC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAL SAV = TC tAmerica SavannahC

Method References:

SM = "Stan.aC M£ho. For ThC Examination. Water An. Water@water".

SW84C = "TC I M£ho. For Evaluatin. Soli. Water@Physical/Chemical M£ho. " Thir. Ed@on, Nov@ber 19C An. It. U. a le.

TestAmerica Savannah:
<table>
<thead>
<tr>
<th>M: thN</th>
<th>AnalystN</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846</td>
<td>8260BC</td>
<td>Bearden, RobertC</td>
</tr>
<tr>
<td>SW846</td>
<td>6010C</td>
<td>BC</td>
</tr>
<tr>
<td></td>
<td>Bland, BrianCC</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLD SUMMARY2

Client: ARCADIS U.S., Inc.C
Job Number: 680-59824-1C

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Client Material</th>
<th>Sample Date</th>
<th>Sampled By</th>
<th>Reported Date</th>
</tr>
</thead>
</table>

Tested by: ah2
Analytical atay

Client: ARCADIS U.S., Inc.U

Job Number: 680-59824-1U

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample ID:U</td>
<td>0-59824-1U</td>
</tr>
<tr>
<td>Client U:</td>
<td>WaterU</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>07/27/2010 1440U</td>
</tr>
<tr>
<td>Date Received:</td>
<td>07/28/2010 0856U</td>
</tr>
</tbody>
</table>

8260Bd/volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Preparation</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>260BU</td>
<td>003BU</td>
<td>1.0U</td>
<td>07/29/2010 1533U</td>
<td>07/29/2010 1533U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25</td>
<td>U</td>
<td>25U</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>45U</td>
<td>U</td>
<td>0U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>Ethylene Chloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-Butanone (UEK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>4-Ethyl-2-pentanone (UIBK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Xylenes, TotalU</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%RecU</th>
<th>Qualifier</th>
<th>Acceptance LimitsU</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>93U</td>
<td>75 - 120U</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>98U</td>
<td>75 - 121U</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)U</td>
<td>102U</td>
<td>75 - 120U</td>
<td></td>
</tr>
</tbody>
</table>
6010C Metals(ICP):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>010CU</td>
<td>0-59824-1U</td>
<td>WaterU</td>
<td>Effluent</td>
<td>680-176620U</td>
<td>680-175681U</td>
<td>080610.chrU</td>
<td></td>
<td>0 m L.</td>
<td>0 m L.</td>
</tr>
<tr>
<td>3030CU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/06/2010</td>
<td>2204U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/29/2010</td>
<td>1241U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L):U</th>
<th>Qualifier:U</th>
<th>RL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicU</td>
<td>20</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>ChromiumU</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>CopperU</td>
<td>20</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>LeadU</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>ZincU</td>
<td>100</td>
<td></td>
<td>100U</td>
</tr>
</tbody>
</table>

TestAmerica Savannah: Page 6 of 13
<table>
<thead>
<tr>
<th>Lab Sectionp</th>
<th>u alifierN</th>
<th>Descriptionp</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS V. AU</td>
<td></td>
<td>Indicates the analyte was analyzed for but not detected. U</td>
</tr>
<tr>
<td>MetalsT</td>
<td></td>
<td>Indicates the analyte was analyzed for but not detected. U</td>
</tr>
</tbody>
</table>
Method Blank - Batch: y80 -175708u

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Analysis Batch</th>
<th>Client Matrix</th>
<th>Dilution</th>
<th>Date Analyz4dU</th>
<th>Date PU pa. dU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB 680-175708/T</td>
<td>680-175708.</td>
<td>Water.</td>
<td>1.0.</td>
<td>07/29/2010</td>
<td>1144C</td>
</tr>
</tbody>
</table>

Analyte Results

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual.</th>
<th>RL%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B@ zhe</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>B@moform</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>B@momethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Ca.bon disulfidU</td>
<td>0.</td>
<td>2</td>
<td>U.</td>
</tr>
<tr>
<td>Ca.bon tetrachloridU</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Mefylene ChloridU</td>
<td>5.0.</td>
<td>U.</td>
<td>5.0.</td>
</tr>
<tr>
<td>4-Mef 2-Fluorobenzene (MIBK)M</td>
<td>10.</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>Styene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,1-Tetrachloroethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Vinyl chloridU</td>
<td>0.</td>
<td>1</td>
<td>U.</td>
</tr>
<tr>
<td>Xylenes, Total.</td>
<td>0.</td>
<td>2</td>
<td>U.</td>
</tr>
</tbody>
</table>

Surrogate Results

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>% Rec.</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-B@moformfluorobenzene</td>
<td>94C</td>
<td>75 - 120</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>99C</td>
<td>75 - 121C</td>
</tr>
<tr>
<td>Toluene-dU (Sur)M</td>
<td>99C</td>
<td>75 - 120</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/U
Lab Control Sample Duplicate Recovery Report - Batch: 680-175708u
Method: 8260Bu
Preparation: 5030Bu

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>PU p BatchMN/A.</td>
<td>Lab File ID.:</td>
<td>oq212QU</td>
</tr>
<tr>
<td>Dilution.:</td>
<td>1.0</td>
<td>Units- ug/Le</td>
<td>Initial Weight/Volume.:</td>
<td>5 mLe</td>
</tr>
<tr>
<td>Date Analyze4dU</td>
<td>07/29/2010 0949C</td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mLe</td>
</tr>
<tr>
<td>Date PU pa. dU</td>
<td>07/29/2010 0949C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe</td>
<td>Water.</td>
<td>PU p BatchMN/A.</td>
<td>Lab File ID.:</td>
<td>oq214QU</td>
</tr>
<tr>
<td>Dilution.:</td>
<td>1.0</td>
<td>Units- ug/Le</td>
<td>Initial Weight/Volume.:</td>
<td>5 mLe</td>
</tr>
<tr>
<td>Date Analyze4dU</td>
<td>07/29/2010 101C</td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mLe</td>
</tr>
<tr>
<td>Date PU pa. dU</td>
<td>07/29/2010 101C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>LCS.</th>
<th>LCSD.</th>
<th>Limit.</th>
<th>RPD.</th>
<th>RPD Limit.</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone.</td>
<td>91C</td>
<td>93U</td>
<td>17 - 175.</td>
<td>2C</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B@ zme.</td>
<td>99C</td>
<td>99C</td>
<td>77 - 119C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B@moform.</td>
<td>102C</td>
<td>101C</td>
<td>2 - 133U</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B@omethane.</td>
<td>72C</td>
<td>73U</td>
<td>12 - 104C</td>
<td>1C</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca@bon disulfidU</td>
<td>9C</td>
<td>9C</td>
<td>55 - 131C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca@bon tetrachloridU</td>
<td>103U</td>
<td>102C</td>
<td>71 - 135.</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene.</td>
<td>9C</td>
<td>100.</td>
<td>5 - 11C</td>
<td>2C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane.</td>
<td>102C</td>
<td>104C</td>
<td>75 - 133U</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane.</td>
<td>92C</td>
<td>94C</td>
<td>40 - 10C</td>
<td>2C</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorof orm.</td>
<td>99C</td>
<td>100.</td>
<td>2 - 120.</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane.</td>
<td>91C</td>
<td>94C</td>
<td>4C - 142C</td>
<td>4C</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis,1,2-DichloroethMe.</td>
<td>97N</td>
<td>9C</td>
<td>9 - 134C</td>
<td>2C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis,1,3-Dichlorop@l Me.</td>
<td>102C</td>
<td>102C</td>
<td>7N - 12C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane.</td>
<td>103U</td>
<td>104C</td>
<td>7N - 127N</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane.</td>
<td>100.</td>
<td>101C</td>
<td>74 - 127N</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane.</td>
<td>100.</td>
<td>101C</td>
<td>- 132C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-DichloroethMe.</td>
<td>956.</td>
<td>94C</td>
<td>2 - 141C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorop@lane.</td>
<td>99C</td>
<td>9C</td>
<td>73 - 124C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene.</td>
<td>102C</td>
<td>103U</td>
<td>- 11C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-H, xanone.</td>
<td>106.</td>
<td>107N</td>
<td>34 - 1C1</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mff hylene ChloridU</td>
<td>9C</td>
<td>99C</td>
<td>70 - 125.</td>
<td>2C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mff hyl-2-plt anone (MIBK)M</td>
<td>105.</td>
<td>106.</td>
<td>40 - 151C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styene.</td>
<td>94C</td>
<td>9C</td>
<td>2 - 122C</td>
<td>2C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tur,chloroethane.</td>
<td>101C</td>
<td>102C</td>
<td>9 - 129C</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tur,chloroethMe.</td>
<td>97N</td>
<td>94C</td>
<td>7N - 12C</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene.</td>
<td>103U</td>
<td>104C</td>
<td>1 - 117N</td>
<td>1C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-DichloroethMe.</td>
<td>97N</td>
<td>9C</td>
<td>72 - 131C</td>
<td>2C</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichlorop@l Me.</td>
<td>105.</td>
<td>106.</td>
<td>73 - 12C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tur,chloroethane.</td>
<td>101C</td>
<td>101C</td>
<td>7N - 127N</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tur,chloroethane.</td>
<td>99C</td>
<td>99C</td>
<td>75 - 121C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tur,chloroethMe.</td>
<td>94C</td>
<td>97N</td>
<td>4 - 115.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloridU</td>
<td>9C</td>
<td>9C</td>
<td>59 - 144C</td>
<td>2C</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-175708u

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe:</td>
<td>Water.</td>
<td>PU p BatchM/N/A.</td>
<td>Lab File ID.:</td>
<td>oq212QU</td>
</tr>
<tr>
<td>Dilution:.</td>
<td>1.0.</td>
<td>Units- ug/Le</td>
<td>Initial Weight/Volume.:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date Analyz4dU:</td>
<td>07/29/2010 0949C</td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date PU pa. dU:</td>
<td>07/29/2010 0949C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrixe:</td>
<td>Water.</td>
<td>PU p BatchM/N/A.</td>
<td>Lab File ID.:</td>
<td>oq214QU</td>
</tr>
<tr>
<td>Dilution:.</td>
<td>1.0.</td>
<td>Units- ug/Le</td>
<td>Initial Weight/Volume.:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date Analyz4dU:</td>
<td>07/29/2010 101C</td>
<td></td>
<td>Final Weight/Volume.:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Date PU pa. dU:</td>
<td>07/29/2010 101C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>% Rec.</th>
<th>LCS.</th>
<th>LCSD.</th>
<th>Limit.</th>
<th>RPD.</th>
<th>RPD Limit.</th>
<th>LCS Qual.</th>
<th>LCSD Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes, Total.</td>
<td></td>
<td>958.</td>
<td>95.</td>
<td>4 - 11C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate.</th>
<th>LCS % Rec.</th>
<th>LCSD % Rec.</th>
<th>Acceptance Limits-</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BQ methyfluorobenzene.</td>
<td>9C</td>
<td>99C</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethane.</td>
<td>99C</td>
<td>99C</td>
<td>75 - 121C</td>
</tr>
<tr>
<td>Toluene-dU(Surr)M</td>
<td>102C</td>
<td>101C</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>

TestAmerica Savannahu
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 680-59C24-1C

Method Blank - Batch: 680-175681u

Lab Sample ID:	MB 680-175681/7-A.
Client Matrix:	Water.
Dilution:	1.0.
Date Analyzed:	08/06/2010 2142C
Date PU:	07/29/2010 1241C

<table>
<thead>
<tr>
<th>Analyte.</th>
<th>Result.</th>
<th>Qual.</th>
<th>RLe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChMnium.</td>
<td>10.</td>
<td>U.</td>
<td>10.</td>
</tr>
<tr>
<td>Zinc.</td>
<td>100.</td>
<td>U.</td>
<td>100.</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: 680-175681u

Lab Sample ID:	LCS 680-175681/FA.
Client Matrix:	Water.
Dilution:	1.0.
Date Analyzed:	08/06/2010 214C
Date PU:	07/29/2010 1241C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ChMnium.</td>
<td>200.</td>
<td>204C</td>
<td>102C</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>CoppU</td>
<td>250.</td>
<td>254C</td>
<td>101C</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>LeadU</td>
<td>500.</td>
<td>512C</td>
<td>102C</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Zinc.</td>
<td>500.</td>
<td>51C</td>
<td>103U</td>
<td>75 - 125.</td>
<td></td>
</tr>
<tr>
<td>Matrix Type</td>
<td>Project Location (State)</td>
<td>Contract No.</td>
<td>Client Phone</td>
<td>Client Fax</td>
<td>Client Email</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Air/Soil/Sludge</td>
<td>NC</td>
<td>1282</td>
<td>919-885-4128</td>
<td>386-6080</td>
<td>Kevin Smith</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Sample Identification</th>
<th>Sample Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/7/10</td>
<td>12:00 PM</td>
<td>Effluent</td>
<td>Cattle 1440</td>
<td>See contract</td>
</tr>
</tbody>
</table>

Remarks:
- VOCs 8260
- Metals Color
- Non-Volatile Organic Solvent
<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NAN</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below</td>
<td>N/AU</td>
<td></td>
</tr>
<tr>
<td>background</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe cooler's custody seal, if present, is intact.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>TFe cooler or samples do not appear to have been compromised or tampered</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>were received on ice.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?</td>
<td>FalseU</td>
<td></td>
</tr>
<tr>
<td>TFe are no discrepancies between the sample IDs on the containers and U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>the COC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples are received with holding time.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Sample containers are legible labels.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>TFe is sufficient vol. for all requested analyses, incl. any requested</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>MS/MSDsC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have leadspace or bubble is <1mm (1/4") in U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>diameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short lead time or quick TAT</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>needs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple sic samples are not present.</td>
<td>N/AU</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.</td>
<td>N/AU</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-49244-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Marty Edwards
Senior Project Manager
marty.edwards@testamericainc.com
08/04/2010

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FLC094), Michigan (9912), New Hampshire (250509), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (88-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-09-1), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).

TestAmerica Laboratories, Inc.
TestAmerica Pensacola 3355 McLemore Drive, Pensacola, FL 32514
Tel (850) 474-1091 Fax (850) 478-2671 www.testamericainc.com
Job Narrative
400-49244-1

Comments
No additional comments.

Receipt
All samples were received in good condition within temperature requirements.

Metals
Method 1631E: The matrix spike duplicate (MSD) recovery for batch 400-113618 \ 400-13658 was outside control limits. The associated laboratory control samples (LCS/LCSD) recoveries met acceptance criteria. Data was flagged and reported as is.

No other analytical or quality issues were noted.
METHOD SUMMARY

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury, Low Level (CVAFS)</td>
<td>TAL PEN</td>
<td>EPA 1631E</td>
<td></td>
</tr>
<tr>
<td>Preparation, Mercury, Low Level</td>
<td>TAL PEN</td>
<td>EPA 1631E</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:
TAL PEN = TestAmerica Pensacola

Method References:
EPA = US Environmental Protection Agency
METHOD / ANALYST SUMMARY

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyst</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631E</td>
<td>Jones, Randy</td>
<td>RJ</td>
</tr>
</tbody>
</table>

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1
SAMPLE SUMMARY

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Client Matrix</th>
<th>Date/Time Sampled</th>
<th>Date/Time Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-49244-1</td>
<td>EFFLUENT</td>
<td>Water</td>
<td>07/27/2010 1440</td>
<td>07/28/2010 0924</td>
</tr>
</tbody>
</table>
SAMPLE RESULTS
Analytical Data

Client: ARCADIS U.S., Inc.

Client Sample ID: EFFLUENT
Lab Sample ID: 400-49244-1
Client Matrix: Water

Job Number: 400-49244-1
Date Sampled: 07/27/2010 1440
Date Received: 07/28/2010 0924

1631E Mercury, Low Level (CVAFS)

Method: 1631E
Preparation: 1631E
Dilution: 1.0
Date Analyzed: 07/29/2010 1101
Date Prepared: 07/23/2010 1445

Analysis Batch: 400-113658
Prep Batch: 400-113818

Instrument ID: HYDRA
Lab File ID: 072910b.PRN
Initial Weight/Volume: 40 mL
Final Weight/Volume: 40 mL

Analyte | Result (ng/L) | Qualifier | RL
Mercury | <0.50 | | 0.50
QUALITY CONTROL RESULTS
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1

QC Association Summary

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Report Basis</th>
<th>Client Matrix</th>
<th>Method</th>
<th>Prep Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Batch: 400-113618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-113618/2-A</td>
<td>Lab Control Sample</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-113618/3-A</td>
<td>Lab Control Sample Duplicate</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>MB 400-113618/1-A</td>
<td>Method Blank</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>400-49231-A-1-B MS</td>
<td>Matrix Spike</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>400-49231-A-1-C MSD</td>
<td>Matrix Spike Duplicate</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>400-49244-1</td>
<td>EFFLUENT</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td></td>
</tr>
<tr>
<td>Analysis Batch:400-113658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-113618/2-A</td>
<td>Lab Control Sample</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
<tr>
<td>LCSD 400-113618/3-A</td>
<td>Lab Control Sample Duplicate</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
<tr>
<td>MB 400-113618/1-A</td>
<td>Method Blank</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
<tr>
<td>400-49231-A-1-B MS</td>
<td>Matrix Spike</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
<tr>
<td>400-49231-A-1-C MSD</td>
<td>Matrix Spike Duplicate</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
<tr>
<td>400-49244-1</td>
<td>EFFLUENT</td>
<td>T</td>
<td>Water</td>
<td>1631E</td>
<td>400-113618</td>
</tr>
</tbody>
</table>

Report Basis
T = Total

TestAmerica Pensacola
Method Blank - Batch: 400-113618

Lab Sample ID: MB 400-113618/1-A
Client Matrix: Water
Dilution: 1.0
Date Analyzed: 07/29/2010 0932
Date Prepared: 07/28/2010 1215

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><0.50</td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 400-113618

LCS Lab Sample ID: LCS 400-113618/2-A
Client Matrix: Water
Dilution: 1.0
Date Analyzed: 07/29/2010 0940
Date Prepared: 07/28/2010 1215

<table>
<thead>
<tr>
<th>Analyte</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>94</td>
<td>92</td>
<td>79 - 121</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 400-113618

<table>
<thead>
<tr>
<th>MS Lab Sample ID</th>
<th>Analysis Batch</th>
<th>Prep Batch</th>
<th>Client Matrix</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-49231-A-1-B MS</td>
<td>400-113658</td>
<td>400-113618</td>
<td>Water</td>
<td>1.0</td>
<td>07/29/2010 1004</td>
<td>07/28/2010 1215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSD Lab Sample ID</th>
<th>Analysis Batch</th>
<th>Prep Batch</th>
<th>Client Matrix</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-49231-A-1-C MSD</td>
<td>400-113658</td>
<td>400-113618</td>
<td>Water</td>
<td>1.0</td>
<td>07/29/2010 1012</td>
<td>07/28/2010 1215</td>
</tr>
</tbody>
</table>

Method: 1631E
Preparation: 1631E

Instrument ID: HYDRA
Lab File ID: 072910b.PRN
Initial Weight/Volume: 40 mL
Final Weight/Volume: 40 mL

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% Rec. MS</th>
<th>% Rec. MSD</th>
<th>Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>MS Qual</th>
<th>MSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>81</td>
<td>67</td>
<td>71 - 125</td>
<td>12</td>
<td>24</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
DATA REPORTING QUALIFIERS

Client: ARCADIS U.S., Inc.
Job Number: 400-49244-1

<table>
<thead>
<tr>
<th>Lab Section</th>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td>F</td>
<td>MS or MSD exceeds the control limits</td>
</tr>
<tr>
<td>DATE</td>
<td>TIME</td>
<td>SAMPLE IDENTIFICATION</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>7/27/10</td>
<td>1440</td>
<td>Effluent</td>
</tr>
</tbody>
</table>

Sample Date: 7/27/10

Sample Time: 1440

Sample Description: Effluent

Sample Identification: Effluent

Preservative: X

Matrix: X

Number of Containers Submitted: 3

Laboratory Use Only

Remarks: 2.4°C
<table>
<thead>
<tr>
<th>Question</th>
<th>T / F / NA</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below background</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or tampered with.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>True</td>
<td>2.4°C</td>
</tr>
<tr>
<td>Cooler Temperature is recorded.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and the COC.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples are received within Holding Time.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT needs.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME</td>
<td>PROJECT NO.</td>
<td>CLIENT PROJECT MANAGER</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>UNC - Airport Rd.</td>
<td>NCC00233</td>
<td>Alan Pinnix</td>
</tr>
</tbody>
</table>

SAMPLED BY: David Twamley
CLIENT PHONE: 919-854-1282
CLIENT E-MAIL OR FAX: apinnix@arcadis-us.com

TAT REQUESTED: RUSH NEEDS LAB PREAPPROVAL
SAMPLING: 1 DAY
SAMPLE DISPOSAL: RETURN TO CLIENT

DATE: 7/27/10
TIME: 1:40
SAMPLE IDENTIFICATION: Effluent

NUMBER OF CONTAINERS SUBMITTED: 3

RELIQUIFIED BY: (SIGNATURE)
DATE: 6/24/10
TIME: 11:00

RECEIVED BY: (SIGNATURE)
DATE: 6/24/10
TIME: 9:24

CUSTODY INTACT: \(\Delta \text{ YES} \) \(\Delta \text{ NO} \)
CUSTODY SEAL NO.: 2.4°C
ANALYTICAL REPORT

Job Number: 680-60519-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
08/24/2010
cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
n: sS
No additional co. n tS. k

Receipt S
All samples were saved in good condition within tSpek raturS r@ uirS n tS.S

GC/MS VOA S
No analytical o. quality issues were noted.2

Metals S
No analytical o. quality issues were noted.2

VOA Prep S
No analytical o. quality issues were noted.2
METHOD SUMMARY:

Matrix: Water

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>T2L S2V2</td>
<td>SW2428</td>
<td>0 B2</td>
</tr>
<tr>
<td>Purg2 and T2p2</td>
<td>T2L S2V2</td>
<td>SW24250</td>
<td>30B2</td>
</tr>
<tr>
<td>M2 als (ICP)</td>
<td>T2L S2V2</td>
<td>SW24260</td>
<td>10CM</td>
</tr>
<tr>
<td>Prepa2al2on, Ex2ac2abl2 M2 als2</td>
<td>T2L S2V2</td>
<td>SM 3030CM</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

T2L S2V = T2s2 merica Savannah2

Method References:

SM = "S2anda2f M2 hods For Th2 Examina20n Of Wa2 . nd Was2 wa2 ",2

SW242 = "T2s2M2 hods For Evalua2ng Solid Was2 , Physical/Ch2n ical M2 hods", Thi2d Edi2on, Nov2nber 19. . nd I2. Upda2 s.2
<table>
<thead>
<tr>
<th>M: thN</th>
<th>AnalystN</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWMic 82.0 B4</td>
<td>Lanier, CarolynU</td>
<td>CLM</td>
</tr>
<tr>
<td>SWMic 60 10CU</td>
<td>Bland, BrianU</td>
<td>BCB4</td>
</tr>
</tbody>
</table>
AMPLS: UMMARY2

<table>
<thead>
<tr>
<th>Lab: ample IDS</th>
<th>Cli•u: ample IDS</th>
<th>Cli•u Mat•H2</th>
<th>Date/Time: ampliedb</th>
<th>Date/Time: Reuevedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-60SUf9-1b</td>
<td>lu•ntU</td>
<td>WaterU</td>
<td>08JU/2010 0800U</td>
<td>08JU/2010 0931</td>
</tr>
</tbody>
</table>
8260Bd/volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Res.Lt (Rg2L)c</th>
<th>QMiUfierU</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Carbon dis.I fluoride</td>
<td>2.0U</td>
<td>2.0U</td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Methylylene Chloride</td>
<td>10U</td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>2-B-tanone (MEK)c</td>
<td>10U</td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)c</td>
<td>10U</td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0U</td>
<td>1.0U</td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total2</td>
<td>2.0U</td>
<td>2.0U</td>
<td></td>
</tr>
</tbody>
</table>

SUrrogateU

- 4-Bromofluorobenzene U: 103U
- Dibromofluoromethane U: 9.0
- Toluene-d (SU) c: 101b

Acceptance Limits

- 7c-120U
- 7c-121b
- 7c-120U
<table>
<thead>
<tr>
<th>Analytical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client: ARCADIS U.S., Inc.2</td>
</tr>
<tr>
<td>Sample ID: 0-605U9-1b</td>
</tr>
<tr>
<td>Client Matrix: WaterU</td>
</tr>
</tbody>
</table>

6010C Metals(ED):

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>6U</td>
<td>010CU</td>
<td>1.0U</td>
<td>08/02/2010 1934M</td>
<td>08/09/2010 1b324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Res. I (µg/L)</th>
<th>QMilifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>20U</td>
<td>20U</td>
<td></td>
</tr>
<tr>
<td>ChromiUm</td>
<td>10U</td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>20U</td>
<td>20U</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>10U</td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>100U</td>
<td>100U</td>
<td></td>
</tr>
</tbody>
</table>
Lab Section | **u alifierN** | **Description**
--- | --- | ---
GC/MS VOAU | | Indicates the analyte was analyzed for bUt not detected.2
Metals, | | Indicates the analyte was analyzed for bUt not detected.2
Method Blank - Batch: 680-177793y

<table>
<thead>
<tr>
<th>Lab Sample ID2</th>
<th>MB 680-177793/7c</th>
<th>nalysis BaM2</th>
<th>680-177793F</th>
<th>Inshumen2ID2</th>
<th>MSP2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli2n2MaM2</td>
<td>WaM</td>
<td>Ph p BaM2</td>
<td>N/c</td>
<td>LabFil2 ID2</td>
<td>pq390d-</td>
</tr>
<tr>
<td>Dilution2</td>
<td>1.0.</td>
<td>Uni2h ug/Lc</td>
<td></td>
<td>In2al W2igh</td>
<td>/Volume: 5 mLc</td>
</tr>
<tr>
<td>DaM. nalyzUt.</td>
<td>08/20/2010 1202N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DaM Ph paMd-</td>
<td>08/20/2010 1202N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260By

<table>
<thead>
<tr>
<th>Preparation: 5030By</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Number: 680-60519-12</td>
<td></td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th>Substance</th>
<th>sul2</th>
<th>Qual2</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2 on2</td>
<td>25.</td>
<td>U2</td>
<td>25.</td>
</tr>
<tr>
<td>BMHzUh2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Błmiform.</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Błmome. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CaMőn disulfid</td>
<td>2.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CaMőn. ac2lorid</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CMorobenzUh2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CMorodibromone. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CMoroe. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CMoroform.</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>CMorone. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>cis-1,2-Dic2loroe. n2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>cis-1,3-Dic2lorop2p2n2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Dic2lorobromone. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1-Dic2loroe. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dic2loroe. an2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1-Dic2loroe. n2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dic2lorop2pan2</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
</tbody>
</table>
| Di2 yl e. | 10. | U2 | 10.
| EtFylbenzUh2 | 1.0. | U | 2.0.|
| M) yl2n2 CMorid- | 5.0. | U2 | 5.0.|
| 2-Bu.anon2 (MEK)U | 10. | U2 | 10.|
| S9y. n2 | 1.0. | U | 2.0.|
| 1,1,2,2-Te. ac2loroe. an2 | 1.0. | U | 2.0.|
| Te. ac2loroe. n2 | 1.0. | U | 2.0.|
| Toluen2 | 1.0. | U | 2.0.|
| ans-1,2-Dic2loroe. n2 | 1.0. | U | 2.0.|
| ans-1,3-Dic2lorop2p2n2 | 1.0. | U | 2.0.|
| 1,1,1-Tric2loroe. an2 | 1.0. | U | 2.0.|
| 1,1,2-Tric2loroe. an2 | 1.0. | U | 2.0.|
| Tric2loroe. n2 | 1.0. | U | 2.0.|
| Vinyl c2lorid- | 1.0. | U | 2.0.|
| Xyl2n2s, To.al2 | 2.0. | U2 | 2.0.|

Surrogate % c2 cc2p2anc2 Lim2sh

<table>
<thead>
<tr>
<th>Substance</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BlmofluorobenzUh2</td>
<td>104M</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluorome. an2</td>
<td>99.</td>
<td>75 - 1212</td>
</tr>
<tr>
<td>Toluen2 d- (Sur)U</td>
<td>1012</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-177793y

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS Lab Sample ID</th>
<th>LCS 680-177793/4M</th>
<th>nalysis BaM2</th>
<th>Ph p BaM2</th>
<th>N/c</th>
<th>InshumunID2</th>
<th>MSP2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl2n2M2</td>
<td>WaM</td>
<td>1.0</td>
<td></td>
<td>Ph p BaM2</td>
<td>N/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilu. ion2</td>
<td>DaM. nalyzUd-</td>
<td>08/20/2010</td>
<td>1032N</td>
<td>Uni2h</td>
<td>u/Lc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DaM. Ph paMd-</td>
<td>08/20/2010</td>
<td>1032N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID</th>
<th>LCSD Lab Sample ID</th>
<th>LCSD 680-177793/5</th>
<th>nalysis BaM2</th>
<th>Ph p BaM2</th>
<th>N/c</th>
<th>InshumunID2</th>
<th>MSP2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl2n2M2</td>
<td>WaM</td>
<td>1.0</td>
<td></td>
<td>Ph p BaM2</td>
<td>N/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilu. ion2</td>
<td>DaM. nalyzUd-</td>
<td>08/20/2010</td>
<td>1055</td>
<td>Uni2h</td>
<td>u/Lc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DaM. Ph paMd-</td>
<td>08/20/2010</td>
<td>1055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>naly.</th>
<th>LCS2</th>
<th>LCSD2</th>
<th>Limi2</th>
<th>PD2</th>
<th>PD Limi2</th>
<th>LCS Quali2</th>
<th>LCSD Quali2</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2 on2</td>
<td>9.</td>
<td>3F</td>
<td>17 - 175</td>
<td>7c</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlUnzU2</td>
<td>1012</td>
<td>100</td>
<td>77 - 119</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumoniform.</td>
<td>1156</td>
<td>112N</td>
<td>2 - 133F</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumonol. an2</td>
<td>58</td>
<td>72N</td>
<td>12 - 124M</td>
<td>22N</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaFion disulfid-</td>
<td>1012</td>
<td>100</td>
<td>55 - 1312</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaFion. ac2lorid-</td>
<td>9.</td>
<td>97c</td>
<td>71 - 135</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMorobenzUn2</td>
<td>106</td>
<td>104M</td>
<td>5 - 112</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMorodibromone. an2</td>
<td>102N</td>
<td>102N</td>
<td>75 - 133F</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMoroe. an2</td>
<td>912</td>
<td>100</td>
<td>40 - 125</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMorof orm.</td>
<td>9.</td>
<td>9</td>
<td>2 - 120</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMorome. an2</td>
<td>97c</td>
<td>97c</td>
<td>4M 142N</td>
<td>0</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dic2loroe. n2</td>
<td>1012</td>
<td>1012</td>
<td>9 - 134M</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dic2lorop2bp2n2</td>
<td>102N</td>
<td>103F</td>
<td>7c - 12N</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dic2lorobromone. an2</td>
<td>103F</td>
<td>102N</td>
<td>7c - 127c</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dic2loroe. an2</td>
<td>100</td>
<td>102N</td>
<td>74 - 127c</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dic2loroe. an2</td>
<td>9.</td>
<td>94M</td>
<td>- 132N</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dic2loroe. n2</td>
<td>906</td>
<td>912</td>
<td>2 - 1412</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dic2lorop2pan2</td>
<td>9.</td>
<td>9</td>
<td>73 - 124M</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di2 yl e.</td>
<td>7c</td>
<td>0</td>
<td>70 - 1308</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtfylbenzUn2</td>
<td>108.</td>
<td>107c</td>
<td>- 112</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M) yl2n2 CMorid-</td>
<td>1012</td>
<td>100</td>
<td>70 - 125</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu anon2 (MEK)U</td>
<td>9.</td>
<td>33 - 157c</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-M) yl-2-p2anon2 (MIBK)U</td>
<td>94M</td>
<td>90</td>
<td>40 - 1512</td>
<td>4M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sγ. n2</td>
<td>1108</td>
<td>108.</td>
<td>2 - 122N</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,2,2-Te. ac2loroe. an2</td>
<td>105.</td>
<td>102N</td>
<td>9 - 129</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te. ac2loroe. n2</td>
<td>112</td>
<td>112</td>
<td>7c - 12N</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluen2</td>
<td>100.</td>
<td>100</td>
<td>1 - 117c</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ans-1,2-Dic2loroe. n2</td>
<td>9.</td>
<td>100</td>
<td>72 - 1312</td>
<td>4M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ans-1,3-Dic2lorop2bp2n2</td>
<td>104M</td>
<td>104M</td>
<td>73 - 12N</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tric2loroe. an2</td>
<td>108.</td>
<td>107c</td>
<td>7c - 127c</td>
<td>12</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tric2loroe. an2</td>
<td>99.</td>
<td>97c</td>
<td>75 - 1212</td>
<td>2N</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tric2loroe. n2</td>
<td>1012</td>
<td>102N</td>
<td>4 - 115</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-177793y

<table>
<thead>
<tr>
<th>LCS Lab Samp2 ID2</th>
<th>LCS 680-177793/4M</th>
<th>nalysis BaM2</th>
<th>680-177793F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clzn2MaM2</td>
<td>WaM</td>
<td>Ph p BaM2</td>
<td>N/c</td>
</tr>
<tr>
<td>Dilu ion2</td>
<td>1.0</td>
<td>Uni2h ug/Lc</td>
<td></td>
</tr>
<tr>
<td>DaM. nalyzUk-</td>
<td>08/20/2010 1032N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DaM Ph paMd-</td>
<td>08/20/2010 1032N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Samp2 ID2</th>
<th>LCSD 680-177793/5.</th>
<th>nalysis BaM2</th>
<th>680-177793F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clzn2MaM2</td>
<td>WaM</td>
<td>Ph p BaM2</td>
<td>N/c</td>
</tr>
<tr>
<td>Dilu ion2</td>
<td>1.0</td>
<td>Uni2h ug/Lc</td>
<td></td>
</tr>
<tr>
<td>DaM. nalyzUk-</td>
<td>08/20/2010 1055.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DaM Ph paMd-</td>
<td>08/20/2010 1055.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>naly.</th>
<th>% c.2</th>
<th>LCS2</th>
<th>LCSD2</th>
<th>Limi2</th>
<th>PD2</th>
<th>PD Limi2</th>
<th>LCS Qual2</th>
<th>LCSD Qual2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl c2lorid-</td>
<td>100.</td>
<td>102N</td>
<td>59 - 144M</td>
<td>2N</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl2n2s, To.ai2</td>
<td>108.</td>
<td>105.</td>
<td>4 - 112</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogaM</th>
<th>LCS % .</th>
<th>c2</th>
<th>LCSD % .</th>
<th>c2</th>
<th>cc2p2anc2 Limi2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BlmofluorobenzUn2</td>
<td>106.</td>
<td>104M</td>
<td>75 - 120.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluorome. an2</td>
<td>102N</td>
<td>103F</td>
<td>75 - 1212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluenu d- (Surr)U</td>
<td>100.</td>
<td>100.</td>
<td>75 - 120.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-177710y

<table>
<thead>
<tr>
<th>Lab Sample2 ID2</th>
<th>MB 680-177710/14-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli2n2MaM2</td>
<td>WaM</td>
</tr>
<tr>
<td>Dilu.ion2</td>
<td>1.0.</td>
</tr>
<tr>
<td>DaM. nalyz Ud-</td>
<td>08/23/2010 1737c</td>
</tr>
<tr>
<td>DaM Ph paMd-</td>
<td>08/19/2010 1232N</td>
</tr>
</tbody>
</table>

naly: shnic2, CMomium, Copp2, Lcad-, Zinc2

<table>
<thead>
<tr>
<th>naly.</th>
<th>sul2</th>
<th>Qual2</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMomium.</td>
<td>10.</td>
<td>U2</td>
<td>10.</td>
</tr>
<tr>
<td>Lcad-</td>
<td>10.</td>
<td>U2</td>
<td>10.</td>
</tr>
<tr>
<td>Zinc2</td>
<td>100.</td>
<td>U2</td>
<td>100.</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: 680-177710y

<table>
<thead>
<tr>
<th>Lab Sample2 ID2</th>
<th>LCS 680-177710/15-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli2n2MaM2</td>
<td>WaM</td>
</tr>
<tr>
<td>Dilu.ion2</td>
<td>1.0.</td>
</tr>
<tr>
<td>DaM. nalyz Ud-</td>
<td>08/23/2010 1742N</td>
</tr>
<tr>
<td>DaM Ph paMd-</td>
<td>08/19/2010 1232N</td>
</tr>
</tbody>
</table>

naly: shnic2, CMomium, Copp2, Lcad-, Zinc2

<table>
<thead>
<tr>
<th>naly.</th>
<th>Spik2. moun2</th>
<th>sul2</th>
<th>%</th>
<th>c.2</th>
<th>Limi2</th>
<th>Qual2</th>
</tr>
</thead>
<tbody>
<tr>
<td>shnic2</td>
<td>2000.</td>
<td>1910.</td>
<td>95.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMomium.</td>
<td>200.</td>
<td>19.</td>
<td>9.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copp2</td>
<td>250.</td>
<td>2312</td>
<td>93F</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lcad-</td>
<td>500.</td>
<td>4812</td>
<td>9.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc2</td>
<td>500.</td>
<td>495.</td>
<td>99.</td>
<td>75 - 125.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>Sample Time</td>
<td>Sample Type</td>
<td>Number of Containers Submitted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18/10</td>
<td>0800</td>
<td>Effluent</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab Use Only:
- Custody Intact: Yes
- Custody Seal No:
- Savannah Log No: 6080-60519
- Laboratory Remarks: Temp 33
LNGin SamNle ReceiNt Check

Client: ARCADIS U.S., Inc.2
Job NUmber: 680-60588-1b

LNGin Number: N0519y
List SNurce: TestAmerica Savannah

<table>
<thead>
<tr>
<th>Question</th>
<th>F/ NAI</th>
<th>CNmmentN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUiioUtivity either w) s not meUs, red or, if meUs, red, is U or below U bUkgrouUndc</td>
<td>N/AU</td>
<td></td>
</tr>
<tr>
<td>The cooler's cUstody seU, if present, is intUct.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>The cooler or s, mple do not UppeUr to hae been compromised or U tUnpered with.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple were received on ice.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUTure is UceptUble.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUTure is recorded.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is present.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is fIlled oUt in ink Und legible.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is fIlled oUt with UI pertinnt informUtion.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Is the Field SUmple's nUme present on COC?U</td>
<td>False, nAeU</td>
<td></td>
</tr>
<tr>
<td>There Ure no discrep ncies between the s, mple IDs on the contUners Und U the COC.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple Ure received within Holding Time.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple contUners have legible l2bel.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>ContUners Ure not broken or leUking.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple collection dCte/times Ure provided.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Appropriate s, mple contUners Ure Used.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple bottles Ure completely fIlled.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SUmple PreservSlion VerifIedc</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>There is s, fIcient vol. for UI reqUsted UnUyse, incl. Uhy reqUsted U MS/MSDs.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>VOA s, mple vIUs do not habe heUtsp ce or blUbble is <1mm (1/4") in U diUmeter.2</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>If necess, ry, stIf I have been informed of Uhy short hold time or quck TAT U needs,</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>M,tiphabet c, mple Ure not present.2</td>
<td>N/AU</td>
<td></td>
</tr>
<tr>
<td>SUmple do not reqUre splIting or compositing.2</td>
<td>N/AU</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-49786-1

Job Description: UNC-Airport Road

For:

ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073

Attention: Mr. Alan Pinnix

Marty Edwards
Senior Project Manager
marty.edwards@testamericainc.com
08/31/2010

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250509), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-09-1), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Method Summary:

Description:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Water:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M) cury, Low L) v) l (CVAFS)</td>
<td>TAL PEN.</td>
</tr>
<tr>
<td>P) pa(atip., M) cury, Low L) v) l)</td>
<td>TAL PEN.</td>
</tr>
</tbody>
</table>

Lab References:

TAL PEN = T) stAmer.ca P) sac ola)

Method References:

EPA= US Envi)o. me. al P)lo. ctiφ. .g) cy)
METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc.2
Job Number: 400-49786-1c

<table>
<thead>
<tr>
<th>M: thN</th>
<th>Analyst N</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631Ec</td>
<td>Jones, Randyc</td>
<td>Rjc</td>
</tr>
</tbody>
</table>

T: stAmNic a PunsacD ap

Page 3 of 12
AMPLS : SUMMARY2

Client: ARCADIS U.S., Inc.c
Job Number: 400-49786-1c

<table>
<thead>
<tr>
<th>Lab : ample IDS</th>
<th>CIDy : ample IDS</th>
<th>CIDy Ma:ng2</th>
<th>Da:e/Ti:ihe : ampledb</th>
<th>Da:e/Ti:ihe : Reyewebd</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-49786-1c</td>
<td>LUC NTI</td>
<td>Waterc</td>
<td>08/18/k010 0800c</td>
<td>08/19/k010 0948c</td>
</tr>
</tbody>
</table>
AMPL : LS
<table>
<thead>
<tr>
<th>Method:</th>
<th>1631E2</th>
<th>Analysis Batch:</th>
<th>400-1152832</th>
<th>Instrument ID:</th>
<th>HYDRA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation:</td>
<td>1631E2</td>
<td>Prep Batch:</td>
<td>400-1152442</td>
<td>Lab File ID:</td>
<td>082310b.PRN2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.02</td>
<td>Initial Weight/Volume:</td>
<td>40 mL2</td>
<td>Final Weight/Volume:</td>
<td>40 mL2</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>08/23/2010</td>
<td>12062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Prepared:</td>
<td>08/19/2010</td>
<td>15002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L2)</th>
<th>Qualifier2</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury2</td>
<td><0.502</td>
<td></td>
<td>0.502</td>
</tr>
</tbody>
</table>

Client: ARCADIS U.S., Inc.
Job Number: 400-49786-1c

Client Sample ID: EFFLUENTa
Lab Sample ID: 2 400-49786-12
Client Matrix: Water2
ate Sampled: 08/18/2010 08002
ate Received: 08/19/2010 09482

1631E Mercury, low Level (CVAFS) D
QUALITYpCyTROLp SULTSp
QC Association Summary

<table>
<thead>
<tr>
<th>Lay Sample YP-</th>
<th>Client Sample YP-</th>
<th>Report Y asis</th>
<th>Client Matrix-</th>
<th>Method-</th>
<th>PrepC attchC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrepC attchC400-115244C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-115244/2-A2</td>
<td>Lab Control Sample2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-115244/3-A2</td>
<td>Lab Control Sample Duplicate2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>MB 400-115244/1-A2</td>
<td>Md hod Bænk</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>400-49786-12</td>
<td>EFFLUENTc</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>700-50361-C-4-B MS2</td>
<td>Matrix Spikc</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>700-50361-C-4-C MSD2</td>
<td>Matrix SpikcDuplicate2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td></td>
</tr>
<tr>
<td>Analysis y attch@00-115283y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-115244/2-A2</td>
<td>Lab Control Sample2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
<tr>
<td>LCSD 400-115244/3-A2</td>
<td>Lab Control Sample Duplicate2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
<tr>
<td>MB 400-115244/1-A2</td>
<td>Md hod Bænk</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
<tr>
<td>400-49786-12</td>
<td>EFFLUENTc</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
<tr>
<td>700-50361-C-4-B MS2</td>
<td>Matrix Spikc</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
<tr>
<td>700-50361-C-4-C MSD2</td>
<td>Matrix SpikcDuplicate2</td>
<td>Tc</td>
<td>Water2</td>
<td>1631EM</td>
<td>400-1152442</td>
</tr>
</tbody>
</table>

Report y asis

T = Total2

TestAmerica Pensacolay
Quality Control Results

Method Blank - Batch: #00-y 5244y

<table>
<thead>
<tr>
<th>Analyt5</th>
<th>R5ult5</th>
<th>Qual5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 cury5</td>
<td><0.505</td>
<td></td>
<td>.505</td>
</tr>
</tbody>
</table>

Lab Control Sample/h

Lab Control Sample Duplicate Recovery Report - Batch: 400-115244h

<table>
<thead>
<tr>
<th>LCS Lab Samp5 ID5 LCS 400-115244/2-A5</th>
<th>Analysis Batch5 400-1152835</th>
<th>Inst5ument ID5 HYDRA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl5nt Mat5x5</td>
<td>P5p Batch5 400-1152445</td>
<td>Lab Fil5 ID5 3105 b.PRN.</td>
</tr>
<tr>
<td>il ution5</td>
<td>Units5 ng/L5</td>
<td>Initial W5ight/Volume:. 405 mL5</td>
</tr>
<tr>
<td>at5 Analyz5d5</td>
<td></td>
<td>Final W5ight/Volume:. 405 mL5</td>
</tr>
<tr>
<td>at5 P5p a5 d5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Samp5 ID5 LCSD#400-115244/3-A5</th>
<th>Analysis Batch5 400-1152835</th>
<th>Inst5ument ID5 HYDRA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl5nt Mat5x5</td>
<td>P5p Batch5 400-1152445</td>
<td>Lab Fil5 ID5 3105 b.PRN.</td>
</tr>
<tr>
<td>il ution5</td>
<td>Units5 ng/L5</td>
<td>Initial W5ight/Volume:. 405 mL5</td>
</tr>
<tr>
<td>at5 Analyz5d5</td>
<td></td>
<td>Final W5ight/Volume:. 405 mL5</td>
</tr>
<tr>
<td>at5 P5p a5 d5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% R5c.5</th>
<th>LCS5</th>
<th>LCSD5</th>
<th>Limit5</th>
<th>RPD5</th>
<th>RPD%Limit5</th>
<th>LCS Qual5</th>
<th>LCSD Qual5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 cury5</td>
<td>115</td>
<td>1215</td>
<td>79 - 1215</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA RhPORT:NS S ALiña RSh

<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierN</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Sample Identification</th>
<th>MATRIX</th>
<th>No</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/18/10</td>
<td>0800</td>
<td>Effluent</td>
<td>Water</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>F/NAN</td>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below S</td>
<td>N/AS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.</td>
<td>N/AS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or S</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tampered with.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples were received on ice.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>TrueS</td>
<td>2.2°C S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and S</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the COC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples are received within Holding Time.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample containers have legible labels.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample collection date/times are provided.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample bottles are completely filled.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample Preservation Verified.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested S</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/MSDsS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in S</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT S</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>needsS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample do not require splitting or compositing.</td>
<td>TrueS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-61207-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
09/20/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH: CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LA000244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
Comment:
No additional co.... n tS 2

Receipt M
All samples were received in good condition within TSP... n tS S

GC/MS VOA M
No analytical or quality issues were noted.

Metals M
No analytical or quality issues were noted.

VOA Prep M
No analytical or quality issues were noted.
METHOD SUMMARY:

Matrix: Water:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>TAL: VM</td>
<td>WM4M8:2BM</td>
<td>WM4M5030BM</td>
</tr>
<tr>
<td>Purge and Trap</td>
<td>TAL: VM</td>
<td>WM4M60 10CM</td>
<td>3030CM</td>
</tr>
<tr>
<td>ICP</td>
<td>TAL: VM</td>
<td>WM4M60 10CM</td>
<td>3030CM</td>
</tr>
</tbody>
</table>

Lab References:

TAL. V = TestAmerica.avannahM

Method References:

= "Standards: thods For ThMExamination Of WatM. nd WastMwatM",M

METHOD / ANAL1ST SUMMARY

Client: ARCADIS U.S., Inc.S
Job Number: M80-S1207-11

<table>
<thead>
<tr>
<th>M: thN</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846 8260BI</td>
<td>Lanier, Carolyn</td>
<td>LI</td>
</tr>
<tr>
<td>SW846 6010CI</td>
<td>Robertson, Bryn</td>
<td>BRI</td>
</tr>
<tr>
<td>Lab Sample IDM</td>
<td>CIMh</td>
<td>Sample IDM</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>680-61207-1U</td>
<td>uentU</td>
<td>WaterU</td>
</tr>
</tbody>
</table>
Client: ARCADIS U.S., Inc.U
Job Number: 680-61207-1U

ClienSMnpieND:d Effluena
Lab SampM ID:U 680-61207-1U
Client Matrix:U WaterU
Date Sampled: 09/12/2010 1730U
Date Received: 09/14/2010 0907U

8260BD/volatleVolamic Compounas(GC/MS):
Method:U 8260BU
Preparation:U 5030BU
Analysis Batch: 680-180258U
Dilution:U 1.0U
Instrument ID:U MSPU
Date Analyzed:U 09/17/2010 1928U
Lab File ID:U p0209.d-
Date Prepared:U 09/17/2010 1928U
Initial Weight/Volume:U 5 mL
Final Weight/Volume:U 5 mL

<table>
<thead>
<tr>
<th>AnalyteU</th>
<th>Result (ug/L)</th>
<th>QualifierU</th>
<th>RLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>25</td>
<td>U</td>
<td>25U</td>
</tr>
<tr>
<td>BenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>BromofomU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>BromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Carbon disulfideU</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
<tr>
<td>Carbon tetrachlorideU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChlorobenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChlorodibromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloroformU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloromethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>DichlorobromomethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloropropaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Diethyl etherU</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>EthylbenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-HexanoneU</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>Methylene ChlorideU</td>
<td>5.0</td>
<td>U</td>
<td>5.0U</td>
</tr>
<tr>
<td>2-Butanone (MEK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)U</td>
<td>10</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>StyreneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TetrachloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TolueneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trans-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TrichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Vinyl chlorideU</td>
<td>1.0</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0</td>
<td>U</td>
<td>2.0U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogateU</th>
<th>%RecU</th>
<th>QualifierU</th>
<th>Acceptance LimitsU</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneU</td>
<td>92U</td>
<td>U</td>
<td>75 - 120U</td>
</tr>
<tr>
<td>DibromofluoromethaneU</td>
<td>96U</td>
<td>U</td>
<td>75 - 121U</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)U</td>
<td>96U</td>
<td>U</td>
<td>75 - 120U</td>
</tr>
</tbody>
</table>
6010C Me(Ni) sqICP:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicU</td>
<td>20</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>ChromiumU</td>
<td>10</td>
<td></td>
<td>10U</td>
</tr>
<tr>
<td>CopperU</td>
<td>20</td>
<td></td>
<td>20U</td>
</tr>
<tr>
<td>Lead-</td>
<td>10</td>
<td></td>
<td>10U</td>
</tr>
<tr>
<td>ZincU</td>
<td>100</td>
<td></td>
<td>100U</td>
</tr>
</tbody>
</table>

Method: 6010CU
Preparation: 3030CU
Lab Sample ID: 680-61207-1U
Client Matrix: WaterU
Date Sampled: 09/12/2010 1730U
Date Received: 09/14/2010 0907U
Instrument ID: 091910.1U
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS VOAU</td>
<td></td>
<td>Indicate U the ana.yte wa. ana.yzed for but not detected. U</td>
</tr>
<tr>
<td>Meta.</td>
<td></td>
<td>Indicate U the ana.yte wa. ana.yzed for but not detected. U</td>
</tr>
</tbody>
</table>
Method Blank - Batch: h0 -18025u

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Amount</th>
<th>Date</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB 680-1N</td>
<td>25U</td>
<td>95</td>
<td>09/37/010</td>
<td>1207M</td>
</tr>
</tbody>
</table>

Method: h2l0 Bh

Preparation: 5030Bh

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Amount</th>
<th>Date</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>nHCl</td>
<td>mL</td>
<td>1.0</td>
<td>09/37/010</td>
<td>1207M</td>
</tr>
</tbody>
</table>

Quality Control Results

<table>
<thead>
<tr>
<th>Substance</th>
<th>Method</th>
<th>Unit</th>
<th>Amount</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>cMonM</td>
<td>25U</td>
<td>UM</td>
<td>25U</td>
<td></td>
</tr>
<tr>
<td>BI nzUnM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>Blomofrom</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>BlomomethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>Calbon disulfid-</td>
<td>2.0</td>
<td>U</td>
<td>B10.</td>
<td></td>
</tr>
<tr>
<td>Calbon thMchlorid-</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>ChlorbenzUnM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>ChloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>ChloromethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>cis-1,2. -ic hloroethl nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>cis-1,3. -ic hlorop2p2nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>ic hlorobromomethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,1. -ic hloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,2. -ic hloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,1. -ic hloroethi nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,2. -ic hlorop2panM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>thM thyl ethl</td>
<td>10.0</td>
<td>UM</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>EthylbenzUnM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>2-Hl anonM</td>
<td>10.0</td>
<td>UM</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>M) thylMthMChlorid-</td>
<td>5.0</td>
<td>UM</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>2-ButanonM(MEK)l</td>
<td>10.0</td>
<td>UM</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>4-M) thyl-2-p2tanom(M)JBK)l</td>
<td>10.0</td>
<td>UM</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>t yS nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TetMchloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>TetM chloroethl nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>TolueneM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>thMns-1,2. -ic hloroethl nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>thMns-1,3. -ic hlorop2p2nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,1.1-TrichloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>1,1,2-TrichloroethanM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>Trichloroethi nM</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride-</td>
<td>1.0</td>
<td>U</td>
<td>M0.</td>
<td></td>
</tr>
<tr>
<td>XylMthM, TotalM</td>
<td>2.0</td>
<td>U</td>
<td>B10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>%</th>
<th>cM</th>
<th>ccMptancMLimitsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BlomoffluorobenzUnM</td>
<td>95</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromoffluoromethanM</td>
<td>95</td>
<td>75 - 121M</td>
<td></td>
</tr>
<tr>
<td>TolueneM- (i urj)</td>
<td>95</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/6
Lab Control Sample Duplicate Recovery Report - Batch: 680-1802586

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260B6</td>
<td>5030B6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSN Lab . amplM</th>
<th>LCSN 80-1N 25U</th>
<th>n alys Batch</th>
<th>680-1N 25U</th>
<th>nstMent .</th>
<th>M) Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliMht MatM M</td>
<td>WatM 1.0</td>
<td>Ph p Batch N.</td>
<td>Unitsh ug/Lc</td>
<td>Lab FilM</td>
<td>pq131.d-</td>
</tr>
<tr>
<td>atM n alyzUd-</td>
<td>09/573010</td>
<td></td>
<td></td>
<td>WghtVolume.: 5 mLc</td>
<td></td>
</tr>
<tr>
<td>atMPh pal d-</td>
<td>1010.</td>
<td></td>
<td></td>
<td>Final WghtVolume.: 5 mLc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDN Lab . amplM</th>
<th>LCSDN 80-1N 25U 7M</th>
<th>n alys Batch</th>
<th>680-1N 25U</th>
<th>nstMent .</th>
<th>M) Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliMht MatM M</td>
<td>WatM 1.0</td>
<td>Ph p Batch N.</td>
<td>Unitsh ug/Lc</td>
<td>Lab FilM</td>
<td>pq133.d-</td>
</tr>
<tr>
<td>atM n alyzUd-</td>
<td>09/573010</td>
<td></td>
<td></td>
<td>WghtVolume.: 5 mLc</td>
<td></td>
</tr>
<tr>
<td>atMPh pal d-</td>
<td>10395</td>
<td></td>
<td></td>
<td>Final WghtVolume.: 5 mLc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalytM</th>
<th>% c.M</th>
<th>LCSM</th>
<th>LCSDM</th>
<th>LimitM</th>
<th>Ph</th>
<th>Ph LimitM</th>
<th>LCSN dualM</th>
<th>LCSDN dualM</th>
</tr>
</thead>
<tbody>
<tr>
<td>cMonM</td>
<td>5U</td>
<td>17 - 175U</td>
<td>3I</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bl nUaM</td>
<td>95U</td>
<td>77 - 1195</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blomolform.</td>
<td>102M</td>
<td>5 - 131</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlomomethanM</td>
<td>72M</td>
<td>12 - 133</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbon disulfid-</td>
<td>103I</td>
<td>55 - 1313</td>
<td>2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbon tmM tschlorid-</td>
<td>107M</td>
<td>71 - 135</td>
<td>0.7M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzUHm</td>
<td>95</td>
<td>5 - 11M</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorombromomethanM</td>
<td>105U</td>
<td>75 - 133</td>
<td>0.4U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanM</td>
<td>95</td>
<td>40 - 1M U</td>
<td>3I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>100</td>
<td>2 - 120</td>
<td>0.3U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloromethanM</td>
<td>105U</td>
<td>4U - 142</td>
<td>0.5U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2.-ic hloroeth nM</td>
<td>100</td>
<td>9 - 134</td>
<td>4U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3.-ic hlorop2p2nM</td>
<td>95</td>
<td>7M</td>
<td>12M</td>
<td>0.3U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorobromomethanM</td>
<td>100</td>
<td>7M</td>
<td>127M</td>
<td>0.1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1.-ic hloroethanM</td>
<td>95</td>
<td>74 - 127</td>
<td>2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-ic hloroethanM</td>
<td>7M</td>
<td>132</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1.-ic hloroeth nM</td>
<td>104U</td>
<td>2 - 141</td>
<td>2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-ic hlorop2p2anM</td>
<td>92M</td>
<td>73 - 124</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iM thyl ethl</td>
<td>102M</td>
<td>70 - 130</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzUHm</td>
<td>100</td>
<td>11M</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-H1 anionM</td>
<td>3I</td>
<td>4U</td>
<td>34 - 1</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M) thylM M Chileic-</td>
<td>995</td>
<td>70 - 125</td>
<td>0.5U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanom EMKJ</td>
<td>95</td>
<td>33</td>
<td>157</td>
<td>3I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-M) thyl-2-pntanom EMKJ</td>
<td>1M</td>
<td>40 - 151</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t yS M</td>
<td>101M</td>
<td>2 - 122</td>
<td>0.5U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TetMChloroethanM</td>
<td>95</td>
<td>9 - 129</td>
<td>0.1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TetMChloroeth nM</td>
<td>102M</td>
<td>7M</td>
<td>12M</td>
<td>0.1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluenM</td>
<td>95U</td>
<td>1 - 117</td>
<td>0.03I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tMns-1,2.-ic hloroeth nM</td>
<td>102M</td>
<td>72 - 131</td>
<td>3I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tMns-1,3.-ic hlorop2p2nM</td>
<td>95</td>
<td>73 - 123</td>
<td>3I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-TrichloroethanM</td>
<td>101M</td>
<td>7M</td>
<td>127M</td>
<td>2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-TrichloroethanM</td>
<td>91M</td>
<td>90.</td>
<td>75 - 121</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroeth nM</td>
<td>95</td>
<td>4 - 115</td>
<td>0.08.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TestAmerica Savannah6 Page 10 of 15
Lab Control Sample/6

Lab Control Sample Duplicate Recovery Report - Batch: 680-1802586

<table>
<thead>
<tr>
<th>LCSNlab . ampiM</th>
<th>LCSN80-1N0 25U</th>
<th>nalysis Batch</th>
<th>680-1N0 25U</th>
<th>nstrument . M</th>
<th>Ph</th>
<th>Lab FilM</th>
<th>pq131.d-</th>
<th>nitial WMghtVolume .</th>
<th>5 mLc</th>
<th>Final WMghtVolume .</th>
<th>5 mLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliMht MatIM</td>
<td></td>
</tr>
<tr>
<td>il utionM</td>
<td></td>
</tr>
<tr>
<td>atM n alyzUdi- atMPh pal d-</td>
<td></td>
</tr>
<tr>
<td>1.0.</td>
<td>09/573010 1010.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDNlab . ampiM</th>
<th>LCSDN80-1N0 25U 7M</th>
<th>nalysis Batch</th>
<th>680-1N0 25U</th>
<th>nstrument . M</th>
<th>Ph</th>
<th>Lab FilM</th>
<th>pq133.d-</th>
<th>nitial WMghtVolume .</th>
<th>5 mLc</th>
<th>Final WMghtVolume .</th>
<th>5 mLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliMht MatIM</td>
<td></td>
</tr>
<tr>
<td>il utionM</td>
<td></td>
</tr>
<tr>
<td>atM n alyzUdi- atMPh pal d-</td>
<td></td>
</tr>
<tr>
<td>1.0.</td>
<td>09/573010 10395</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyM</th>
<th>% . c.M</th>
<th>LCSM</th>
<th>LCSDM</th>
<th>LimitM</th>
<th>Ph</th>
<th>Ph LimitM</th>
<th>LCSDNualM</th>
<th>LCSDNualM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chlorid-</td>
<td></td>
<td>11M</td>
<td>114U</td>
<td>59 - 144U</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XylMMe, TotalM</td>
<td></td>
<td>106.</td>
<td>106.</td>
<td>4 - 11M</td>
<td>0.1M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>urroaM</th>
<th>LCS% . cM</th>
<th>LCSD% . cM</th>
<th>ccM ptancMLimitsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BlomofluorobenzLm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofluoromethaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluenM- (i urrr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>95</td>
<td>75 - 121M</td>
</tr>
<tr>
<td></td>
<td>94U</td>
<td>94U</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-1800016

<table>
<thead>
<tr>
<th>Lab . amplM</th>
<th>MB 680-1N00 1M-</th>
<th>n alysis Batchl</th>
<th>680-1N00 424U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClIMh MatIM</td>
<td>WatM</td>
<td>Ph p Batchl</td>
<td>680-1N00 1M</td>
</tr>
<tr>
<td>il utionM</td>
<td>1.0.</td>
<td>Unitsh</td>
<td>ug/Lc</td>
</tr>
<tr>
<td>atM n alyzUt</td>
<td>09/30/2010 01595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atMPH pal d-</td>
<td>09/35/2010 1232M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalytM</th>
<th>sultM</th>
<th>QualRM</th>
<th>Lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>shnicM</td>
<td>20.</td>
<td>UM</td>
<td>20.</td>
</tr>
<tr>
<td>ChloMium.</td>
<td>10.</td>
<td>UM</td>
<td>10.</td>
</tr>
<tr>
<td>Copp2</td>
<td>20.</td>
<td>UM</td>
<td>20.</td>
</tr>
<tr>
<td>Lcad-</td>
<td>10.</td>
<td>UM</td>
<td>10.</td>
</tr>
<tr>
<td>ZincM</td>
<td>100.</td>
<td>UM</td>
<td>100.</td>
</tr>
</tbody>
</table>

Lab Control Sample - Batch: 680-1800016

<table>
<thead>
<tr>
<th>Lab . amplM</th>
<th>LCS 680-1N00 1M-</th>
<th>n alysis Batchl</th>
<th>680-1N00 424U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClIMh MatIM</td>
<td>WatM</td>
<td>Ph p Batchl</td>
<td>680-1N00 1M</td>
</tr>
<tr>
<td>il utionM</td>
<td>1.0.</td>
<td>Unitsh</td>
<td>ug/Lc</td>
</tr>
<tr>
<td>atM n alyzUt</td>
<td>09/30/2010 0204U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atMPH pal d-</td>
<td>09/35/2010 1232M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalytM</th>
<th>pIKU mountM</th>
<th>sultM</th>
<th>% .</th>
<th>c.M</th>
<th>LimitM</th>
<th>QualM</th>
</tr>
</thead>
<tbody>
<tr>
<td>shnicM</td>
<td>2000.</td>
<td>2110.</td>
<td>105U</td>
<td>75 - 125U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloMium.</td>
<td>200.</td>
<td>211M</td>
<td>106.</td>
<td>75 - 125U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copp2</td>
<td>250.</td>
<td>254U</td>
<td>101M</td>
<td>75 - 125U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lcad-</td>
<td>500.</td>
<td>534U</td>
<td>107M</td>
<td>75 - 125U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZincM</td>
<td>500.</td>
<td>54U</td>
<td>110.</td>
<td>75 - 125U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Matrix Spike/6

Matrix Spike Duplicate Recovery Report - Batch: 680-1800016

<table>
<thead>
<tr>
<th></th>
<th>Lab . amplM</th>
<th>0-6.1207-1M</th>
<th>n alysis Batchl 680-1M 424U</th>
<th>nMent . CPh</th>
<th>Lab FillM 091910.chl</th>
<th>nitial WMghtVolume: 50 mLc</th>
<th>Final WMghtVolume: 50 mLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CII/Mt Ml</td>
<td>WatM</td>
<td>1.0.</td>
<td>09/30/2010 0225U</td>
<td>104U</td>
<td>1031</td>
<td>103I</td>
<td>103I</td>
</tr>
<tr>
<td>atM n alyz/ atMPh pal d-</td>
<td>09/55/2010 1232M</td>
<td></td>
<td></td>
<td>106.</td>
<td>105U</td>
<td>103I</td>
<td>105U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% . c.M</th>
<th>M)</th>
<th>M)</th>
<th>LimitM</th>
<th>Ph</th>
<th>Ph LimitM</th>
<th>M)</th>
<th>QualM</th>
<th>M)</th>
<th>QualM</th>
</tr>
</thead>
<tbody>
<tr>
<td>shnicM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chliomium.</td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
</tr>
<tr>
<td>Copp2</td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
</tr>
<tr>
<td>Lcad-</td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
<td>75 - 125U</td>
<td>2M</td>
<td></td>
</tr>
<tr>
<td>ZincM</td>
<td>75 - 125U</td>
<td>1M</td>
<td></td>
<td>75 - 125U</td>
<td>20.</td>
<td></td>
<td>75 - 125U</td>
<td>20.</td>
<td></td>
</tr>
</tbody>
</table>

Method: 6010C6

Preparation: 3030C6
Analysis Request and Chain of Custody Record

TestAmerica

The Leader in Environmental Testing

Project Reference

UNC-Airport Rd.

TAL (LAB) Project Manager

Kathy Smith

Client (GSI) PM

Alan Pinix

Client Name

ARCADIS

Client Address

801 Corporate Center Dr., Raleigh, NC 27607

Company Contracting This Work (if applicable)

ARCADIS

Required Analysis

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>6/12/10</td>
<td>1730</td>
</tr>
</tbody>
</table>

Number of coolers submitted: 1

Relinquished by:

Date: 9/13/10, **Time:** 0900

Relinquished by:

Date: 9/14/10, **Time:** 09:07

Laboratory Remarks

Serial Number: 031108

Website: www.testamerica-inc.com

Phone: (912) 354-7858

Fax: (912) 352-0165

Savannah Log No.: 689-60207

Laboratory Remarks: 0.2
<table>
<thead>
<tr>
<th>Question</th>
<th>/ F/ NAL</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RudioUctivity either w) s not meUsured or, if meUsured, is U or below U</td>
<td>NIAU</td>
<td></td>
</tr>
<tr>
<td>bUkgroundc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seU, if present, is intUct.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>The cooler or sl mp es do not UppeU to have been compromised or U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Unpered with.U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SImp es were received on ice.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUture is UceptUle.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUture is recorded.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is present.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is fill ed out in ink Und legible.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is fill ed out with U pertinent informUlion.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Is the Field SImp er's nUme present on COC?U</td>
<td>NIAU</td>
<td></td>
</tr>
<tr>
<td>There Ure no discrep ncies between the sl mp e IDs on the contUners Und U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>the COC.U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SImp es Ure received within HoldUng Time.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SImp e contUners have legible Ubells U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>ContUners Ure not broken or leUking.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SImp e collection dcleUmes Ure provided.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>AppropriUe sl mp e contUners Ure used.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SImp e bottles Ure comp eUlyfilled.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>SImp e PreservUlion Verifedc</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for U requested UhUyses, incl. Uhy requested U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>MSUSSdsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sl mp e vUUs do not have heUsp ce or bubble is <6mm (1U") in U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>diUmeter.U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessF ry, stuf I have been informed of Uhy short hold time or quick TAT U needs!</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Multiphagic sl mp es Ure not present.U</td>
<td>NIAU</td>
<td></td>
</tr>
<tr>
<td>SImp es do not require sp iting or compositing.U</td>
<td>NIAU</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-50360-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Marty Edwards
Senior Project Manager
marty.edwards@testamericainc.com
09/17/2010

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (52), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250509), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-09-1), Virginia (00008), Washington (C915), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
Comme\$:
No additional co. n tS. 2

Ipt D
All sa\$p les we\$ık ScS vld in good condition withn tS pk raturS rS uirS n tS.S

Metals D
Mkthod 1631E: Thk2 atrix s\$i2 / 2 atrix s\$i2 duplicatS (MS/MSD) rScovkries for batch 400-116788\$ 400-116818 we\$ outsiders control 2 li2 tS. Thkass2bicatS la boratory control sa\$p les (LCS/LCSD) rScovkries 2 t accSpIncaS critSria. Data was flagged and rSport as is2S

No othkr analytical or q\$ality iss\$U we\$rSn otS\$ S
METHOD SUMMARY:

Matrix: D Water:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn cury, Low Lvppl (CVAFS)p</td>
<td>TAL PEN.</td>
<td>EPA631Ep</td>
<td></td>
</tr>
<tr>
<td>P prep, Mn cury, Low Lvppl</td>
<td>TAL PEN.</td>
<td>EPA631Ep</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL PEN = TestAmerica Pensacola

Method References:

EPA\# US Environmental Protection. ction .gp ncyp
<table>
<thead>
<tr>
<th>MethN</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>1631Eb</td>
<td>Jones, Randyb</td>
</tr>
</tbody>
</table>
SAMPLD SUMMARY2

Client: ARCADIS U.S., Inc.
Job Number: 400-50360-1b

<table>
<thead>
<tr>
<th>Lab Sample I2</th>
<th>CIR6 Sample I2</th>
<th>CIR6 Marlx2</th>
<th>a:e/Tlhe : Sampledb</th>
<th>a:e/Tlhe : Re66&vedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-50360-1R</td>
<td>LUENTR</td>
<td>WaterR</td>
<td>09/1b/0010 1730R</td>
<td>09/14/2010 0908R</td>
</tr>
</tbody>
</table>
SAMPL : S L SD
Client: ARCADIS U.S., Inc.R
Job Number: 400-50360-1R

ClientSampleID: EFFLUENTa
Lab Sample ID:R 400-50360-1R
Client Matrix:R WaterR

<table>
<thead>
<tr>
<th>Method:R</th>
<th>1631ER</th>
<th>Analysis Batch: 400-116818</th>
<th>Instrument ID:R HYDRAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation:R</td>
<td>1631ER</td>
<td>PrepBatch: 400-116788</td>
<td>Lab File ID:R 091610b.PRNR</td>
</tr>
<tr>
<td>Dilution:R</td>
<td>1.0R</td>
<td></td>
<td>Initial Weight/Volume:R 40 mL</td>
</tr>
<tr>
<td>Date Analyzed:R</td>
<td>09/16/2010 1147b</td>
<td></td>
<td>Final Weight/Volume:R 40 mL</td>
</tr>
<tr>
<td>Date Prepared:R</td>
<td>09/14/2010 1515R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)R</th>
<th>QualifierR</th>
<th>LI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MercuryR</td>
<td>0.74R</td>
<td></td>
<td>0.50R</td>
</tr>
</tbody>
</table>

1631E Mercury, low level (CVAFS) D
QUALITY pC6TROLp SULTSp
Quality Control Results

Client: ARCADIS U.S., Inc.R
Job Number: 400-50360-1R

QC Association Summary

<table>
<thead>
<tr>
<th>L- S- mple ID-</th>
<th>Client S- mple ID-</th>
<th>Report6 sis6</th>
<th>Method-</th>
<th>PrepC t chC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrepC t chC400-116788M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-116788/2-A0</td>
<td>Lab Control SampleR</td>
<td>T0 WaterR</td>
<td>1631Eb</td>
<td></td>
</tr>
<tr>
<td>LCSD 40 -116788/3-A0</td>
<td>Lab Control Sample Duplicate0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td></td>
</tr>
<tr>
<td>MB 40 -116788/1-A0</td>
<td>Method Blank0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td></td>
</tr>
<tr>
<td>640-29855-A-1-B MS0</td>
<td>Matrix Spike0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td></td>
</tr>
<tr>
<td>640-29855-A-1-C MSD0</td>
<td>Matrix Spike Duplicate0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td></td>
</tr>
<tr>
<td>40 -50360-10</td>
<td>EFFLUENT0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td></td>
</tr>
</tbody>
</table>

Analysis 6 t chG00-116818M

<table>
<thead>
<tr>
<th>L- S- mple ID-</th>
<th>Client S- mple ID-</th>
<th>Report6 sis6</th>
<th>Method-</th>
<th>PrepC t chC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 40 -116788/2-A0</td>
<td>Lab Control Sample0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
<tr>
<td>LCSD 40 -116788/3-A0</td>
<td>Lab Control Sample Duplicate0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
<tr>
<td>MB 40 -116788/1-A0</td>
<td>Method Blank0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
<tr>
<td>640-29855-A-1-B MS0</td>
<td>Matrix Spike0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
<tr>
<td>640-29855-A-1-C MSD0</td>
<td>Matrix Spike Duplicate0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
<tr>
<td>40 -50360-10</td>
<td>EFFLUENT0</td>
<td>T0 Water0</td>
<td>1631E0</td>
<td>40 -1167880</td>
</tr>
</tbody>
</table>

Report 6 sis6

T = Total0
Method Blank - Batch: 800-116788v

<table>
<thead>
<tr>
<th>LRb Spmplt.</th>
<th>MB 400-11678801-Ap</th>
<th>np lysis Bb chb 400-1168180</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliptntMp ip</td>
<td>WM</td>
<td>P, Bb chb 400-1167880</td>
</tr>
<tr>
<td>ill u.ionp</td>
<td>1.00</td>
<td>Unitgp ngLR</td>
</tr>
<tr>
<td>. np lyzUtb</td>
<td>09/06/2010 0952b</td>
<td></td>
</tr>
<tr>
<td>P p2 db</td>
<td>09/04/2010 1515C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nplyS</th>
<th><0.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>sultp</td>
<td>0.500</td>
</tr>
<tr>
<td>Qu. IRp</td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td></td>
</tr>
</tbody>
</table>

Lab Control Sample/v

Lab Control Sample Duplicate Recovery Report - Batch: 400-116788v

<table>
<thead>
<tr>
<th>LCS LRb Spmplt.</th>
<th>LCS 400-11678802-Ap</th>
<th>np lysis Bb chb 400-1168180</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliptntMp ip</td>
<td>WM</td>
<td>P, Bb chb 400-1167880</td>
</tr>
<tr>
<td>ill u.ionp</td>
<td>1.00</td>
<td>Unitgp ngLR</td>
</tr>
<tr>
<td>. np lyzUtb</td>
<td>09/06/2010 10000</td>
<td></td>
</tr>
<tr>
<td>P p2 db</td>
<td>09/04/2010 1515C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDpLRb Spmplt.</th>
<th>LCSDp00-11678803-Ap</th>
<th>np lysis Bb chb 400-1168180</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliptntMp ip</td>
<td>WM</td>
<td>P, Bb chb 400-1167880</td>
</tr>
<tr>
<td>ill u.ionp</td>
<td>1.00</td>
<td>Unitgp ngLR</td>
</tr>
<tr>
<td>. np lyzUtb</td>
<td>09/06/2010 10080</td>
<td></td>
</tr>
<tr>
<td>P p2 db</td>
<td>09/04/2010 1515C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nplyS</th>
<th>LCSp</th>
<th>LCSDp</th>
<th>Limitp</th>
<th>P</th>
<th>Limitp</th>
<th>LCS Qu. Ip</th>
<th>LCSDpQu. Ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mp curyS</td>
<td>101.</td>
<td>1030</td>
<td>79 - 121.</td>
<td>2b</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 1631Ev

Preparation: 1631Ev

<table>
<thead>
<tr>
<th>nsbumentp</th>
<th>HY0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRb Filp.</td>
<td>091610b.P N.</td>
</tr>
<tr>
<td>nitpl WMghbVolume.:</td>
<td>40 mL</td>
</tr>
<tr>
<td>Finpl WMghbVolume.:</td>
<td>40 mL</td>
</tr>
</tbody>
</table>

Quality Control Results6

Job Number: 400-50360-1.
Quality Control Results

Matrix Spike/v
Matrix Spike Duplicate Recovery Report - Batch: 400-116788v

<table>
<thead>
<tr>
<th>Test</th>
<th>Sample Code</th>
<th>Description</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS LRb Spmpl.</td>
<td>640-29855-A-1-B MSp</td>
<td>np lysis Bb chb 400-1168180</td>
<td>1.00</td>
</tr>
<tr>
<td>ClipntMp ip il u.ionp</td>
<td>WM</td>
<td>P p Bb chb 400-1167880</td>
<td>09/16/2010 10345</td>
</tr>
<tr>
<td>. np lyzUb</td>
<td>09/16/2010 1515C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P p2 db</td>
<td>09/16/2010 10345</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 1631Ev
Preparation: 1631Ev

<table>
<thead>
<tr>
<th>Test</th>
<th>Sample Code</th>
<th>Description</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS LRb Spmpl.</td>
<td>640-29855-A-1-C MSDp</td>
<td>np lysis Bb chb 400-1168180</td>
<td>1.00</td>
</tr>
<tr>
<td>ClipntMp ip il u.ionp</td>
<td>WM</td>
<td>P p Bb chb 400-1167880</td>
<td>09/16/2010 1042b</td>
</tr>
<tr>
<td>. np lyzUb</td>
<td>09/16/2010 1515C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P p2 db</td>
<td>09/16/2010 1042b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>% c.p MSP</th>
<th>MSP</th>
<th>Limitp</th>
<th>P</th>
<th>Limitp</th>
<th>MS Qu. Ip</th>
<th>MSDqQu. Ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mp curryS</td>
<td>300</td>
<td>22b</td>
<td>71 - 125C</td>
<td>100</td>
<td>245</td>
<td>Fb</td>
<td>Fb</td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierD</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etalsb</td>
<td></td>
<td>S or 0 SD exceed the control limitsb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questib</td>
<td>/F/NA</td>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R0dio0ctivityether 0psnot mel0suredcr ,Rfme0sured,Rbl t or bel0eckgroundc</td>
<td>N0A0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's1cust0yze0l,Repres,Reint0ct.R</td>
<td>N0A0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler or bl mplesldcn0 ppe0r to Rabe been compromisedcr 0</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0mperedwith.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mpleswere receivedn ice .R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ler 0 TemperUture isl ccept0 le .R</td>
<td>True0</td>
<td>1.9°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ler 0 TemperUture islrecorded.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4i sipresent.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4i sfilledcut in in kUndegible.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4i sfilledcut 0with li pertinent inf0m0tion.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is0the FieldcS0mpler'sin0me 0present on C04 ?p</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no discrep nciesl et ween the bl mple 0DSl n t he cont0inersl ndc the C04 .R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mplesl re receivedavithin 0ftime .R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mple cont0inershabe legible 0l el s.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nt0 inersl re not broken or le0king.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mple collection 0ct0timesl re pro0ded.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropri0te bl mple cont0inersl re used.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mple bottlesl re completelyfilled.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mples 0reserv0dion verifidec</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There ist0sufficient 0S. bR 0 l l requestedc nol0yses,Recl.Rnyrequestedc</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M50MSd0i</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V0A bl mple 0l0slcndcn0 Rabe Be0d0sp ce or bubble isl<6mm (010") in 0 dlOmeter.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifnecessary,.R10ffhthave been informe dc fb nystub 010 ddime or quickATp needsl</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphctic bl mplesl re not 0resent.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0mplesldcn0 re quire 0plitting.0r compo siting.R</td>
<td>True0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-61805-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
10/22/2010

cc: Mr. Adam Tripp

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN: IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
CommC
No additional co. n tS. 2

Clin pt D
All sapa les were rS:3 vld in good condition within tS pks. raturS rS uirS n tS.S

GC/MS VOA M
No analytical or qality iss@0 we2rSn of9l. 6

Metals M
No analytical or qality iss@0 we2rSn of9l. 6

OA Prep M
No analytical or qality iss@0 we2rSn of9l. 6
Method Summary:

Matrix

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatiles</td>
<td>TML</td>
<td>SAY/M</td>
<td>SW, 4U8.2.0 BM</td>
</tr>
<tr>
<td>Purg Mater</td>
<td>TML</td>
<td>SAY/M</td>
<td>SW, 4U5030BM</td>
</tr>
<tr>
<td>als (ICP)</td>
<td>TML</td>
<td>SAY/M</td>
<td>SW, 4U60 10C</td>
</tr>
<tr>
<td>PR procedure</td>
<td>TML</td>
<td>SAY/M</td>
<td>SW, 4U3005M</td>
</tr>
</tbody>
</table>

Lab References:

TML SAY = TM:Merica SavaM ahb

Method References:

<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846U8260BN</td>
<td>Beorden.Robert0</td>
<td>RBN</td>
</tr>
<tr>
<td>SW846U8010U</td>
<td>Bl0nd.Bri0n0</td>
<td>BNBN</td>
</tr>
<tr>
<td>Lab Sample I2</td>
<td>CIMv Sample I2</td>
<td>CIMv : a: x2</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>680-61805-1U</td>
<td>EFFLUENT,</td>
<td>Water0</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

MethM#: 0 8260Bc
Prep4rption: 0 5030Bc
Dilution: 0 1.0U
Date Analyzed: 0 10/11/2010U612c
Date Prep4red: 0 10/11/2010U612c

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (µg/L)</th>
<th>Qu0lifier</th>
<th>R0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone0</td>
<td>25M</td>
<td>U0</td>
<td>25M</td>
</tr>
<tr>
<td>Benzene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Bromoform0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Bromomethyme0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>rbon disulfide0</td>
<td>2.0U</td>
<td>U0</td>
<td>2.0U</td>
</tr>
<tr>
<td>rbon tetrochloride0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorobenzene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorobromomethyme0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-Dichloroethane0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-Dichloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-Dichloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-Dichloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Diethyl ether0</td>
<td>10U</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>Ethylbenzene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-He0 none0</td>
<td>10U</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>Methylene Chloride0</td>
<td>5.0U</td>
<td>U0</td>
<td>5.0U</td>
</tr>
<tr>
<td>2-But0none (MEK)0</td>
<td>10U</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>4-Methyl-2-pent0none (MIBK)0</td>
<td>10U</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>Styrene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrochloroethyme0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Tetrochloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Tluene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>trons-1,2-Dichloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>trons-1,3-Dichloroethene0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Vinyl chloride0</td>
<td>1.0U</td>
<td>U0</td>
<td>1.0U</td>
</tr>
<tr>
<td>Xylenes,RT,10 i0</td>
<td>2.0U</td>
<td>U0</td>
<td>2.0U</td>
</tr>
</tbody>
</table>

Surr0g te0
<table>
<thead>
<tr>
<th>Substance</th>
<th>%Rec0</th>
<th>Qu0lifier0</th>
<th>Accept0nse Opt0nsp</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromoFluorobenzene0</td>
<td>98U</td>
<td>75MJD20U</td>
<td></td>
</tr>
<tr>
<td>DibromoFluoromethane0</td>
<td>98U</td>
<td>75MJD21U</td>
<td></td>
</tr>
<tr>
<td>Tluene-d8(Surr)</td>
<td>108U</td>
<td>75MJD20U</td>
<td></td>
</tr>
<tr>
<td>Analytical Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client Sample ID:</td>
<td>T</td>
<td>EFFLUENT</td>
<td></td>
</tr>
<tr>
<td>S0 mple ID:</td>
<td>0</td>
<td>680-61805-1U</td>
<td></td>
</tr>
<tr>
<td>lient 0Mptr0:</td>
<td>0</td>
<td>Wntr0</td>
<td></td>
</tr>
</tbody>
</table>

6010C Metals (ICP)- I Recoverability

<table>
<thead>
<tr>
<th>Method</th>
<th>6010C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument ID:</td>
<td>0</td>
</tr>
<tr>
<td>File ID:</td>
<td>0</td>
</tr>
<tr>
<td>IRPD0</td>
<td>1015101039.chr0</td>
</tr>
<tr>
<td>Initial Weight/Volume:</td>
<td>50U m0</td>
</tr>
<tr>
<td>Final Weight/Volume:</td>
<td>50U m0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anolyte</th>
<th>Result (µg/c)U</th>
<th>Qualifier0</th>
<th>R0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic0</td>
<td>20U</td>
<td>U0</td>
<td>20U</td>
</tr>
<tr>
<td>Chromium0</td>
<td>10U</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>Copper0</td>
<td>20</td>
<td>U0</td>
<td>20U</td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td>U0</td>
<td>10U</td>
</tr>
<tr>
<td>Zinc0</td>
<td>20</td>
<td>U0</td>
<td>20U</td>
</tr>
<tr>
<td>Lab Section</td>
<td>Variable</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>G1/MS VOA0</td>
<td>U0</td>
<td>Indicates the analyte was analyzed but not detected.</td>
<td></td>
</tr>
<tr>
<td>Metalsl</td>
<td>U0</td>
<td>Indicates the analyte was analyzed but not detected.</td>
<td></td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 680-1826716

<table>
<thead>
<tr>
<th>lyb</th>
<th>su l4</th>
<th>Qu. l4</th>
<th>L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o</td>
<td>25M</td>
<td>U)</td>
<td>25M</td>
</tr>
<tr>
<td>BU zB</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Bla\nform.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Bla\nme.h</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>C) bo. disulfidN</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0.</td>
</tr>
<tr>
<td>C) bo. cloridN</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroe. zB</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chlorodibromome.h</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroe.h</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chlorome.h</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,2.-ic hloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,3.-ic hloropMpM</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>ic hlorobromome.h</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-ic hloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-ic hloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-ic hloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-ic hloropMpM</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>i) hyl e.h,</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>E.hylbe. zB</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-Hxco.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>Mc hyl4 ChloridN</td>
<td>5.0.</td>
<td>U)</td>
<td>5.0.</td>
</tr>
<tr>
<td>2-Bu. o. (MEK)0</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>4-Mc hyl-2-pM o. (MIBK)0</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>Styb</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2,2-T0 chloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>T0 chloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tolue.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>s-1,2.-ic hloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>s-1,3.-ic hloropMpM</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1-T0chloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2-T0chloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>T0chloroe.h,</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Vinyl chloridN</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Xyl4 s., To. l4</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0.</td>
</tr>
</tbody>
</table>

Method: 9260Bv

<table>
<thead>
<tr>
<th>lyb</th>
<th>su l4</th>
<th>Qu. l4</th>
<th>L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L) b Fli4 ID</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Inj. ume. ID</td>
<td>MSO2b</td>
<td>1.0</td>
<td>U)</td>
</tr>
<tr>
<td>L) b Fli4 ID</td>
<td>oq294.dN</td>
<td>1.0</td>
<td>U)</td>
</tr>
</tbody>
</table>

Surrogc

4-Bla\nfluorobe. zB	100.	75 - 120.
i bromofluorome.h,	100.	75 - 121M
Tolue. - dN (Surr)0	104	75 - 120.
LMB ConvromSMnp8/M

LMB ConvromSMnp8 Dup6cv e Recovery Reporv- Bv ch: 680-1826716

<table>
<thead>
<tr>
<th>LCS (L) b S) ml4 ID</th>
<th>LCS 680-1M2b71(23)</th>
<th>lysis BU ch, 680-1M2b71M</th>
<th>Inj. (ume. ID)</th>
<th>MSO2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) Mc xic W,</td>
<td>lciu.io. 1.0</td>
<td>Pc p BU ch, N/b Unit: ug/L</td>
<td>L) b Fl4 ID</td>
<td>oq2b .dN</td>
</tr>
<tr>
<td>lyzBdN</td>
<td>10/11/2010 1001M</td>
<td></td>
<td>Ini) l W, igh./Volume.: 5 mL</td>
<td>Fin) l W, igh./Volume.: 5 mL</td>
</tr>
<tr>
<td>Pc pM dN</td>
<td>10/11/2010 1001M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCSD(L) b S) ml4 ID | LCSD(680-1M2b71/24)

<table>
<thead>
<tr>
<th>lyb</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>Pc</th>
<th>Pc Limit</th>
<th>LCS Qu. l4</th>
<th>LCSD)Qu. l4</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o.</td>
<td>93</td>
<td>9c</td>
<td>17 - 175M</td>
<td>5M</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU zB</td>
<td>92b</td>
<td>95M</td>
<td>77 - 119c</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bl & form.</td>
<td>94</td>
<td>94c</td>
<td>2 - 133</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bl & mome. h.</td>
<td>1Mc</td>
<td>1M#</td>
<td>12 - 1M#</td>
<td>2b</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) bo. disulfidN</td>
<td>91M</td>
<td>95M</td>
<td>55 - 131M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) bo. chloridN</td>
<td>93</td>
<td>9c</td>
<td>71 - 135M</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorob. zB</td>
<td>9c</td>
<td>9c</td>
<td>5 - 11M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobromobrome.h</td>
<td>109c</td>
<td>109c</td>
<td>75 - 133)</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro.h</td>
<td>90</td>
<td>105M</td>
<td>40 - 1M6M</td>
<td>15M</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>9c</td>
<td>100.</td>
<td>2 - 120.</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro.h.</td>
<td>11M</td>
<td>121M</td>
<td>4) - 142b</td>
<td>5M</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ic hloro.e.h</td>
<td>9c</td>
<td>101M</td>
<td>9 - 134)</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ic hloro.MpM</td>
<td>103</td>
<td>106.</td>
<td>7c - 12b</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorobrome.h</td>
<td>100</td>
<td>100.</td>
<td>7c - 127c</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloro.e.h</td>
<td>92b</td>
<td>95M</td>
<td>74 - 127c</td>
<td>4</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloro.e.h</td>
<td>94</td>
<td>9c</td>
<td>- 132b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloro.e.h</td>
<td>92b</td>
<td>9c</td>
<td>2 - 141M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloro.MpM</td>
<td>93</td>
<td>95M</td>
<td>73 - 124)</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) hyl e.h.</td>
<td>7c</td>
<td>90.</td>
<td>70 - 130</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. hylbe. zB</td>
<td>100</td>
<td>102b</td>
<td>- 11M</td>
<td>1M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hcxc o.</td>
<td>106</td>
<td>107c</td>
<td>34 - 1M6M</td>
<td>1M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mc hyl4 ChloridN</td>
<td>94</td>
<td>9c</td>
<td>70 - 125M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu. o. (MEK)0</td>
<td>97c</td>
<td>97c</td>
<td>33 - 1M7c</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mc hyl-2-M o. (MIBK)0</td>
<td>103</td>
<td>105M</td>
<td>40 - 151M</td>
<td>1M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St+yb</td>
<td>7c</td>
<td>7c</td>
<td>2 - 122b</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-T0 chloro.e.h</td>
<td>100</td>
<td>9c</td>
<td>9 - 129c</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 chloro.e.h</td>
<td>9c</td>
<td>100.</td>
<td>7c - 12b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu.</td>
<td>97c</td>
<td>99c</td>
<td>1 - 117c</td>
<td>3</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-1,2-ic hloro.e.h</td>
<td>93</td>
<td>9c</td>
<td>72 - 131M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-1,3-ic hloro.MpM</td>
<td>107c</td>
<td>109c</td>
<td>73 - 12b</td>
<td>1M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-T0chboro.e.h</td>
<td>92b</td>
<td>95M</td>
<td>7c - 127c</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-T0chloro.e.h</td>
<td>9c</td>
<td>9c</td>
<td>75 - 121M</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0chloro.e.h</td>
<td>95M</td>
<td>97c</td>
<td>4 - 115M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quv ivy ConvovResuvsv

Method: 8260Bv
Prep6rv ion: 9030Bv

LMBConvovSMnp8/M
LMBConvovSMnp8 9upBcv e Recovery Reporv- Bv ch: 680-1826716

<table>
<thead>
<tr>
<th>LCS L</th>
<th>b</th>
<th>s</th>
<th>mpl4 ID</th>
<th>LCS 680-1M2b71/23</th>
<th>lysis BU ch, 680-1M2b71M</th>
<th>Inj. ume. ID</th>
<th>MO2b</th>
<th>L) b</th>
<th>Fil4 ID</th>
<th>oq2b</th>
<th>dN</th>
</tr>
</thead>
<tbody>
<tr>
<td>i lu.io.</td>
<td>.</td>
<td>lYZBdN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td>pM</td>
<td>dN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD(L) b</th>
<th>S</th>
<th>mpl4 ID</th>
<th>LCSD(680-1M2b71/24)</th>
<th>lysis BU ch, 680-1M2b71M</th>
<th>Inj. ume. ID</th>
<th>MO2b</th>
<th>L) b</th>
<th>Fil4 ID</th>
<th>oq2b</th>
<th>dN</th>
</tr>
</thead>
<tbody>
<tr>
<td>i lu.io.</td>
<td>.</td>
<td>lYZBdN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td>pM</td>
<td>dN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lyb</th>
<th>LCS (%)</th>
<th>LCSD (%)</th>
<th>Limit (%)</th>
<th>Pc</th>
<th>PC Limit (%)</th>
<th>LCS Qu. 14</th>
<th>LCSD Qu. 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>VinJl</td>
<td>chloridN</td>
<td>9c</td>
<td>93</td>
<td>59 - 144</td>
<td>5M</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Xyl4</td>
<td>s</td>
<td>102b</td>
<td>103</td>
<td>4 - 11M</td>
<td>1M</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Surrogc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-BiFlmfluorobe. zB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.h.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue. - dN(Surr0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LCS</th>
<th>LCSD</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BiFlmfluorobe. zB</td>
<td>103</td>
<td>105</td>
<td>75 - 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.h.</td>
<td>99c</td>
<td>101</td>
<td>75 - 121M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue. - dN(Surr0</td>
<td>9c</td>
<td>100</td>
<td>75 - 120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method: 6010Cv
Prep6rv ion: 9005AM
Tov RecoveryMv

Inj. ume. ID) ICPc
L) b Fil4 ID) 1015101039.ch,
Init) l W, igh./Volume: 50 mL
Fin) l W, igh./Volume: 50 mL

Method Bv nk - Bv ch: 680-1827L9M

L) b S) mpl4 ID) MB 680-1M27c9/14-
Cli) Mc ixc W,
i lu.io. 1.0.
 - lyzBdtN 10/15/2010 213
 Pc pM dN 10/13/2010 0953

lyb su l4 Qu l4 L)
Ch.omium. 10. U) 10.

Method: 6010Cv
Prep6rv ion: 9005AM
Tov RecoveryMv

Inj. ume. ID) ICPc
L) b Fil4 ID) 1015101039.ch,
Init) l W, igh./Volume: 50 mL
Fin) l W, igh./Volume: 50 mL

Method 6010Cv
Prep6rv ion: 9005AM
Tov RecoveryMv

Inj. ume. ID) ICPc
L) b Fil4 ID) 1015101039.ch,
Init) l W, igh./Volume: 50 mL
Fin) l W, igh./Volume: 50 mL

Lyb Spik0. mou. su l4 % c.) Limit Qu l4
 se.ic) 2000. 2030. 101M 75 - 125M
Ch.omium. 200. 199c 99c 75 - 125M
CoppM 250. 251M 100. 75 - 125M
L) dN 500. 520. 104) 75 - 125M
Zinc 500. 529c 106. 75 - 125M

Tes Americv SM/Mnvhv
Page 12 of 14
Chain of Custody Record

Client Contact

Project Manager: Alan Pinnix
Tel/Fax: 919-854-1282

Site Contact: Alan Pinnix
Lab Contact: Kathy Smith

Date: 10/1/2010
Carrier: Fed Ex
COC No.

Job No.

SDG No.

Sample Identification

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>No. of Cont.</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1/2010</td>
<td>10:30</td>
<td>GW</td>
<td>WTR</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Test Results:

- VOC's (BTEX)
- Metals (600)*

Sample Specific Notes:

- * ARSENIC, LEAD, CHROMIUM, COPPER, & ZINC ONLY

Preservation Used: 1=Ice, 2=HCl; 3=H2SO4; 4=HNO3; 5=NaOH; 6=Other

Possible Hazard Identification

- [X] Non-Hazard
- [] Flammable
- [] Skin Irritant
- [] Poison B
- [] Unknown

Sample Disposal: (A fee may be assessed if samples are retained longer than 1 month)

- [] Return to Client
- [X] Disposal by Lab
- [] Archive for Months

Special Instructions/QC Requirements & Comments:

- [] ARCADIS
- [] 10/1/10 15U
- [] 10/24/10 1010

Relinquished by:

- [] ARCADIS
- [] Date/Time: 10/10/15U
- [] Received by: [Name]

- [] [Company]
- [] Date/Time:
- [] Received by: [Name]

- [] Company
- [] Date/Time:
- [] Received by: [Name]
Login Sam/ le ReTei/ t CheTk List/
ANALYTICAL REPORT

Job Number: 400-50885-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250509), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LA00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-09-1), Virginia (00008), Washington (C915), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
CohmeMtsM
No additional co. n TS 2

except M
All samples were in good condition within TS pk rates rS uirS n TS S

MetalLM
Method 1631E: Thk2 atrix sβ/2 l rScovkries for batch 400-118193 \ 400-118025 were outside cgr tr ol g limits. The assg. ated laboratory cgr tr ol samples (LCS/LCSD) recgveries met acceptance criteria. Data was flag ed and reported as is.g

No other analytical or quality issues were nted.g
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method</th>
<th>Preparation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 cury, Lo. LhvTI (CVgFS)g</td>
<td>TgL PEN.</td>
<td>EPg 16g1Eg</td>
<td>EPg 16g1Eg</td>
</tr>
<tr>
<td>Pg pagigo. M5 cury, Lo. LhvTI4</td>
<td>TgL PEN.</td>
<td>EPg 16g1Eg</td>
<td>EPg 16g1Eg</td>
</tr>
</tbody>
</table>

Lab References:D
TgL PEN = TgsR merica Pg sacolag

Method References:D
EPg = US Egvjo. me. al Pgp. clio. . gT c yS
<table>
<thead>
<tr>
<th>Method</th>
<th>Analyst</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA 031b</td>
<td>Jones, Rndyl</td>
<td>RJR</td>
</tr>
</tbody>
</table>
SAMPLMSU MA RY2

Client: ARCADIS U.S., Inc.
JRNumber: 40-50885-1b

<table>
<thead>
<tr>
<th>Lab Sample I2</th>
<th>CIMv Sample I2</th>
<th>CIMv : a: x2</th>
<th>a:e/Time : Sampledb</th>
<th>a:e/Time : Reviewedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-50885-1b</td>
<td>EFFLUENT</td>
<td>Water0</td>
<td>1 / 1/2 1 1 3)</td>
<td>1 / 2/2 1 11 8u</td>
</tr>
</tbody>
</table>

*Test&mev a Pets a: ola:
SAMPL : S L SM
<table>
<thead>
<tr>
<th>Client Sample ID: T</th>
<th>EFFLUENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 mple ID: 0</td>
<td>40 -50885-1b</td>
</tr>
<tr>
<td>Client IDptrt0: 0</td>
<td>Wnter0</td>
</tr>
<tr>
<td>D0te S0mpled:</td>
<td>0b/c1/2c1b 1b34</td>
</tr>
<tr>
<td>D0te Received:</td>
<td>0b/c2/2c1b 11b8u</td>
</tr>
</tbody>
</table>

1631E Mercury, Low Level (CVAFS)D

<table>
<thead>
<tr>
<th>MethM: 0</th>
<th>1631E-</th>
<th>An0lysis: B-tch: 40 -1181934</th>
<th>Instrument ID: 0</th>
<th>HYDRA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep4r0tion: 0</td>
<td>1631E-</td>
<td>PrepB-tch: 40 -118u250</td>
<td>File ID: 0</td>
<td>1b 71b .PRN0</td>
</tr>
<tr>
<td>Dilution: 0</td>
<td>1.R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0te An0lyzed:</td>
<td>0b/c7/2c1b 1151b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0te Brep4red:</td>
<td>0b/04/2c1b 150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte0</th>
<th>Result (ng/c)</th>
<th>Qu lifier0</th>
<th>g</th>
<th>R0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><g.50</td>
<td></td>
<td></td>
<td>.50</td>
</tr>
</tbody>
</table>
QUALITY pCvTROLp SULTSp
<table>
<thead>
<tr>
<th>LaT S-mpQ ID-</th>
<th>C\envS-mpQ ID-</th>
<th>Reportv sisv</th>
<th>C\envML rix-</th>
<th>Mevhod-</th>
<th>PrepC</th>
<th>chC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepC</td>
<td>chC400-118025u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 40 -118u25/2-A0</td>
<td>ntno0 IgS0mple0</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSD 40 -118u25/3-A0</td>
<td>ntno0 IgS0mple Duplic0te0</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM40 -118u25/1-A0</td>
<td>ethMtBlnkM</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640-3c220-A-14-BM S0</td>
<td>trix*Sike0</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640-3c220-A-14-C 0 SD0</td>
<td>trix*Sike Duplic0te0</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 -50885-1b</td>
<td>FF5U0NTR</td>
<td>TR</td>
<td>W. ter0</td>
<td>1631b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch400-118193u

CS 40 -118u25/2-A0	ntno0 IgS0mple0	TR	W. ter0	1631b	40 -118u250
CSD 40 -118u25/3-A0	ntno0 IgS0mple Duplic0te0	TR	W. ter0	1631b	40 -118u250
BM40 -118u25/1-A0	ethMtBlnkM	TR	W. ter0	1631	40 -118u250
640-3c220-A-14-BM S0	trix*Sike0	TR	W. ter0	1631b	40 -118u250
640-3c220-A-14-C 0 SD0	trix*Sike Duplic0te0	TR	W. ter0	1631b	40 -118u250
40 -50885-1b	FF5U0NTR	TR	W. ter0	1631b	40 -118u250

Report Basis

TR | TR | TR | Ig

TestAmerica Pensacolau
Quality Control Results

Method Blank - Batch: 400-1180256

<table>
<thead>
<tr>
<th>Lyb</th>
<th>Sul</th>
<th>Qu</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>l)</td>
<td><0.500</td>
<td></td>
<td>0.500</td>
</tr>
</tbody>
</table>

LabControl Bampæ/T

LabControl Bampæ D/ pccate Recovery Report - Batch: 400-1180256

<table>
<thead>
<tr>
<th>Lyb</th>
<th>LCSg</th>
<th>LCSdg</th>
<th>Limit</th>
<th>PDg</th>
<th>PD Limit</th>
<th>LCS Qu.</th>
<th>LCSD Qu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>98g</td>
<td>99</td>
<td>79 - 1212</td>
<td>12</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Matrix Spk/T
Matrix Spk D/ pccate Recovery Report - Batch: 400-1180256

<table>
<thead>
<tr>
<th></th>
<th>Method: 1631Ec</th>
<th>reparation: 1631Ec</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS L) b Sgml4 IDg</td>
<td>lgs5ume. IDg</td>
<td>HYDg</td>
</tr>
<tr>
<td>Clk) Mc ixc</td>
<td>L) b Fil4 IDg</td>
<td>100710b.PUN.</td>
</tr>
<tr>
<td>Dilu.io.</td>
<td>lgtj I W, igh5Volume.: 40 mL</td>
<td></td>
</tr>
<tr>
<td>Dg . lyzBxN</td>
<td>Finj I W, igh5Volume.: 40 mL</td>
<td></td>
</tr>
<tr>
<td>Dg . PU pm dN</td>
<td>10/07/2010 1055C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/05/2010 11300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>640-30220-p-14-C MSDg</td>
<td>lysis B5 ch5 400-1181935</td>
</tr>
<tr>
<td></td>
<td>lgs5ume. IDg</td>
<td>HYDg</td>
</tr>
<tr>
<td>Clk) Mc ixc</td>
<td>L) b Fil4 IDg</td>
<td>100710b.PUN.</td>
</tr>
<tr>
<td>Dilu.io.</td>
<td>lgtj I W, igh5Volume.: 40 mL</td>
<td></td>
</tr>
<tr>
<td>Dg . lyzBxN</td>
<td>Finj I W, igh5Volume.: 40 mL</td>
<td></td>
</tr>
<tr>
<td>Dg . PU pm dN</td>
<td>10/07/2010 11035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/05/2010 11300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lyb</th>
<th>% c.g</th>
<th>MSg</th>
<th>MSDg</th>
<th>Limit</th>
<th>PDg</th>
<th>PD Limit</th>
<th>MS Qu. I4</th>
<th>MSD Qu. I4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mc curyb</td>
<td>245</td>
<td>200</td>
<td>71 - 125C</td>
<td>19,</td>
<td>245</td>
<td>F5</td>
<td>F5</td>
<td></td>
</tr>
<tr>
<td>Lab Section</td>
<td>u aliferM</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et0lg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fb</td>
<td>S or 0 SD exceeds the control limit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chain of Custody Record

<table>
<thead>
<tr>
<th>Client Contact</th>
<th>Project Manager: Alan Pinnix</th>
<th>Site Contact: Alan Pinnix</th>
<th>Date: 10/1/2010</th>
<th>COC No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCADIS</td>
<td>Tel/Fax: 919-854-1282</td>
<td>Lab Contact: Kathy Smith</td>
<td>Carrier: Fed Ex</td>
<td>1 of 1 COCs</td>
</tr>
<tr>
<td>801 Corporate Center Drive, Suite 300</td>
<td>Analysis Turnaround Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raleigh, NC 27807</td>
<td>Calendar (C) or Work Days (W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>919-854-1282</td>
<td>Phone</td>
<td>TAT if different from Below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>919-854-5448</td>
<td>FAX</td>
<td>2 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Name: UNC Airport Road</td>
<td></td>
<td>1 week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site:</td>
<td></td>
<td>2 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P O #: NC000239.0018</td>
<td></td>
<td>1 day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Type</th>
<th>Matrix</th>
<th># of Cost.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFLUENT</td>
<td>10/1/2010</td>
<td>10:30</td>
<td>GW</td>
<td>WTR</td>
<td>3</td>
</tr>
</tbody>
</table>

Preservation Used: 1=Ice, 2=HCl; 3=H2SO4; 4=HNO3; 5=NaOH; 6=Other

Possible Hazard Identification
- [] Non-Hazard
- [] Flammable
- [] Skin Irritant
- [] Poison
- [] Unknown

Sample Disposal: (A fee may be assessed if samples are retained longer than 1 month)
- [] Return To Client
- [] Disposal By Lab
- [] Archive For Months

Special Instructions/QC Requirements & Comments:

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Company: ARCADIS</th>
<th>Date/Time:</th>
<th>Received by:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10/10/10 12:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Company:</th>
<th>Date/Time:</th>
<th>Received by:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Company:</th>
<th>Date/Time:</th>
<th>Received by:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations:

- 3-4°C
Login NumbeT: 50885T

Cleator: H1, K1ma/

List NumbeT:

<table>
<thead>
<tr>
<th>Question</th>
<th>IF/NAM</th>
<th>Clmm ent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivityleit0er &was&ot measuredcr Rgmeasured, ReOt or belgwC ackgro4ndc</td>
<td>N/A0</td>
<td></td>
</tr>
<tr>
<td>Tce coolor'sCustodyseal, Rg resent, RsContact, R</td>
<td>N/A0</td>
<td></td>
</tr>
<tr>
<td>Tce coolor or &amoles&cnot &ah ear to 0ave been com0romisedcr 0 tam0eredavit0, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>SamõolesQere receivedcn ice, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>ler &tem0erature is&acce0tahle, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>ler &tem0erature is&esccorded, R</td>
<td>True0</td>
<td>3.4",</td>
</tr>
<tr>
<td>OU sCresent, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>OU silledc ut in inkunddegible, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>OU silledc ut wit0 alig ltrient ifform ation, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>IsQle e&ieldsSamõler's&ame 0resent on CQU?h</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Tcere &Qre no disc0reanciesQet ween 10e &amole &DsCn 10 e containers&andc t e CQ, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>SamõolesQere receivedavit0in B) IIding, Time, R</td>
<td>True0</td>
<td>Samõle 6FFLUENTcwas&eceivedcn &ah Saturday, &andwas&ot 0reservedavit0in 48urs, R</td>
</tr>
<tr>
<td>Samõle containersCave &ebble &ale Is, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>nt ai0ers &not broken or bkaking, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Samõle coQection date/timeQere 0ro4ed, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>A0 roOriate &amõle containersQere 0sed, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Samõle bottlesQere com0letetyfilled, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Samõle &reservation Verified</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Tcere isGefficient VQ, Rg all&questedanalyses, Rncl.Rny&questedc MS/MSDaC</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>VOA &amõle Qals&cnot 0ave 0eadsQace or b0g & le is&G6mm (0/4") in 0 diameter, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>If nec0esary, Rstaff ave been infgrme dc f&nyshQt 0 Idtime or QickTATc needsC</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Mulit0 asic &amõles&Qre not 0resent, R</td>
<td>True0</td>
<td></td>
</tr>
<tr>
<td>Samõoles&cnot re quire &Clitting, r com0 siting, R</td>
<td>True0</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-62921-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
11/16/2010

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatiles Organic Compounds (GC/MS)M</td>
<td>TML SAI/M</td>
<td>SWM#M:20 BM</td>
<td></td>
</tr>
<tr>
<td>Purge and Trap M</td>
<td>TML SAI/M</td>
<td>SWM#M5030BM</td>
<td></td>
</tr>
<tr>
<td>als (NP)M</td>
<td>TML SAI/M</td>
<td>SWM#M010 C0</td>
<td></td>
</tr>
<tr>
<td>Preparation, To.al.</td>
<td>TML SAI/M</td>
<td>SWM#M3005M</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TML SAI/ = TML:merica Savannah.

Method References:

TestAmerica Savannah:
<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846U8U80Bc</td>
<td>Bearden,Robert0</td>
<td>RBc</td>
</tr>
<tr>
<td>SW846U8010U</td>
<td>Bign-da,Brian0</td>
<td>Bc Bc</td>
</tr>
<tr>
<td>Lab Sample I2</td>
<td>CIMu Sample I2</td>
<td>CIMu : a: x2</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>680-62921-1U</td>
<td>uentU</td>
<td>WaterU</td>
</tr>
</tbody>
</table>

Testameu a Sava: ah2
8260B Vodtue Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepaUion:U</td>
<td>5030BU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:U</td>
<td>1.0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUTe AnUalyzed:U</td>
<td>11/14/2010</td>
<td>1414U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUTe PrepaBoed:U</td>
<td>11/14/2010</td>
<td>1414U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (ug/L)</th>
<th>QuifierU</th>
<th>U</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneU</td>
<td>25</td>
<td>U</td>
<td>U</td>
<td>25U</td>
</tr>
<tr>
<td>BenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>BromoformU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Bromometh neU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>CUBorn disulfideU</td>
<td>2.0</td>
<td>U</td>
<td>U</td>
<td>2.0U</td>
</tr>
<tr>
<td>CUBorn tetrUchlorideU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChlorobenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorodibromometh neU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chloroeth neU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>ChloroformU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Chlorometh neU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Dichlorobromometh neU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-TrichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,2-DichloropropaneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Diethyl etherU</td>
<td>49U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzeneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>2-HexSnoneU</td>
<td>10</td>
<td>U</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>Methylene ChlorideU</td>
<td>5.0</td>
<td>U</td>
<td>U</td>
<td>5.0U</td>
</tr>
<tr>
<td>2-ButUhone (MEK)U</td>
<td>10</td>
<td>U</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>4-Methyl-2-pentUhone (MIBK)U</td>
<td>10</td>
<td>U</td>
<td>U</td>
<td>10U</td>
</tr>
<tr>
<td>StyreneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2,2-TetrUchloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TetrUchloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>TolueneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trUhs-1,2-DichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>trUhs-1,3-DichloropropeneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,1-TrichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>1,1,2-TrichloroetheneU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Vinyl chlorideU</td>
<td>1.0</td>
<td>U</td>
<td>U</td>
<td>1.0U</td>
</tr>
<tr>
<td>Xylenes, TotU</td>
<td>2.0</td>
<td>U</td>
<td>U</td>
<td>2.0U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>%RecU</th>
<th>QuifierU</th>
<th>AcceptUnce LimitsU</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneU</td>
<td>86U</td>
<td></td>
<td>75 - 120U</td>
</tr>
<tr>
<td>Dibromofluorometh neU</td>
<td>99U</td>
<td></td>
<td>75 - 121U</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)U</td>
<td>100U</td>
<td></td>
<td>75 - 120U</td>
</tr>
</tbody>
</table>
6010C Metals (ICP) - Total Recoverable Test

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6010CU</td>
<td>680-185840U</td>
<td>11920101610.chrU</td>
<td></td>
</tr>
<tr>
<td>3005AU</td>
<td>680-185495U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dilution U:
- Dilution U: 1.0U
- Use 1:100 for Dilution U:

<table>
<thead>
<tr>
<th>Date PrepaRed: U</th>
<th>Dilution U: 1:100</th>
</tr>
</thead>
</table>

Analysis U:

<table>
<thead>
<tr>
<th>Element U</th>
<th>Result (ug/L) U</th>
<th>Qu Uerifier U</th>
<th>U</th>
<th>RL U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic U</td>
<td>20</td>
<td></td>
<td>20U</td>
<td></td>
</tr>
<tr>
<td>Chromium U</td>
<td>10</td>
<td></td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>Copper U</td>
<td>20</td>
<td></td>
<td>20U</td>
<td></td>
</tr>
<tr>
<td>Lead U</td>
<td>10</td>
<td></td>
<td>10U</td>
<td></td>
</tr>
<tr>
<td>Zinc U</td>
<td>20</td>
<td></td>
<td>20U</td>
<td></td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierM</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC/MS VOAU</td>
<td></td>
<td>Indicate that the analyte was analyzed but not detected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta.</td>
<td></td>
<td>Indicate that the analyte was analyzed but not detected.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-186141

<table>
<thead>
<tr>
<th>LR6 Spmplp. MB 680-18614U12</th>
<th>np lysis BRchl 680-18614U</th>
<th>nshumentp MS02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cliptntp ip</td>
<td>WM</td>
<td>L6b Filp. q23Fv</td>
</tr>
<tr>
<td>il u.ionp</td>
<td>1.0.</td>
<td>ntpl WMgl/Vol:</td>
</tr>
<tr>
<td>. np lyzUtb</td>
<td>11/14/2010 1249C</td>
<td>mLR</td>
</tr>
<tr>
<td>Ph p2 db</td>
<td>11/14/2010 1249C</td>
<td></td>
</tr>
</tbody>
</table>

nplyS

<table>
<thead>
<tr>
<th></th>
<th>sulp</th>
<th>Qu. IRp</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp onp</td>
<td>2</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>BRHnzUhp</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>BRmofrom.</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>BRmome.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>C4bon disulfidb</td>
<td>2.0</td>
<td>Up</td>
<td>2.0</td>
</tr>
<tr>
<td>C4bon . chloridb</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>ChlorobenzUhp</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromome.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloro.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2.-ic chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3.-ic chlorop2p2np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>IC chlorobromome.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2.-ic chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1.-ic chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2.-ic chlorop2p2np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>ip hyl e.hl</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>EthylbenzUhp</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>2-HU nonp</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>M4 hylpnp Chloridb</td>
<td>0.0</td>
<td>Up</td>
<td>.0</td>
</tr>
<tr>
<td>2-Bu. nonp (MEK)U</td>
<td>10.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>4-Mp hyl-2-p2ntnonp (MIBK)U</td>
<td>10.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>StpS np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Te. chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Te. chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluelp</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>ns-1,2.-ic chloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>ns-1,3,-ic chlorop2p2np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroe.hl np</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloridb</td>
<td>1.0</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>XylpnpS, To. lp</td>
<td>2.0</td>
<td>Up</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%</th>
<th>cp</th>
<th>ccpp p2 ncp Limitph</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-6-fluorobenzUhp</td>
<td>90.</td>
<td>7U - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.hl np</td>
<td>97U</td>
<td>7U - 121.</td>
<td></td>
</tr>
<tr>
<td>Toluelp db (Sur)U</td>
<td>99C</td>
<td>7U - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

<table>
<thead>
<tr>
<th>Method: 8 60Bv</th>
<th>Preparation: 8030Bv</th>
</tr>
</thead>
</table>

LabControl Amp@/M
LabControl Amp@ DMPcate Recovery Report - Batch: 680-186141

<table>
<thead>
<tr>
<th>LCS LRb Spmlp.</th>
<th>LCS 680-18614 U9C</th>
<th>np lysis BR chl 680-18614U</th>
<th>nshumenp</th>
<th>MSO2</th>
<th>LRb Filp.</th>
<th>ooq230.db</th>
<th>nitpl WGhl/Volume.: mLR</th>
<th>Finpl WGhl/Volume.: mLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clpnt Mp ip</td>
<td>WM</td>
<td>Ph p BR chl: N/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if u.ionp</td>
<td>1.0.</td>
<td>Unith ug/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph p2 db</td>
<td>11/14/2010 10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD LRb Spmlp.</th>
<th>LCSDp 880-18614 U10</th>
<th>np lysis BR chl 680-18614U</th>
<th>nshumenp</th>
<th>MSO2</th>
<th>LRb Filp.</th>
<th>ooq232.db</th>
<th>nitpl WGhl/Volume.: mLR</th>
<th>Finpl WGhl/Volume.: mLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clpnt Mp ip</td>
<td>WM</td>
<td>Ph p BR chl: N/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if u.ionp</td>
<td>1.0.</td>
<td>Unith ug/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. np lyzUtdb</td>
<td>11/14/2010 1123F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph p2 db</td>
<td>11/14/2010 1123F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>npLyS</th>
<th>% c.p</th>
<th>LCSp</th>
<th>LCSDp</th>
<th>Limitp</th>
<th>Ph</th>
<th>Ph Limitp</th>
<th>LCS Qu. Ip</th>
<th>LCSD Qu. Ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp onp</td>
<td>9C</td>
<td>1</td>
<td>17-17U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRhzUhp</td>
<td>97U</td>
<td>93F</td>
<td>77-119C</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRmoform.</td>
<td>10.</td>
<td>102</td>
<td>2-133F</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRmome.hl np</td>
<td>90.</td>
<td>74U</td>
<td>12-184U</td>
<td>20.</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfidb</td>
<td>7U</td>
<td>2</td>
<td>-1316.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon . chloridb</td>
<td>103F</td>
<td>97U</td>
<td>71-13F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzUhp</td>
<td>103F</td>
<td>103F</td>
<td>-116.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromone.hl np</td>
<td>108.</td>
<td>109C</td>
<td>7U-133F</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro.hl np</td>
<td>99C</td>
<td>100.</td>
<td>40-16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorosem.</td>
<td>102</td>
<td>102</td>
<td>2-120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorome.hl np</td>
<td>9C</td>
<td>9C</td>
<td>4U-142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ic hloroe.hl np</td>
<td>103F</td>
<td>9C</td>
<td>9-134U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ic hlorop2pnp</td>
<td>106.</td>
<td>103F</td>
<td>7U-12</td>
<td>2</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorobromone.hl np</td>
<td>100.</td>
<td>97U</td>
<td>7U-127U</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloroe.hl np</td>
<td>99C</td>
<td>97U</td>
<td>74-127U</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroe.hl np</td>
<td>102</td>
<td>9C</td>
<td>-1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloroe.hl np</td>
<td>9C</td>
<td>9C</td>
<td>2-1416.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hlorop2pnp</td>
<td>9C</td>
<td>94U</td>
<td>73-124U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylenbenzUhp</td>
<td>106.</td>
<td>104U</td>
<td>-116.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HU nonp</td>
<td>103F</td>
<td>106.</td>
<td>34-161.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mp hylnp Chloridb</td>
<td>91.</td>
<td>70-12</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu. nonp (MEK)U</td>
<td>97U</td>
<td>93F</td>
<td>33-1.7U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Mp hyl-2-pnlnonp (MIBK)U</td>
<td>102</td>
<td>99C</td>
<td>40-1.1</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene np</td>
<td>104U</td>
<td>102</td>
<td>2-122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Te. chloroe.hl np</td>
<td>99C</td>
<td>99C</td>
<td>9-129C</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te. chloro.hl np</td>
<td>108.</td>
<td>109C</td>
<td>7U-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene np</td>
<td>101.</td>
<td>97U</td>
<td>1-117U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ns-1,2-ic hloroe.hl np</td>
<td>99C</td>
<td>94U</td>
<td>72-131.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ns-1,3-ic hlorop2pnp</td>
<td>109C</td>
<td>10.</td>
<td>73-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloro.hl np</td>
<td>100.</td>
<td>9C</td>
<td>7U-127U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro.hl np</td>
<td>9C</td>
<td>9C</td>
<td>7U-121.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloro.hl np</td>
<td>10.</td>
<td>101.</td>
<td>4-11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloridb</td>
<td>9C</td>
<td>93F</td>
<td>9-144U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

LabControl 8amp@/M
LabControl 8amp@ MDPscate Recovery Report - Batch: 680-186141

LCS LRb Spmplp.	LCS 680-18614U9C	np lysis BR chl	680-18614U	nshumenutm	MSO2
CliptnpMp ip	WM	Ph p BR chl N/c			
il u.ionp	1.0.	Unitg ug/LR			
. np lyzUdb	11/14/2010 10.				
Ph p2 db	11/14/2010 10.				

LCSDjLRb Spmplp.	LCSDj680-18614U10.	np lysis BR chl	680-18614U	nshumenutm	MSO2
CliptnpMp ip	WM	Ph p BR chl N/c			
il u.ionp	1.0.	Unitg ug/LR			
. np lyzUdb	11/14/2010 1123F				
Ph p2 db	11/14/2010 1123F				

<table>
<thead>
<tr>
<th>nplyS</th>
<th>% c.p</th>
<th>LCSp</th>
<th>LCSDp</th>
<th>Limitp</th>
<th>Ph</th>
<th>Ph Limitp</th>
<th>LCS Qu. ip</th>
<th>LCSDpQu. ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylpnps, To. Ip</td>
<td>10.</td>
<td>103F</td>
<td>4 - 118.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrog1</td>
<td>LCS % . cp</td>
<td>LCSDp% . cp</td>
<td>ccpp p2 nc Limitp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-BrmofluorobenzLnp</td>
<td>9C</td>
<td>92</td>
<td>7U - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.hl np</td>
<td>104U</td>
<td>100.</td>
<td>7U - 121.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene np (Surr)U</td>
<td>103F</td>
<td>97U</td>
<td>7U - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-185495u

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ClipntMp ip u.ionp.</td>
<td>Ph p BRchl 680-18. 49C</td>
</tr>
<tr>
<td>1.0.</td>
<td>Unitph ug/LR</td>
</tr>
<tr>
<td>np lyzUlb 11/09/2010 20. 2</td>
<td></td>
</tr>
<tr>
<td>Ph p2 db 11/08/2010 163F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nplyS</th>
<th>sulpt</th>
<th>Qu. IRp</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlomiu.</td>
<td>10.</td>
<td>Up</td>
<td>10.</td>
</tr>
</tbody>
</table>

LabControl Bampb - Batch: 680-185495u

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ClipntMp ip u.ionp.</td>
<td>Ph p BRchl 680-18. 49C</td>
</tr>
<tr>
<td>1.0.</td>
<td>Unitph ug/LR</td>
</tr>
<tr>
<td>np lyzUlb 11/09/2010 20. 7U</td>
<td></td>
</tr>
<tr>
<td>Ph p2 db 11/08/2010 163F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nplyS</th>
<th>Spikut</th>
<th>mountp</th>
<th>sulpt</th>
<th>%</th>
<th>c.p</th>
<th>Limitp</th>
<th>Qu. Ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>shnicp</td>
<td>2000.</td>
<td>1890.</td>
<td>9C</td>
<td>7U</td>
<td>12</td>
<td>7U - 12</td>
<td></td>
</tr>
<tr>
<td>Chlomiu.</td>
<td>200.</td>
<td>197U</td>
<td>9C</td>
<td>7U</td>
<td>12</td>
<td>7U - 12</td>
<td></td>
</tr>
<tr>
<td>Copp2</td>
<td>2.0.</td>
<td>2.3F</td>
<td>101.</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR db</td>
<td>0.0.</td>
<td>479C</td>
<td>9C</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zincp</td>
<td>0.0.</td>
<td>4.2</td>
<td>9C</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TIME</td>
<td>SAMPLE IDENTIFICATION</td>
<td>NUMBER OF CONTAINERS SUBMITTED</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11-5-10| 1600 | Effluent | 3 | 1 | *Report:

Sample Collection Details

- **Sample Date:** 11-5-10
- **Sample Time:** 1700
- **Sample Location:** Effluent
- **Sample Type:** GC
- **Sample Description:** Metals (GC/ICP)
- **Sample Media:** Effluent
- **Sample Container:** 1
- **Sample Quantity:** 1

Laboratory Remarks: Temp 0.2
<table>
<thead>
<tr>
<th>Questions</th>
<th>/F/ NAc</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either wps not measured or, if measured, is U or below U</td>
<td>NIAU</td>
<td></td>
</tr>
<tr>
<td>Backround</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seU, if present, is intUct.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>The cooler or sl mp es do not UppUer to habe been compromised or U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Unpered with U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slmp es were received on ice.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUture is UceptUble.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Cooler TemperUture is recorded.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is present.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink Und legible.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with U pertinent informUtion.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Is the Field Slmp er's nUme present on COC?U</td>
<td>F5 seU</td>
<td></td>
</tr>
<tr>
<td>There Ure no discrep ncies between the sl mp e IDs on the contUners Und U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>the COC.U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slmp es Ure received within HoldUing Time.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Slmp e contUners habe legible UbeUleU</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>ContUners Ure not broken or leUkng.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Slmp e collection dteTimes Ure provided.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>AppropriUe sl mp e contUners Ure used.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Slmp e bottles Ure comp etelUfilled.U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>Slmp e PreservUlon Verified.</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for U requested UnUyes, incl. Uhy requested U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>MSUSSDsI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sl mp e viUs do not habe heUsp ce or bubble is <6mm (1U") in U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>dUmeter.U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necesSI ry, stll habe been informed of Uhy short holdUme or quick TAT U</td>
<td>TrueU</td>
<td></td>
</tr>
<tr>
<td>needsI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphabic sl mp es Ure not present.U</td>
<td>NIAU</td>
<td></td>
</tr>
<tr>
<td>Slmp es do not require sp iting or compositing.U</td>
<td>NIAU</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 400-51787-1
Job Description: UNC-Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250510), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LAO00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-10-2), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M) ceryl, Low L v) I (CVAFS)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
<tr>
<td>P) paatio., M) ceryl, Low L v) I)</td>
<td>TAL PEN.</td>
<td>EPA(1631E)</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:
TAL PEN = T) stAmerica P) sacola

Method References:
EPA= US Envi)o. me. al P)jo. ctio. .g) cy
<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631Ec</td>
<td>Jones, Randyc</td>
<td>Jc</td>
</tr>
</tbody>
</table>
SAMPLMSU MA RY2

Client: ARCADIS U.S., Inc.c
Job Number: 400-51787-1c

<table>
<thead>
<tr>
<th>Lab Sample I2</th>
<th>CIMu</th>
<th>Sample I2</th>
<th>CIMu : a:rx2</th>
<th>a:e/Tihe : Sampledb</th>
<th>a:e/Tihe : Reveuedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-51787-1c</td>
<td>LUC NTI</td>
<td>Waterc</td>
<td>11/05/2010 1600c</td>
<td>11/06/2010 1040c</td>
<td></td>
</tr>
</tbody>
</table>
SAMPL: S L SM
1631E Mercury, Low Level (CVAFS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ng/L)</th>
<th>Qualifier</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.68</td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

CTent Sample ID: EFFlUENT

- **Lab Sample ID:** 400-51787-1c
- **Client Matrix:** Water
- **Date Sampled:** 11/05/2010 1600c
- **Date Received:** 11/06/2010 1040c

Analytical Data

- **Method:** 1631E
- **Preparation:** 1631E
- **Dilution:** 1.0c
- **Date Analyzed:** 11/09/2010 1105c
- **Date Prepared:** 11/08/2010 1515c

Analysis Batch: 400-120331c
Prep Batch: 400-120303
Instrument ID: HYDRAc
Lab File ID: 110910b.PRNc
Initial Weight/Volume: 40 mL
Final Weight/Volume: 40 mL
QUALITY\textsubscript{CuTROLP} SULT\textsubscript{Sp}
QC Association Summary

<table>
<thead>
<tr>
<th>Lau Sample ID</th>
<th>Client Sample ID</th>
<th>Report Basisu</th>
<th>Client Matrix</th>
<th>Method</th>
<th>Prep Batchu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep Batchu400-1203032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-120303/2-Ac</td>
<td>Lab Control Samplec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-120303/3-Ac</td>
<td>Lab Control Sample Duplicatec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>MB900-120303/1-Ac</td>
<td>Muho dBlank0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>0-37993-A-14-BMSc</td>
<td>MatrixSpik0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>0-37993-A-14-C MSDc</td>
<td>MatrixSpik0Du plicatec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>400-51787-1c</td>
<td>EFFLUENT0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td></td>
</tr>
<tr>
<td>Analysis Batchu400-120331u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-120303/2-Ac</td>
<td>Lab Control Samplec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
<tr>
<td>LCSD 400-120303/3-Ac</td>
<td>Lab Control Sample Duplicatec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
<tr>
<td>MB900-120303/1-Ac</td>
<td>Muho dBlank0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
<tr>
<td>0-37993-A-14-BMSc</td>
<td>MatrixSpik0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
<tr>
<td>0-37993-A-14-C MSDc</td>
<td>MatrixSpik0Du plicatec</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
<tr>
<td>400-51787-1c</td>
<td>EFFLUENT0</td>
<td>T0</td>
<td>Waterc</td>
<td>1c 1EM</td>
<td>400-120303M</td>
</tr>
</tbody>
</table>

Report Basisu

T0: Totalc
Quality Control Results

Method Bank - Batch: 400-120303T

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Method</th>
<th>Preparation</th>
<th>cLs Sample ID</th>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB 400-120303/1-A</td>
<td>alysis Bacch 400-120331</td>
<td>Injume. (ID) HYDRA</td>
<td>MB 400-120303/2-A</td>
<td>alysis Bacch 400-120331</td>
<td>Injume. (ID) HYDRA</td>
</tr>
<tr>
<td>il u.io.</td>
<td>Unit s g/LR</td>
<td>Initial WMghbVolume:.40 mLR</td>
<td>il u.io.</td>
<td>Unit s g/LR</td>
<td>Initial WMghbVolume:.40 mLR</td>
</tr>
<tr>
<td>ac. alyzLdb 11/09/2010 0922b</td>
<td></td>
<td></td>
<td>ac. alyzLdb 11/09/2010 09300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MpcuryS</td>
<td><0.500</td>
<td>0.500</td>
<td></td>
</tr>
</tbody>
</table>

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 400-120303T

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 400-120303/2-A</td>
<td>alysis Bacch 400-120331</td>
<td>Injume. (ID) HYDRA</td>
</tr>
<tr>
<td>CLI: Maci: Wac</td>
<td>P p Bacch 400-120303</td>
<td>Lab Flt) ID 110910b.P N.</td>
</tr>
<tr>
<td>il u.io.</td>
<td>Unit s g/LR</td>
<td>Initial WMghbVolume:.40 mLR</td>
</tr>
<tr>
<td>ac. alyzLdb 11/09/2010 09300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ac. P pac db 11/08/2010 1515C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>% c()</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>MpcuryS</td>
<td>102b</td>
<td>102b</td>
<td>79 - 121</td>
<td>00</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MatrixSpiker
MatrixSpiker Dypudate Recovery Report - Batch: 400-120303T

<table>
<thead>
<tr>
<th>ID</th>
<th>MS Lab Sample ID</th>
<th>MS MS</th>
<th>P P</th>
<th>alysis</th>
<th>Batch</th>
<th>400-1203031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli Maci</td>
<td>Wac</td>
<td>660-37993-A-14-B</td>
<td></td>
<td>P</td>
<td>p</td>
<td>Ba</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.00</td>
<td>11/09/2010</td>
<td>10000</td>
<td>11/08/2010</td>
<td>1615C</td>
<td></td>
</tr>
</tbody>
</table>

Method: 1631Ey
Preparation: 1631Ey

<table>
<thead>
<tr>
<th>ID</th>
<th>MS Lab Sample ID</th>
<th>MS MS</th>
<th>P P</th>
<th>alysis</th>
<th>Batch</th>
<th>400-1203031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli Maci</td>
<td>Wac</td>
<td>660-37993-A-14-C</td>
<td></td>
<td>P</td>
<td>p</td>
<td>Ba</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.00</td>
<td>11/09/2010</td>
<td>1008</td>
<td>11/08/2010</td>
<td>1615C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>%</th>
<th>c.</th>
<th>MS)</th>
<th>MSD)</th>
<th>Limit)</th>
<th>P</th>
<th>P</th>
<th>Limit)</th>
<th>MS Qual)</th>
<th>MSD Qual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98)</td>
<td>91</td>
<td>71 - 125C</td>
<td>6)</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA RhPORT:Nc M ALIña RSh

<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierM</th>
<th>Description</th>
</tr>
</thead>
</table>

Page 11 of 13
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DATE</th>
<th>TIME</th>
<th>SAMPLE IDENTIFICATION</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11-5-10</td>
<td>1600</td>
<td>Effluent</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELINQUISHED BY: (SIGNATURE)</th>
<th>DATE</th>
<th>TIME</th>
<th>RELINQUISHED BY: (SIGNATURE)</th>
<th>DATE</th>
<th>TIME</th>
<th>RELINQUISHED BY: (SIGNATURE)</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTAINERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMPTY CONTAINERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECEIVED FOR LABORATORY BY:</th>
<th>DATE</th>
<th>TIME</th>
<th>CUSTODY INTACT?</th>
<th>CUSTODY SEAL NO.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/10</td>
<td>10:40</td>
<td>YES, NO</td>
<td>6510087</td>
<td>AOC</td>
</tr>
<tr>
<td>Question</td>
<td>/ F</td>
<td>NAc</td>
<td>Comment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dio ctivity either wpsnot mecuredor, ifmmeasuredcislo t or belowp</td>
<td></td>
<td></td>
<td>NaAc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bc kgroundc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thb ooler ’sl u stody el l, iftpresint, i slint ct.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thb ooler or csl mpleendo not cpp r to babSbeen com promsl dør c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp readwith.c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmpleware recei vSDacon ice.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler @pm p rc ture isl ptcble.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler @pm p rc ture islreordcd.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC islpresint.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC islfildeout in inkUndegible.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC islfildeout withb ll p rtinent in formction.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islthb FieldScmpler’sIncmc presInt on C OC?h</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thre c re no discrep nciesbetwpn t hb sl mple IDslon thb ontc inersl ndc thbC OC.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmple re receivSDwithin boldingUtime.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmple contcinerslabSlegible lcblems.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contciners l re not brokth or lec king.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmple collection dctedimesl re providcd.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AppROPire sl mple contcinersl re usl d.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmple botlsls re completely filde.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmple Preslr vStion /Sfiedc</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thre i slsufficient vol. for clr requestedc nclysl sl incl. any requestedc</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMSDsl</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sl mple wiclsido not babShb dsp or bubble i sl<6mm (1d*) in c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicmcter.c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ifnecesssi ry, staffthab Sbeen in formeda颇为 ny short boldtime or quickUTATp needsl</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphbic el mple sel re not presInt.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scmpleendo not require splitting amb compositing.c</td>
<td></td>
<td></td>
<td>Truec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-64168-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO: CT; PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH; LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
METHOD SUMMARY:

Client: ARCADIS U.S., Inc c
Job Number: 680-64168-1T

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>TAL SAVT</td>
<td>SW846 8260BT</td>
<td></td>
</tr>
<tr>
<td>Purge and Trap</td>
<td>AL SAVT</td>
<td>SW846 5030BT</td>
<td></td>
</tr>
<tr>
<td>Metals (ICP)</td>
<td>AL SAVT</td>
<td>SW846 6010CT</td>
<td></td>
</tr>
<tr>
<td>Preparation, Extractable Metals</td>
<td>AL SAVT</td>
<td>SM 3030CT</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

AL SAV = TestAmerica SavannahT

Method References:

SM = “Standard Methods For The Examination Of Water And Wastewater”, T

<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.46 89260B.</td>
<td>Sokolin, EleinaN</td>
<td></td>
</tr>
<tr>
<td>W.46 6010CN</td>
<td>Bland, BrianN</td>
<td>BCB.</td>
</tr>
<tr>
<td>Lab Sample I2</td>
<td>CI\textmu{}</td>
<td>Sample I2</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>680-64168-1N</td>
<td>EffluentJ</td>
<td>WaterJ</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep4:ion:J</td>
<td>5030BJ</td>
<td>LJet File ID:J</td>
<td>p0385.dN</td>
<td></td>
</tr>
<tr>
<td>Dilution:J</td>
<td>.0J</td>
<td>Initial Weight/Volume:J</td>
<td>5 mLJ</td>
<td></td>
</tr>
<tr>
<td>DJt:Analyzed:J</td>
<td>2/2N2010 1417J</td>
<td>Final Weight/Volume:J</td>
<td>5 mLJ</td>
<td></td>
</tr>
<tr>
<td>DJt:Prep4 ed:J</td>
<td>2/2N2010 1417J</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L):J</th>
<th>QuJifier:J</th>
<th>RL:J</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneJ</td>
<td>25J</td>
<td>UJ</td>
<td>25J</td>
</tr>
<tr>
<td>BenzeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>BromoformJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Bromometh neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>CJ bon disulfideJ</td>
<td>2.0J</td>
<td>UJ</td>
<td>2.0J</td>
</tr>
<tr>
<td>CJ bon tetrachlorideJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>ChlorobenzeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Chlorodibromometh neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Chloroeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>ChloroformJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Chlorometh neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>cis,1,2-DichloroetheneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>cis,1,3-DichloropropeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Dichlorobromometh neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,1-Dichloroeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,2-Dichloroeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,1-DichloroetheneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,2-DichloropropeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Diethyl etherJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>EthylbenzeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>2-HexJnoneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Methylene ChlorideJ</td>
<td>5.0J</td>
<td>UJ</td>
<td>5.0J</td>
</tr>
<tr>
<td>2-ButJnone (MEK):J</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>- Methyl-2-pentJnone (MIBK):J</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>StyreneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,1,2,2-TetJchloeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>TetrachloroetheneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>TolueneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>trJns-1,2-DichloroetheneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>trJns-1,3-DichloropropeneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,1,1-T.jchloeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>,1,2-T.jchloeth neJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>T.jchloetheneJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Vinyl chlorideJ</td>
<td>.0J</td>
<td>UJ</td>
<td>.0J</td>
</tr>
<tr>
<td>Xylenes, TotalJJ</td>
<td>2.0J</td>
<td></td>
<td>2.0J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogJteJ</th>
<th>%Rec:J</th>
<th>QuJifier:J</th>
<th>AcceptUnc:e Limits:J</th>
</tr>
</thead>
<tbody>
<tr>
<td>-BromofluorobenzeneJ</td>
<td>94J</td>
<td></td>
<td>70 - 130J</td>
</tr>
<tr>
<td>Dibromofluorometh neJ</td>
<td>09J</td>
<td></td>
<td>70 - 130J</td>
</tr>
<tr>
<td>Toluene-d8 (Sur):J</td>
<td>03J</td>
<td></td>
<td>70 - 130J</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.
Job Number: 680-64168-1J

Client Sample ID: V
Effluent: V

LJb Sample ID: 680-64168-1J
Client Matrix: WNerJ

Date Sampled: 12/N/2010 1700J
Date Received: 12/N/2010 0934J

6010C Metals (ICP):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution:J</td>
<td>.0J</td>
<td></td>
<td>Initial Weight/Volume:J</td>
<td>50 mLJ</td>
</tr>
<tr>
<td>DJe AnJlyzed:J</td>
<td>2/N/2010 1908J</td>
<td></td>
<td>Final Weight/Volume:J</td>
<td>50 mLJ</td>
</tr>
<tr>
<td>DJe Prep4 ed:J</td>
<td>2/N/2010 1202N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnJlyteJ</th>
<th>Result (ug/L)J</th>
<th>QualifierJ</th>
<th>RKJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicJ</td>
<td>20J</td>
<td>UJ</td>
<td>20J</td>
</tr>
<tr>
<td>ChromiumJ</td>
<td>0J</td>
<td>UJ</td>
<td>0J</td>
</tr>
<tr>
<td>CopperJ</td>
<td>20J</td>
<td>UJ</td>
<td>20J</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>U</td>
<td>0J</td>
</tr>
<tr>
<td>ZincJ</td>
<td>00</td>
<td>UJ</td>
<td>00J</td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierM</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>GC/MS VOAJ</td>
<td>UJ</td>
<td>Indicates the analyte was analyzed for but not detected.</td>
<td></td>
</tr>
<tr>
<td>MetalsI</td>
<td>UJ</td>
<td>Indicates the analyte was analyzed for but not detected.</td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-190069u

<table>
<thead>
<tr>
<th>nalytF</th>
<th>sultF</th>
<th>QualF</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>cPTonF</td>
<td>25F</td>
<td>UF</td>
<td>25F</td>
</tr>
<tr>
<td>BFmznFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>BFmzmoform.</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>BFmzmethanFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbon disulfidF</td>
<td>2.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbon trifluorideF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>ChlorobenzFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>ChlorodibromomethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>ChloroethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>ChloromethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>cis-1,2-ichi oothFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>cis-1,3-ichi oothFpFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>ichl oorbromomethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1-ichi oothanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-ichi oothanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1,1-ichi oothFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2,1-ichi oothFpanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>IF thrF ethF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>EthylbenzFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>2-HFxanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>MFhylFnPnF ChloridF</td>
<td>5.0.</td>
<td>U</td>
<td>6.0</td>
</tr>
<tr>
<td>tyF nF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1,2,2-TetfcloroethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>TetfcloroethanFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>TolueneF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>tfans-1,2-ichi oothFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>tfans-1,3-ichi oothFpFnF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1,1-TrichloroethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1,2-TrichloroethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>TrichloroethanF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chloridF</td>
<td>1.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>XylFnFs, TotalF</td>
<td>2.0.</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>

4-BfomofluorobenzFnF 97F 70 - 130. 70 - 130.

TolueneF dF (Surr)F 103F 70 - 130. 70 - 130.
<table>
<thead>
<tr>
<th>Substance</th>
<th>LCSF</th>
<th>LCSDF</th>
<th>LimitF</th>
<th>PDF</th>
<th>PDFLimitF</th>
<th>LCSFQualF</th>
<th>LCSDFQualF</th>
</tr>
</thead>
<tbody>
<tr>
<td>cFtoxF</td>
<td>103F</td>
<td>101F</td>
<td>2F- 1F</td>
<td>2F</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFmFmF</td>
<td>101F</td>
<td>101F</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFmFmFmF</td>
<td>99F</td>
<td>9F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFmFmFmFmF</td>
<td>91F</td>
<td>97F</td>
<td>23 - 1F5</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbon disulfidF</td>
<td>110.</td>
<td>110.</td>
<td>54 - 132F</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbon IFmFmFmF</td>
<td>110.</td>
<td>110.</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzFmFmF</td>
<td>103F</td>
<td>103F</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorocromethanFmF</td>
<td>92F</td>
<td>91F</td>
<td>70 - 130</td>
<td>0.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanFmF</td>
<td>99F</td>
<td>101F</td>
<td>5F- 152F</td>
<td>2F</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>110.</td>
<td>111F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorometanF</td>
<td>99F</td>
<td>101F</td>
<td>70 - 130</td>
<td>2F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ichl oeoethFmF</td>
<td>112F</td>
<td>113F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ichl oropFmFmF</td>
<td>107F</td>
<td>107F</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichl oeoethanomethanF</td>
<td>101F</td>
<td>104F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ichl oeoethanF</td>
<td>111F</td>
<td>111F</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ichl oeoethanF</td>
<td>93F</td>
<td>94F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ichl oeoethFmF</td>
<td>11F</td>
<td>115F</td>
<td>- 131F</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ichl oropFmFmF</td>
<td>102F</td>
<td>101F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzFmFmF</td>
<td>9F</td>
<td>100.</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-FFxanomF</td>
<td>93F</td>
<td>94F</td>
<td>42 - 1F5</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFthylFmFmF ChloridF</td>
<td>112F</td>
<td>112F</td>
<td>7 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButanomF (MEK)F</td>
<td>109F</td>
<td>106.</td>
<td>49 - 172F</td>
<td>3F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MMthyl-2-pFntanomF (MBK)F</td>
<td>90.</td>
<td>70 - 130</td>
<td>2F</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tyF nF</td>
<td>104F</td>
<td>104F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TetfichloroethanF</td>
<td>101F</td>
<td>100.</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TetfichloroethanFmF</td>
<td>106.</td>
<td>107F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluomF</td>
<td>102F</td>
<td>102F</td>
<td>70 - 130</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tfans-1,2-ichl oeoethFmF</td>
<td>111F</td>
<td>113F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tfans-1,3-ichl oropFmFmF</td>
<td>105F</td>
<td>106.</td>
<td>70 - 130</td>
<td>0.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-TrichloroethanF</td>
<td>104F</td>
<td>105F</td>
<td>70 - 130</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-TrichloroethanF</td>
<td>9F</td>
<td>100.</td>
<td>70 - 130</td>
<td>2F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TrichloroethanFmF</td>
<td>104F</td>
<td>106.</td>
<td>70 - 130</td>
<td>2F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorideF</td>
<td>105F</td>
<td>107F</td>
<td>7 - 134F</td>
<td>1F</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample
Lab Control Sample V Viate Recovery Report V Batch: 680-190069u

<table>
<thead>
<tr>
<th>LCS Lab . a mplF.</th>
<th>LCSFb80-190029/7F</th>
<th>nalysis BatchF 680-190029F</th>
<th>nstFament . MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatfixF</td>
<td>WatF</td>
<td>PF p BatchFN/AF</td>
<td>Lab FillF.</td>
</tr>
<tr>
<td>ill utionF</td>
<td>1.0.</td>
<td>UnitsF ug/LF</td>
<td>pq1F1.dF</td>
</tr>
<tr>
<td>atF . nalyF dF</td>
<td>12/24/2010 1100.</td>
<td></td>
<td>nitial WF/Volume: 5 mL</td>
</tr>
<tr>
<td>atF PF paF dF</td>
<td>12/24/2010 1100.</td>
<td></td>
<td>Final WF/Volume: 5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab . a mplF.</th>
<th>LCSDb80-190029/F</th>
<th>nalysis BatchF 680-190029F</th>
<th>nstFament . MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatfixF</td>
<td>WatF</td>
<td>PF p BatchFN/AF</td>
<td>Lab FillF.</td>
</tr>
<tr>
<td>ill utionF</td>
<td>1.0.</td>
<td>UnitsF ug/LF</td>
<td>pq1F3.dF</td>
</tr>
<tr>
<td>atF . nalyF dF</td>
<td>12/24/2010 1129F</td>
<td></td>
<td>nitial WF/Volume: 5 mL</td>
</tr>
<tr>
<td>atF PF paF dF</td>
<td>12/24/2010 1129F</td>
<td></td>
<td>Final WF/Volume: 5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyF</th>
<th>% c.F</th>
<th>LCSF</th>
<th>LCSDF</th>
<th>LimitF</th>
<th>PDF</th>
<th>PDF LimitF</th>
<th>LCSFQualF</th>
<th>LCSDQualF</th>
</tr>
</thead>
<tbody>
<tr>
<td>XylFnFs, TotalF</td>
<td>104F</td>
<td>105F</td>
<td>70 - 130.</td>
<td>1F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>urrogiF</th>
<th>LCS% . cF</th>
<th>LCSDP% . cF</th>
<th>ccF ptanF LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-fluorobenzF</td>
<td>101F</td>
<td>9F</td>
<td>70 - 130.</td>
</tr>
<tr>
<td>1-bromo-fluoromethanF</td>
<td>113F</td>
<td>113F</td>
<td>70 - 130.</td>
</tr>
<tr>
<td>Toluene dF (SurjF)</td>
<td>102F</td>
<td>102F</td>
<td>70 - 130.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-189355u

<table>
<thead>
<tr>
<th>Analyte</th>
<th>sF</th>
<th>sult</th>
<th>Qual</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFnicF</td>
<td>20</td>
<td>UF</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chfomium</td>
<td>10</td>
<td>UF</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CoppF</td>
<td>20</td>
<td>UF</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>LFadF</td>
<td>10</td>
<td>UF</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ZincF</td>
<td>100</td>
<td>UF</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Lab\Control\Sample\ Batch: 680-189355u

<table>
<thead>
<tr>
<th>Analyte</th>
<th>pik</th>
<th>mount</th>
<th>sult</th>
<th>%</th>
<th>c.F</th>
<th>Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFnicF</td>
<td>2000</td>
<td>2050</td>
<td>102F</td>
<td>75-125F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chfomium</td>
<td>200</td>
<td>209F</td>
<td>105F</td>
<td>75-125F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoppF</td>
<td>250</td>
<td>25F</td>
<td>103F</td>
<td>75-125F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFadF</td>
<td>500</td>
<td>514F</td>
<td>103F</td>
<td>75-125F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZincF</td>
<td>500</td>
<td>52F</td>
<td>105</td>
<td>$5-125F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Preparation</th>
<th>CPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab FillF.</td>
<td>1219100920.chF</td>
</tr>
<tr>
<td>Initial W/F</td>
<td>50 mL</td>
</tr>
<tr>
<td>Inal W/F</td>
<td>50 mL</td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Preparation</th>
<th>CPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab FillF.</td>
<td>1219100920.chF</td>
</tr>
<tr>
<td>Initial W/F</td>
<td>50 mL</td>
</tr>
<tr>
<td>Inal W/F</td>
<td>50 mL</td>
</tr>
</tbody>
</table>
Matrix\Sp8k\e/V
Matrix\Sp8k\e/V\Vp\Vate\Rec\Vey Report\V Batch: 680-189355u

<table>
<thead>
<tr>
<th>Method: 6010Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation: 8030Cu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSI Lab .a mplF.</th>
<th>0-6.41F- 1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CleeFnt MatixF</td>
<td>WatF</td>
</tr>
<tr>
<td>ill utionF</td>
<td>1.0.</td>
</tr>
<tr>
<td>atF . nalyzF dF</td>
<td>12/19/2010 1923F</td>
</tr>
<tr>
<td>atF PF paF dF</td>
<td>12/17/2010 1202F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSI Lab .a mplF.</th>
<th>0-6.41F- 1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CleeFnt MatixF</td>
<td>WatF</td>
</tr>
<tr>
<td>ill utionF</td>
<td>1.0.</td>
</tr>
<tr>
<td>atF . nalyzF dF</td>
<td>12/19/2010 1923F</td>
</tr>
<tr>
<td>atF PF paF dF</td>
<td>12/17/2010 1202F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyF</th>
<th>% . c.F</th>
<th>MSF</th>
<th>MSDF</th>
<th>LimitF</th>
<th>PDF</th>
<th>PDF LimitF</th>
<th>MSI QualF</th>
<th>MSD QualF</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFnicF</td>
<td>102F</td>
<td>104</td>
<td></td>
<td>F5 - 125F</td>
<td>2F</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChFomium.</td>
<td>103F</td>
<td>105</td>
<td></td>
<td>F5 - 125F</td>
<td>2F</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoppF</td>
<td>104F</td>
<td>106</td>
<td></td>
<td>75 - 125F</td>
<td>2F</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFadF</td>
<td>100.</td>
<td>103</td>
<td></td>
<td>F5 - 125F</td>
<td>2F</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZincF</td>
<td>104F</td>
<td>106</td>
<td></td>
<td>75 - 125F</td>
<td>2F</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chain of Custody Record

<table>
<thead>
<tr>
<th>Client Contact</th>
<th>Project Manager: Alan Pinnix</th>
<th>Site Contact: Alan Pinnix</th>
<th>Date: December 14, 2010</th>
<th>COC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCADIS</td>
<td>Tel/Fax: 919-854-1282</td>
<td>Lab Contact: Kathy Smith</td>
<td></td>
<td>1 of 1 COCs</td>
</tr>
<tr>
<td>801 Corporate Center Drive, Suite 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raleigh, NC 27607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>919-854-1282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>919-854-5448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Name: UNC - Airport Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site: Chapel Hill, NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P O # NC0000239.0016.00001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis Turnaround Time</th>
<th>Calendar (C) or Work Days (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAT if different from below</td>
</tr>
<tr>
<td></td>
<td>2 weeks</td>
</tr>
<tr>
<td></td>
<td>1 week</td>
</tr>
<tr>
<td></td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>1 day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filtered Sample</th>
<th>VOA Method (1040)</th>
<th>PP Method (Method 8010)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Type</th>
<th>Matrix</th>
<th># of Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>12/14/2010</td>
<td>7:00</td>
<td>Grab</td>
<td>4</td>
<td>3 1</td>
</tr>
</tbody>
</table>

| Sample Specific Notes: | Please report: As, Cr, Cu, Pb, and Zn. |

Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4= HNO3; 5= NaOH; 6= Other

Possible Hazard Identification:
- Non-Hazard
- Flammable
- Skin Irritant
- Poison B
- Unknown

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month):
- Return To Client
- Disposal By Lab
- Archive For 12 Months

Special Instructions/QC Requirements & Comments:

TEMP 2.4
680 - 64168

Relinquished by: [Signature]
Company: ARCADIS
Date/Time: 12/15/16 10:00

Relinquished by: [Signature]
Company: [Signature]
Date/Time: 12/16/16 09:34

Relinquished by: [Signature]
Company: [Signature]
Date/Time: 12/16/16 09:34
<table>
<thead>
<tr>
<th>Question</th>
<th>/</th>
<th>F</th>
<th>NAc</th>
<th>CommeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity eitFeFwas not measured or, if measured, is at or below F</td>
<td></td>
<td></td>
<td></td>
<td>N/AF</td>
</tr>
<tr>
<td>backg.oundc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tce cooleFs custody seal, if p esent, is intact.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tce cooleFor, samples do not appeahto Fave been comp omised or.</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tampeFed witF.J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples weF received on ice.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CooleFTempeFature is acceptable.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CooleFTempeFature is recorded.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is p esent.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out witF all peFtinent information.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is tFe Field SampleFs name p esent on COC?N</td>
<td>N/AF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TceFe are no discrepencies between tFe sample IDs on tFe containeFs and F</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tFe COC.J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples are received witFin Holding Time.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample containeFs Fave legible labels.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContaineFs are not broken orJeaking.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are p ovided.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>App op iate sample containeFs are used.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.J</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample PFeSeFation VeFflede</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TceFe is sufficient vol. for all requested analyses, incl. any requested F</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS/MSDST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not Fave Feadspace or bubble is <6mm (1IJ”) in F</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diameteF.J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If neccessaty, staff Fave been informed of any sTordFold time or quick TAT F</td>
<td>TaeF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>needsT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multip asic samples are not p esent.J</td>
<td>N/AF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples do not FequFe splitting or composting.J</td>
<td>N/AF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The test results in this report meet all NELAP requirements for accredited parameters, unless otherwise noted, and relate only to the referenced samples. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory. For questions please contact the Project Manager at the e-mail address listed on this page, or the telephone number at the bottom of the page. TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250510), New Jersey (FL006), North Carolina (314), Oklahoma (9810), Pennsylvania (68-00467), Rhode Island (LA00307), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-10-2), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).
METHOD SUMMARY:

Client: ARCADIS U.S., Inc.
Job Number: 400-52750-1U

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>eRurJ, Low Level (CVAFS) reparation, Mercury, Low Level</td>
<td>AL PENv</td>
<td>A 1631Ev</td>
<td>A 1631Ev</td>
</tr>
</tbody>
</table>

Lab References:
AL PEN = TestAmerica Pensacola

Method References:
A = US Environmental Protection Agency

TestAmerica Pensacola: Page 2 of 13
<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 1631Ec</td>
<td>Jonev, RvndyF</td>
<td>RJv</td>
</tr>
<tr>
<td>Lab Sa:</td>
<td>Client Sa:</td>
<td>Client:</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>400-52750-1v</td>
<td>FFLUENTS</td>
<td>WaterS</td>
</tr>
</tbody>
</table>
SAV PL : S L SV
1631E Mercury, Low Level (CVAFS)D

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>ID</th>
<th>Analysis Date</th>
<th>Instrument ID</th>
<th>File ID</th>
<th>Weight/Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5ho</td>
<td>631ES</td>
<td>2/21/2010 1135S</td>
<td>40 mL</td>
<td>40 mL</td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>631ES</td>
<td>2/21/2010 1135S</td>
<td>40 mL</td>
<td>40 mL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Result (ng/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5curyS</td>
<td>0.71S</td>
<td></td>
<td>0.50S</td>
</tr>
</tbody>
</table>
QUALITYpCuTROLp SULTSp
QC Association Summary

<table>
<thead>
<tr>
<th>LaV Sample</th>
<th>Client Sample</th>
<th>ReportV</th>
<th>Client Watria-</th>
<th>Method-</th>
<th>Prep Batchu</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetaV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Batchu 400-123009b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-123009/2-AS</td>
<td>L0b Control S mpleS</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>LCSD 400-123009/3-AS</td>
<td>L0b Control S mple DuplicS</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>MB 400-123009/TAS</td>
<td>M0 hod BlSnk0</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>400-52750-1S</td>
<td>EFFLUENS</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>700-54458-B-2-B M0</td>
<td>M0 ix Spik0</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>700-54458-B-2-C MSDS</td>
<td>M0 ix Spik0Du plicS</td>
<td>W0</td>
<td>3MEM</td>
<td>3MEM</td>
<td>400-123009b</td>
</tr>
<tr>
<td>AnalV Batchu 400-123101b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS 400-123009/2-AS</td>
<td>L0b Control S mpleS</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
<tr>
<td>LCSD 400-123009/3-AS</td>
<td>L0b Control S mple DuplicS</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
<tr>
<td>MB 400-123009/TAS</td>
<td>M0 hod BlSnk0</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
<tr>
<td>400-52750-1S</td>
<td>EFFLUENS</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
<tr>
<td>700-54458-B-2-B M0</td>
<td>M0 ix Spik0</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
<tr>
<td>700-54458-B-2-C MSDS</td>
<td>M0 ix Spik0Du plicS</td>
<td>W0</td>
<td>3MEM</td>
<td>400-123009b</td>
<td></td>
</tr>
</tbody>
</table>

ReportV BaV

= Sot3S
Method Blank - Batch: 400-123009y

<table>
<thead>
<tr>
<th>LRb (S) mpl) ID</th>
<th>MB 400-123009/1-A</th>
<th>lysis BF chF 400-123101.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MaNxxJ</td>
<td>WM</td>
<td>PF p BF chF 400-123009S</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.00</td>
<td>Unit$F g/LR</td>
</tr>
<tr>
<td>lyzUtb</td>
<td>12/21/2010 09445</td>
<td></td>
</tr>
<tr>
<td>PF p2</td>
<td>12/16/2010 1215C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sult) Qu. (LR)</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN curyS</td>
<td><0.500 0.500</td>
</tr>
</tbody>
</table>

Lab\textbf{C}ontrol\textbf{S}ample\textbf{v} | Lab\textbf{C}ontrol\textbf{S}ample\textbf{V} plate\textbf{R}ecovery Report\textbf{V} Batch: 400-123009y

<table>
<thead>
<tr>
<th>LCS LRb (S) mpl) ID</th>
<th>LCS 400-123009/2-A</th>
<th>lysis BF chF 400-123101.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MaNxxJ</td>
<td>WM</td>
<td>PF p BF chF 400-123009S</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.00</td>
<td>Unit$F g/LR</td>
</tr>
<tr>
<td>lyzUtb</td>
<td>12/21/2010 0952</td>
<td></td>
</tr>
<tr>
<td>PF p2</td>
<td>12/21/2010 09300</td>
<td></td>
</tr>
</tbody>
</table>

| LCS) LCSD) Limit) PF PF Limit) LCS Qu. l) LCSD)Qu. l) |
|----------------|----------------|----------------|----------------|----------------|
| MN curyS | 945 | 945 | 79 - 121. | 00 | 200 |
MatrixSpokev
MatrixSpoke/ pVateRecovery ReportV Batch: 400-123009y

MS LRB S mpl ID	lysis BF chF 400-123101.	Method: 1631Ev
Cli) MaNxJ WM	PF p BF chF 400-123009S	PreparatVon: 1631Ev
il u/io.	1.00	InjFume. ID) HYv
. lyzUlb	12/21/2010 1111.	LRB . ii) ID) 122110b PF N.
PF p2 db	12/20/2010 1445C	ini) WMghfVolume: 40 mL R

MS (LRB S) mpl ID	lysis BF chF 400-123101.	InjFume. ID) HYv
Cli) MaNxJ WM	PF p BF chF 400-123009S	LRB . ii) ID) 122110b PF N.
il u/io.	1.00	ini) WMghfVolume: 40 mL R
. lyzUlb	12/21/2010 1119S	in) WMghfVolume: 40 mL R
PF p2 db	12/20/2010 1445C	

<table>
<thead>
<tr>
<th>lyS</th>
<th>% c.)</th>
<th>MS</th>
<th>MSD</th>
<th>Limit</th>
<th>PF</th>
<th>PF Limit</th>
<th>MS Qu. l)</th>
<th>MSD Qu. l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNcuryS</td>
<td>98v</td>
<td>88</td>
<td>v 71 - 125C</td>
<td>100</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierM</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D T R PORT N M LI Fa RSh
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DATE</th>
<th>TIME</th>
<th>SAMPLE IDENTIFICATION</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent</td>
<td>12-14-10</td>
<td>1700</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Requested Analysis: 27657

Possible Hazards: Normal

TAT Requested: Rush Needs Lab Preapproval, Normal - 10 Business Days

Sample Disposal: Return to Client, Disposal by Lab

Sample Description: Effluent

Preservative: Mercury (Hg)

Matrix: Liquid

No. of Coolers per Shipment: 1

Special Instructions/Conditions of Receipt: None

Relinquished By: (Signature)

Received By: (Signature)

Laboratory Use Only: Sample 186019

Remarks: 0.0
Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>/F</th>
<th>NAc</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity was not measured or, if measured, is below background.</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbrooler is custody s/ al, if p/ slnt, is intact.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbrooler or sample do not app/ ro hard been com/ p omis/ d or S</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amp/ d with S</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample/or receive vS on ice.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler S m p/ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler S m p/ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is p/ slnt.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all p/ int in form.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name p/ slnt on C OC?</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbaF no discrepancies between sample IDs on container and S</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbrooler receive S/ in Holding S/ m.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample/container/ s/ holdable labels.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container do not bro k/ or leaking.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample collection daF/ ime/ S/ p ovided.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>App op iaF/ sample container/ S/ u/ sl d.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample bottle/ S/ com pletely filled.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample P/ sl vaffon Verif/ c.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbaF/ s sufficient vol. for all requeF/ d analysis, incl. any requeF/ d S</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN MSDs/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have space or bubble is <6mm (N4") in S</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been in formed/ of any short hold time or quick SAS S needs.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiphasic sample/ S/ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ample do not require splitting or compositing.</td>
<td>usS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI: IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
Comments
No additional comments.

ceipt
All samples were received in good condition and within temperature requirements.

GC/MS VOA
No analytical or quality issues were noted.

Metals
No analytical or quality issues were noted.

General Chemistry
No analytical or quality issues were noted.

VOA Prep
No analytical or quality issues were noted.
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/M)</td>
<td>TML. VM</td>
<td>WF 4U8.2.0 BM</td>
<td></td>
</tr>
<tr>
<td>Purge Mand T apF</td>
<td>TML. VM</td>
<td>WF 4U5030BM</td>
<td></td>
</tr>
<tr>
<td>Tals (NP)M</td>
<td>TML. VM</td>
<td>WF 4U60 10CF</td>
<td></td>
</tr>
<tr>
<td>PreparCation, Total. coveredFor. i ssolved. talsM</td>
<td>TML. VM</td>
<td>WF 4U3005T</td>
<td></td>
</tr>
<tr>
<td>cury (CVM) M</td>
<td>TML. VM</td>
<td>W 46 7470.</td>
<td>WF 4U7470.</td>
</tr>
<tr>
<td>Prepa ation, cury</td>
<td>TML. VM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UlfatF, TurbidimetFrcF</td>
<td>TML. VM</td>
<td>WF 4U903T</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TML. V = TMstAmerica. avannahF

Method References:

<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>W8J6 8260BI</td>
<td>Lanier, CaRlynS</td>
<td>CLJ</td>
</tr>
<tr>
<td>W8J6 6010CS</td>
<td>Bland, BliS</td>
<td>BCBI</td>
</tr>
<tr>
<td>W846 7470A.</td>
<td>Vasquez, Juana.</td>
<td>V.</td>
</tr>
<tr>
<td>W846 9038.</td>
<td>Ross, Jon.</td>
<td>R.</td>
</tr>
<tr>
<td>Lab Sa:</td>
<td>Client Sa:</td>
<td>Client Matrix2</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>680-61778-1A</td>
<td>MW-1 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-2A</td>
<td>MW-2 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-3A</td>
<td>MW-3 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-4A</td>
<td>MW-14 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-5A</td>
<td>MW-38 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-6A</td>
<td>MW-39 (09302010)A</td>
<td></td>
</tr>
<tr>
<td>680-61778-7A</td>
<td>Trip BlankA</td>
<td></td>
</tr>
</tbody>
</table>
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (μg/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>1300</td>
<td>UA</td>
<td>1300</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>620</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>2-Butanone (MEK)A</td>
<td>500A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Ca.bon disulfidF</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Ca.bon tetrachloridF</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>3400A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ChloromethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>2-ChlorotolueneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2-DibromomethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>DichlorobromomethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>360A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2-Dichloroethylene, Tot/A</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2-DichlorobiphenyleA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>2,2-DichlorobiphenyleA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,3-DichlorobiphenyleA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1-Dichlorobiphe A</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>4300A</td>
<td>UA</td>
<td>500A</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>2-HeprnoneA</td>
<td>500A</td>
<td>UA</td>
<td>500A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>MNhyene ChlorideF</td>
<td>570A</td>
<td>UA</td>
<td>250A</td>
</tr>
<tr>
<td>4-MNhy-2-p-PhTAnone (MIBK)A</td>
<td>500A</td>
<td>UA</td>
<td>500A</td>
</tr>
<tr>
<td>MNhyt tert-butyl etA</td>
<td>500A</td>
<td>UA</td>
<td>500A</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Naph haleneA</td>
<td>5900A</td>
<td>UA</td>
<td>250A</td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>N-P-octylbenzeneA</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
</tbody>
</table>
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Styrene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>530</td>
<td>AO</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Toluene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ans-1,2-Dichloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>ans-1,3-Dichloro-4-ethyl</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>130</td>
<td>AO</td>
<td></td>
</tr>
<tr>
<td>Trichloro-1-fluoroethane</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2,3-Trichloro-1,2-propene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,2,4-Trichloro-1,3-propene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>1,3,5-Trichloro-1,2-propene</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>50A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>xylenes, totalA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
</tbody>
</table>

Surrogate

<table>
<thead>
<tr>
<th>Analyte</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>cce/95% confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>98A</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>90A</td>
<td></td>
<td>75 - 121A</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>97A</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>Compounds</td>
<td>Result (ug/L)</td>
<td>Qualifier</td>
<td>RLJ</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>acetoneA</td>
<td>2500A</td>
<td>UA</td>
<td>2500</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>6800A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>2-Butanone (MEK)A</td>
<td>1000A</td>
<td>UA</td>
<td>1000A</td>
</tr>
<tr>
<td>Ca.bon disulfidF</td>
<td>200A</td>
<td>UA</td>
<td>200A</td>
</tr>
<tr>
<td>Ca.bon tetrachloridF</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>240A</td>
<td>100A</td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>780A</td>
<td>100A</td>
<td></td>
</tr>
<tr>
<td>ChloromethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>2-ChlorotolueneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropaneA</td>
<td>100A</td>
<td>100A</td>
<td></td>
</tr>
<tr>
<td>1,2-DibromomethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>DichlorobromomethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>1000A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2-Dichloroethane, TotalA</td>
<td>200A</td>
<td>UA</td>
<td>200A</td>
</tr>
<tr>
<td>1,2-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>2,2-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,3-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>13000A</td>
<td>EA</td>
<td>100A</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>260A</td>
<td>100A</td>
<td></td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>2-HeXanoneA</td>
<td>1000A</td>
<td>UA</td>
<td>1000A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>MNhylene ChloridF</td>
<td>780A</td>
<td>500A</td>
<td></td>
</tr>
<tr>
<td>4-MNhy-2-p-tolulone (MIBK)A</td>
<td>100A</td>
<td>UA</td>
<td>1000A</td>
</tr>
<tr>
<td>MNhyethyl tert-butyl etA</td>
<td>1000A</td>
<td>UA</td>
<td>1000A</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneA</td>
<td>220A</td>
<td>200A</td>
<td></td>
</tr>
<tr>
<td>Naph haleneA</td>
<td>15000A</td>
<td>500A</td>
<td></td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>N-P.O.pentybenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-61778-1A

Client Sample ID: MW-2 (09302010)d

Lab Sample ID: 680-61778-2b

Client Ma. ix: Wa.

Da. Sample: 09/30/2010 1115A

Da. Receive: 10/01/2010 0941A

60B Volatile Organic Compounds (GC/MS)d

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneA</td>
<td>640A</td>
<td></td>
<td>100A</td>
</tr>
<tr>
<td>p-IsopropyltolueneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>sec-ButylbenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>StyreneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1,1,2-TetrachloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>TetrachloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>TolueneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>ans-1,2-DichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>ans-1,3-DichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>TrichloroethaneA</td>
<td>130A</td>
<td></td>
<td>100A</td>
</tr>
<tr>
<td>TrichlorofluoromethaneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2,3-TrichloropropeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneA</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>200A</td>
<td>UA</td>
<td>200A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>100A</td>
<td>UA</td>
<td>100A</td>
</tr>
<tr>
<td>Xylenes, TotalA</td>
<td>870A</td>
<td></td>
<td>200A</td>
</tr>
</tbody>
</table>

Surrogate

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>ccpp-ppm LimitA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneA</td>
<td>96A</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>DibromofluoromethaneA</td>
<td>91A</td>
<td></td>
<td>75 - 121A</td>
</tr>
<tr>
<td>Toluene-d8 (Surrog)A</td>
<td>98A</td>
<td></td>
<td>75 - 120A</td>
</tr>
</tbody>
</table>

TestAmerica Savannah
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier A</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetone</td>
<td>25A</td>
<td>UA</td>
<td>25</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ca,bon disulfid</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Ca,bon tetrachlorid</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chlorobutane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethane, Total</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,2-Dichlorobutane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-Dichlorobutane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Heptane</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>MNhylene Chloride</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>4-MNhyl-2-pentanone (MIBK)</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>MNhyl tert-butyl ethe</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>N-P-Propylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
</tbody>
</table>
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Method</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RC/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Styrene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,2-Dichloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,3-Dichloropropene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichloro(2,2-difluoromethane)</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichlorobiphenyl</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trichloro(2,2-difluoromethane)</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3,5-Trichloro(2,2-difluoromethane)</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td></td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td></td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td></td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Surrogates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>91A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>96A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Method: 8260B
- Analysis Batch: 680-182149J
- Instrument ID: MSP
- Lab File ID: p0755
- Initial WS h: 5 mL
- Final WS h: 5 mL
Analytical Data

Client Sample ID: d
Lab Sample ID: d
Client Ma. ix: d
Da. Sample: d
Da. Receivd: d

60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (μg/L)</th>
<th>QualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneA</td>
<td>25A</td>
<td>UA</td>
<td>25A</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>49J</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Butanone (MEK)A</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ca.bon disulfidF</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Ca.bon tetrachloridF</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>1.1A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorobromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>1,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>700A</td>
<td>EA</td>
<td>10A</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,4-HexanoneA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>MNhyline ChloridF</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>4-MNhyly-2-p-nutane (MIBK)A</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>MNhyly tert-butil etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Naph haleneA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>N-P.oxybenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
</tbody>
</table>

TestAmerica Savannah

Page 12 of 48
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3,4-Tetrachlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>3.9J</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>cce Percent Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>98A</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89J</td>
<td></td>
<td>75 - 121A</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>99J</td>
<td></td>
<td>75 - 120A</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.
Job Number: 680-61778-1A

Client Sample ID: d MW-38 (09302010)d
Lab Sample ID:A 680-61778-5A
Client Ma. ix:A Wa.

Da. Sampled: 09/30/2010 1330A
Da. Received: 10/01/2010 0941A

60B Volatile Organic Compounds (GC/MS)d

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (µg/L)</th>
<th>qualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetoneA</td>
<td>25A</td>
<td>UA</td>
<td>25</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Butane (MEK)dA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ca.bon disulfidF</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Ca.bon tetrachloridF</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>14U</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>1,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-Dichloro-2-propaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>220</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-HeptaneA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)dA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Methyl tert-butyl etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>NaphthaleneA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>N-PentylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
</tbody>
</table>

TestAmerica Savannahd Page 14 of 48
<table>
<thead>
<tr>
<th>n alyteA</th>
<th>Result (ug/L)</th>
<th>QualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>p-IsopropyltolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>sec-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>StyreneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TetrachloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,3-DichlorobiphenylA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TrichlorofluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-TrichlorobiphenylA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Vinyl chlorideF</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Xylenes, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Rec</th>
<th>QualifierA</th>
<th>ccee pare Ce LimitsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneA</td>
<td>94U</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>DibromofluoromethaneA</td>
<td>89J</td>
<td></td>
<td>75 - 121A</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)A</td>
<td>98A</td>
<td></td>
<td>75 - 120A</td>
</tr>
<tr>
<td>Analytical Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client: ARCADIS U.S., Inc.A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Number: 680-61778-1A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pa.a.ion:A</td>
<td>5030BA</td>
<td>Lab File ID:A</td>
<td>p0761.dF</td>
</tr>
<tr>
<td>Dilution:A</td>
<td>1.0A</td>
<td>Initial WS g h/Volume:A</td>
<td>5 mLJ</td>
</tr>
<tr>
<td>Da. Analyze:A</td>
<td>10/06/2010 1921A</td>
<td>Final WS g h/Volume:A</td>
<td>5 mLJ</td>
</tr>
<tr>
<td>Da. P. pa. d:A</td>
<td>10/06/2010 1921A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nlyteA</th>
<th>Result (ug/L)</th>
<th>aqualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetoneA</td>
<td>25A</td>
<td>UA</td>
<td>25</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Butanone (MEK)A</td>
<td>1.0A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ca.bon disulfidF</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Ca.bon tetrachloridF</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DibromoethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorobromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>1,2-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,2-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-HeAnoneA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>MNhylene ChloridF</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>4-MNhy-2-p-t Lanone (MIBK)A</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>MNhyl tert-butyl etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>n-xylene & p-xyleneA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Naph haleneA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>N-P.opylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
</tbody>
</table>
60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>m-Isopropyltoluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,2-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,3-Dichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0A</td>
<td></td>
<td>2.0A</td>
</tr>
</tbody>
</table>

Surrogates

- 4-Bromofluorobenzene: 95A, 75 - 120A
- Dibromofluoromethane: 87A, 75 - 121A
- Toluene-d8 (Surr): 96A, 75 - 120A
Analytical Data

Client: ARCADIS U.S., Inc. A
Job Number: 680-61778-1A

Client Sample ID:d
Lab Sample ID: A
Client Ma. ix:A

60B Volatile Organic Compounds (GC/MS)d

- **MHNod:A**
 - 8260B

- **P. pa.a.ion:A**
 - 5030BA

- **Dilution:A**
 - 1.0A

<table>
<thead>
<tr>
<th>Date</th>
<th>Analyzed</th>
<th>Volume:</th>
<th>Initial WSq:</th>
<th>Final WSq:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/06/2010</td>
<td>1625A</td>
<td>5 mLj</td>
<td>5 mLj</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>QualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneA</td>
<td>25A</td>
<td>UA</td>
<td>25</td>
</tr>
<tr>
<td>BenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromochloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromoformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>BromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-Butanone (MEK)A</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Ca. bon disulfidF</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Ca. bon tetrachloridF</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChlorodibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloroformA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ChloromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>4-ChlorotolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChlorobutaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DibromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorobromomethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>DichlorodifluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-DichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>1,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2,2-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1-DichloropropeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Diethyl etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>EthylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>HexachlorobutadieneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>2-HeAAnoneA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IsopropylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>MNhylene ChloridF</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>4-MNhyd-2-p-tbutA none (MIBK)A</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>MNhyl tert-butyl etA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>n-Xylene & p-XyleneA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>Naph haleneA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>n-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>N-P-opylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-61778-1A

Sample Information:
- **Client Sample ID:**
- **Trip Blank:**
- **Lab Sample ID:** 680-61778-7A
- **Client:**
- **Ma. i.x.:** Wa.
- **Date:** 09/30/2010 0000A
- **Received:** 10/01/2010 0941A

60B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pa.a.ion:A</td>
<td>5030BA</td>
<td>Lab File ID:A</td>
<td>p0749.dF</td>
<td></td>
</tr>
<tr>
<td>Dilution:A</td>
<td>1.0A</td>
<td>Initial WSg h /Volume:A</td>
<td>5 mLJ</td>
<td></td>
</tr>
<tr>
<td>Da. An alyze:A</td>
<td>10/06/2010 1625A</td>
<td>Final WSg h /Volume:A</td>
<td>5 mLJ</td>
<td></td>
</tr>
<tr>
<td>Da. P. pa. d:A</td>
<td>10/06/2010 1625A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>p-IsopropyltolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>sec-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>StyreneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>-ButylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1,2-TetrachloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TetrachloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TolueneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,2-DichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>ans-1,3-DichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzenA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TrichloroetheneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>TrichlorofluoromethaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,3-TrichloropropaneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Vinyl acetateA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
<tr>
<td>VinylchlorideA</td>
<td>1.0A</td>
<td>UA</td>
<td>1.0A</td>
</tr>
<tr>
<td>Xylenes, TotalA</td>
<td>2.0A</td>
<td>UA</td>
<td>2.0A</td>
</tr>
</tbody>
</table>

Surrogates:
- **%Rec:**
- **Qualifier:**
- **Ref Range Limits:**
 - 4-BromofluorobenzeneA: 934, 75 - 120A
 - DibromofluoromethaneA: 88A, 75 - 121A
 - Toluene-d8 (Surr)A: 96A, 75 - 120A
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>nalysis Ba.</td>
<td>680-183127A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument ID:A</td>
<td>ICPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Ba.ch:</td>
<td>680-182769J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab File ID:A</td>
<td>1015101039.ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:A</td>
<td>1.0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da. Analyzed:</td>
<td>10/15/2010 2147A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>senicA</td>
<td>20A</td>
<td>UA</td>
<td>20</td>
</tr>
<tr>
<td>BismuthA</td>
<td>27A</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>CadmiumA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>ChromiumA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IronA</td>
<td>5100A</td>
<td></td>
<td>50A</td>
</tr>
<tr>
<td>LjadrA</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>SeleniumA</td>
<td>20A</td>
<td>UA</td>
<td>20A</td>
</tr>
<tr>
<td>SilicA</td>
<td>10A</td>
<td></td>
<td>10A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>nalysis Ba.</td>
<td>680-183394U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument ID:A</td>
<td>ICPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Ba.ch:</td>
<td>680-182769J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab File ID:A</td>
<td>18276961778.ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:A</td>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da. Analyzed:</td>
<td>10/18/2010 2009J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SodiumA</td>
<td>240000A</td>
<td></td>
<td>10000A</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>nalysis Ba.</td>
<td>680-182280A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument ID:A</td>
<td>LEEMAN1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Ba.ch:</td>
<td>680-1821034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab File ID:A</td>
<td>b100710a.ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:A</td>
<td>1.0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da. Analyzed:</td>
<td>10/07/2010 1251A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da. P. pa. d:A</td>
<td>10/06/2010 1220A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MercuryA</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
</tr>
</tbody>
</table>

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-61778-1A

Client Sample ID: MW-1 (09302010d)

Lab Sample ID: 680-61778-1A

Client Ma. ix: Wa.

Da. Sampled: 09/30/2010 1230A

Da. Received: 10/01/2010 0941A

TestAmerica Savannah

Page 20 of 48
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (μg/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n alyteA</td>
<td>20A</td>
<td>UA</td>
<td>20</td>
</tr>
<tr>
<td>2010C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pa. a.ion:A</td>
<td>3005A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:A</td>
<td>1.0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da. An alyze:A</td>
<td>10/15/2010 22134</td>
<td>Initial WSg h /Volume:A</td>
<td>50 mLJ</td>
</tr>
<tr>
<td>Da. P. pa. d:A</td>
<td>10/13/2010 09534</td>
<td>Final WSg h /Volume:A</td>
<td>50 mLJ</td>
</tr>
<tr>
<td>SodiumA</td>
<td>67000A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7470A Mercury (CVAAD)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (μg/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n alyteA</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
</tr>
<tr>
<td>MNcuryA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Client: ARCADIS U.S., Inc.A

Job Number: 680-61778-1A
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6010C</td>
<td>3005A</td>
<td>1.0A</td>
<td>10/15/2010</td>
<td>10/13/2010</td>
<td>20A</td>
<td>UA</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220A</td>
<td>UA</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>980A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20A</td>
<td>UA</td>
<td>20A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7470A</td>
<td>7470A</td>
<td>1.0A</td>
<td>10/07/2010</td>
<td>10/06/2010</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
</tr>
</tbody>
</table>

Analytical Datad

Client: ARCADIS U.S., Inc.A
Job Number: 680-61778-1A

Client Sample ID: MW-3 (09302010)d
Lab Sample ID: 680-61778-34
Client Ma. ix: Wa.

Da. Sampled: 09/29/2010 1645A
Da. Receivcd: 10/01/2010 0941A

6010C Metals (ICP)-Total Recovered

- **Sample Ba:** 680-183127A
- **Lab File ID:** 1015101039.ch
- **Initial Wt:** 50 mLJ
- **Final Wt:** 50 mLJ

<table>
<thead>
<tr>
<th>n alyzeA</th>
<th>Result (ug/L)A</th>
<th>QualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenicA</td>
<td>20A</td>
<td>UA</td>
<td>20</td>
</tr>
<tr>
<td>Ba.iumA</td>
<td>220A</td>
<td>UA</td>
<td>10</td>
</tr>
<tr>
<td>CadmiumA</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>Ch omiumA</td>
<td>150A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>IronA</td>
<td>980A</td>
<td>UA</td>
<td>50A</td>
</tr>
<tr>
<td>LJadF</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>SeleniumA</td>
<td>20A</td>
<td>UA</td>
<td>20A</td>
</tr>
<tr>
<td>Silvc</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

- **Sample Ba:** 680-182280A
- **Lab File ID:** b100710a.ch
- **Initial Wt:** 50 mLJ
- **Final Wt:** 50 mLJ

<table>
<thead>
<tr>
<th>n alyzeA</th>
<th>Result (ug/L)A</th>
<th>QualifierA</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MercuryA</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>strontium</td>
<td>20</td>
<td>UA</td>
<td>20</td>
</tr>
<tr>
<td>Calcium</td>
<td>31</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0</td>
<td>5.0A</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>UA</td>
<td>10</td>
</tr>
<tr>
<td>Iron</td>
<td>340</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td>10A</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>20</td>
<td>20A</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>10</td>
<td>10A</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>19000</td>
<td>1000A</td>
<td></td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20</td>
<td>UA</td>
<td>0.20</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>selenium</td>
<td>20A</td>
<td>UA</td>
<td>20A</td>
</tr>
<tr>
<td>Barium</td>
<td>434</td>
<td></td>
<td>10A</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0A</td>
<td>UA</td>
<td>5.0A</td>
</tr>
<tr>
<td>Chromium</td>
<td>15A</td>
<td></td>
<td>10A</td>
</tr>
<tr>
<td>Iron</td>
<td>11000A</td>
<td></td>
<td>50A</td>
</tr>
<tr>
<td>Lead</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
</tr>
<tr>
<td>Selenium</td>
<td>20A</td>
<td></td>
<td>20A</td>
</tr>
<tr>
<td>Silver</td>
<td>10A</td>
<td></td>
<td>10A</td>
</tr>
<tr>
<td>Sodium</td>
<td>41000A</td>
<td></td>
<td>1000A</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recovered

<table>
<thead>
<tr>
<th>MN hod:</th>
<th>A</th>
<th>6010C</th>
<th>n alys Ba: ch: 680-183127A</th>
<th>Instrument ID:A</th>
<th>ICPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pa. ion:</td>
<td>A</td>
<td>3005A</td>
<td>P. p Ba: ch: 680-182769J</td>
<td>Lab File ID:A</td>
<td>1015101039.ch</td>
</tr>
</tbody>
</table>

| Dilution:A | 1.0A | Initial WSmh /Volume:A | 50 | mLJ |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>senicA</td>
<td>20A</td>
<td>UA</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba.iumA</td>
<td>89J</td>
<td>UA</td>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CadmiumA</td>
<td>5.9J</td>
<td>UA</td>
<td>5.0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch omiumA</td>
<td>134</td>
<td>UA</td>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IronA</td>
<td>2000A</td>
<td>UA</td>
<td>50A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LJaDF</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeleniumA</td>
<td>20A</td>
<td>UA</td>
<td>20A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silvc</td>
<td>10A</td>
<td>UA</td>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SodiumA</td>
<td>25000A</td>
<td>UA</td>
<td>1000A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)d

<table>
<thead>
<tr>
<th>MN hod:</th>
<th>A</th>
<th>7470A</th>
<th>n alys Ba: ch: 680-182280A</th>
<th>Instrument ID:A</th>
<th>LEEMAN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pa. ion:</td>
<td>A</td>
<td>7470A</td>
<td>P. p Ba: ch: 680-1821034</td>
<td>Lab File ID:A</td>
<td>b100710a.ch</td>
</tr>
</tbody>
</table>

| Dilution:A | 1.0A | Initial WSmh /Volume:A | 50 | mLJ |
| Da. Analyze:A | 10/07/2010 1312b | Final WSmh /Volume:A | 50 | mLJ |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MNCuryA</td>
<td>0.20A</td>
<td>UA</td>
<td>0.20A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>ResultA</th>
<th>QualA</th>
<th>UnitsA</th>
<th>RLJ</th>
<th>DilA</th>
<th>MNhodF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa</td>
<td>260A</td>
<td>mg/LJ</td>
<td></td>
<td>100A</td>
<td>20A</td>
<td>9038</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-182274U
Date Analyzed: 10/07/2010
Date Received: 10/01/2010
Date Sampled: 09/30/2010
Date Received: 10/01/2010
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLJ</th>
<th>DilA</th>
<th>MNhodF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa.</td>
<td>310A</td>
<td>mg/LJ</td>
<td></td>
<td>100A</td>
<td>20A</td>
<td>9038</td>
</tr>
</tbody>
</table>

Analysis by: 680-182274U Date: 10/07/2010 1222b
Analytical Data

General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLJ</th>
<th>Dil</th>
<th>MNhod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfadiazine</td>
<td>61A</td>
<td>mg/L</td>
<td>25A</td>
<td>5.0A</td>
<td>9038</td>
<td></td>
</tr>
</tbody>
</table>

Client: ARCADIS U.S., Inc.A

Job Number: 680-61778-1A

Sample ID: MW-3 (09302010)d

Lab Sample ID: 680-61778-34

Client: WA.

Sample Date: 09/29/2010 1645A

Received Date: 10/01/2010 0941

Analysis Batch: 680-182274U

Analysis Date: 10/07/2010 1131A
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLJ</th>
<th>Dil</th>
<th>MNhod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa.</td>
<td>18A</td>
<td></td>
<td>mg/LJ</td>
<td>5.0A</td>
<td>1.0A</td>
<td>9038</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-182274U
Date Analyzed: 10/07/2010 1105A
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLJ</th>
<th>Dil</th>
<th>MNhod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa.</td>
<td>28A</td>
<td></td>
<td>mg/LJ</td>
<td>5.0A</td>
<td>1.0A</td>
<td>9038</td>
</tr>
</tbody>
</table>
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLJ</th>
<th>DilA</th>
<th>MNhodF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfa.</td>
<td>134</td>
<td></td>
<td>mg/LJ</td>
<td>5.0A</td>
<td>1.0A</td>
<td>9038</td>
</tr>
</tbody>
</table>

Analysis: 680-182274U

Date Analyzed: 10/07/2010

Sample: 680-61778-6A

Client: ARCADIS U.S., Inc.A

Client Sample ID: MW-39 (09302010)d

Lab Sample ID: 680-61778-6A

Client Mailing Address: Wa.

Sample Date: 09/30/2010

Received Date: 10/01/2010

Job Number: 680-61778-1A
### Lab Section	u alifierM	Description
GC/MS VON	UA	Indicates the analyte was analyzed for but not detected.
ET	Exceeded calibration range.	
MetalsT	UT	Indicates the analyte was analyzed for but not detected.
4T	MS, MSD: The analyte present in the original sample is 4 T mes greater than the matrix spike concentration; therefore, T control limits are not applicable.	
General ChemistryT | UT | Indicates the analyte was analyzed for but not detected.
Method Blank - Batch: 680-182149l

<table>
<thead>
<tr>
<th>Lab Sample (l)</th>
<th>MB 680-1) 2149/12b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILFNT</td>
<td>MB 680-1) 2149/12b</td>
</tr>
<tr>
<td>i umoF</td>
<td>1.0.</td>
</tr>
<tr>
<td>at T, n alyzF</td>
<td>10/06/2010 1329.</td>
</tr>
<tr>
<td>at T, pa T, d T</td>
<td>10/06/2010 1329.</td>
</tr>
</tbody>
</table>

| n alyz Batch. | 680-1) 2149. |

<table>
<thead>
<tr>
<th>Lab Sample (l)</th>
<th>MB 680-1) 2149/12b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILFNT</td>
<td>MB 680-1) 2149/12b</td>
</tr>
<tr>
<td>i umoF</td>
<td>1.0.</td>
</tr>
<tr>
<td>at T, n alyzF</td>
<td>10/06/2010 1329.</td>
</tr>
<tr>
<td>at T, pa T, d T</td>
<td>10/06/2010 1329.</td>
</tr>
</tbody>
</table>

Method: 8260Bv

<table>
<thead>
<tr>
<th>Preparatbn: 8030Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Fill IT</td>
</tr>
<tr>
<td>Initial WFight/Volume.: 5 mL</td>
</tr>
<tr>
<td>Final WFight/Volume.: 5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n alyzT</th>
<th>sultT</th>
<th>QualT</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>cTlonF</td>
<td>25T</td>
<td>UT</td>
<td>25T</td>
</tr>
<tr>
<td>B. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omobenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omochloromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omoform.</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omoform.</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-ButanonF (MEK)T</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>CaBn disulfidF</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>CaBn ITbChloridF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorobenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorodibromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChloroethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChloromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-ChlorotolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>4-ChlorotolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,2.-i chloroeth. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,3.-i chlorop6pFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i bromo-3-Chlorop6pF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i bromoethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i bromoethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3.-i chlorobenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chlorobenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,4.-i chlorobenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i chlorobromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i chlorodifluoromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chloroethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chloroethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chloroeth. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chloroeth. nF, TotalT</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2.-i chlorop6pFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2,2.-i chlorop6pFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3.-i chlorop6pFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chlorop6pFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>IF thyl eth.</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>EthylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>HTxchlorobutadiFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-HTxanFnF</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>IsopropylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>MTHpfnF</td>
<td>5.0.</td>
<td>U</td>
<td>5.0.</td>
</tr>
<tr>
<td>4-MTHpfnF (MIBK)T</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>MTHpfnF T-butyl eth.</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>m-XylpfnF & p-XylpfnF</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>Method Blank - Batch: 680-182149I</td>
<td>Method: 8260Bv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab SampIT IT MB 680-1) 2149/12b</td>
<td>Instrument IT MSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CliFnt MatITxT WatT</td>
<td>Lab Fill IT pQ3Fl.dF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i lieutenantF 1.0.</td>
<td>Initial WFlow/Volume: 5 mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at T. n alyzFdF 10/06/2010 1329.</td>
<td>Final WFlow/Volume: 5 mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at T P pa T dF 10/06/2010 1329.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalytT</th>
<th>sultT</th>
<th>QualIT</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaphthalTnF</td>
<td>5.0.</td>
<td>UT</td>
<td>5.0.</td>
</tr>
<tr>
<td>n-ButylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>N-P olybenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>o-XyITnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>p-IsopropyltolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>sII-ButylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>StyT nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>tT t-ButylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2,2-TT TchlorehathF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1,2-TT TchlorehathF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>TTT Tchlorehath. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>TolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>tTans-1,2.-i chloroeth. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>tTans-1,3.-i chloropropyFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-TT TchlorehathFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-TT TchlorehathFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1-TT TchlorehathF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2-TT TchlorehathF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>TTTchlorehath. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>TTTchlorehath fluoromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-TT TchlorepFlanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-TT MethylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3,5-TT MethylbenzFnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>Vinyl acTatT</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>Vinyl chloridF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>XyITnFs, TotalT</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogatI</th>
<th>%</th>
<th>cT</th>
<th>ccTptacT Limitsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo fluorobenzFnF</td>
<td>93F</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromofluoromethanF</td>
<td>90.</td>
<td>75 - 121.</td>
<td></td>
</tr>
<tr>
<td>TolueneF dF (Surn)T</td>
<td>97)</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
LabControlSample\U
LabControlSample\UUpdate\Recovery Report
Batch: 680-182149

<table>
<thead>
<tr>
<th>LCS Lab SampIT IT</th>
<th>LCS 680-1) 2149/9.</th>
<th>n alysis Batch.</th>
<th>680-1) 2149.</th>
<th>Inst\Tment IT</th>
<th>MSP</th>
<th>Method: 8260Bv</th>
<th>Preparat\bn: 8030Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifnt MatTxT</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
<td>Unitsb ug/LF</td>
<td>Lab FiIT IT</td>
<td>pg373.dF</td>
<td>Initial WF\n/Volume.: 5 mL</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final WF\n/Volume.: 5 mL</td>
</tr>
<tr>
<td>atT. n alyzF\dT</td>
<td>10/06/2010 1132b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at T. paT dF</td>
<td>10/06/2010 1132b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCST Lab SampIT IT</th>
<th>LCST 680-1) 2149/10.</th>
<th>n alysis Batch.</th>
<th>680-1) 2149.</th>
<th>Inst\Tment IT</th>
<th>MSP</th>
<th>Method: 8260Bv</th>
<th>Preparat\bn: 8030Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifnt MatTxT</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
<td>Unitsb ug/LF</td>
<td>Lab FiIT IT</td>
<td>pg373.dF</td>
<td>Initial WF\n/Volume.: 5 mL</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final WF\n/Volume.: 5 mL</td>
</tr>
<tr>
<td>atT. n alyzF\dT</td>
<td>10/06/2010 1201)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at T. paT dF</td>
<td>10/06/2010 1201)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalytT</th>
<th>% c.</th>
<th>LCST</th>
<th>LCST</th>
<th>LimitT</th>
<th>P</th>
<th>P</th>
<th>LimitT</th>
<th>LCS QualT</th>
<th>LCST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>cTlonF</td>
<td>91)</td>
<td>7)</td>
<td>17 - 175T</td>
<td>50.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. nzF\nF</td>
<td>99.</td>
<td>97)</td>
<td>77 - 119.</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omo\nbenzF\nF</td>
<td>93F</td>
<td>92b</td>
<td>0 - 124.</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omochloromethanF</td>
<td>95T</td>
<td>95T</td>
<td>10 - 150.</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omo\nform.</td>
<td>103F</td>
<td>101)</td>
<td>2 - 133F</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omo\nthenF</td>
<td>157)</td>
<td>151)</td>
<td>12 - 1)4.</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone (MEK)\nF</td>
<td>104.</td>
<td>103F</td>
<td>33 - 157)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca\nB\non disulf\n\nF</td>
<td>95T</td>
<td>94.</td>
<td>55 - 131)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca\nB\non IT\n\nB\n\nchlorid\nF</td>
<td>117)</td>
<td>114.</td>
<td>71 - 135T</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzF\n\nF</td>
<td>9.</td>
<td>9.</td>
<td>5 - 11)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromomethan\nF</td>
<td>107)</td>
<td>106.</td>
<td>75 - 133F</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro\nethanF</td>
<td>12b</td>
<td>117)</td>
<td>40 - 1)5T</td>
<td>7)</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro\nform.</td>
<td>100.</td>
<td>99.</td>
<td>2 - 120.</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethan\nF</td>
<td>107)</td>
<td>103F</td>
<td>4. - 142b</td>
<td>4.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloro\n\n\noluen\nF</td>
<td>9.</td>
<td>95T</td>
<td>2 - 123F</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro\n\n\noluen\nF</td>
<td>9.</td>
<td>9.</td>
<td>3 - 122b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-\i chloroeth. nF</td>
<td>9.</td>
<td>93F</td>
<td>9 - 134)</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-\i chlorop\n\rnF\n\nF</td>
<td>107)</td>
<td>107)</td>
<td>7) - 12b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i bromo-3-Chlorop\n\npan\nF</td>
<td>93F</td>
<td>92b</td>
<td>49 - 140)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i bromoethan\nF</td>
<td>9.</td>
<td>95T</td>
<td>0 - 121)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromomethan\nF</td>
<td>95T</td>
<td>94.</td>
<td>7) - 119.</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-\i chlorobenz\nF\nF</td>
<td>95T</td>
<td>9.</td>
<td>7) - 125T</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i chlorobenz\nF\n\nF</td>
<td>94.</td>
<td>94.</td>
<td>79 - 124)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-\i chlorobenz\nF\n\nF</td>
<td>9.</td>
<td>97)</td>
<td>1 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i chlorobromomethan\nF</td>
<td>109)</td>
<td>108.</td>
<td>7) - 127)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i chlorodifluoromethan\nF</td>
<td>9.</td>
<td>7)</td>
<td>34 - 154.</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-\i chloroo\n\nethan\nF</td>
<td>100.</td>
<td>99.</td>
<td>74 - 127)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i chloroo\n\nethan\nF</td>
<td>9.</td>
<td>97)</td>
<td>- 132b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-\i chloroeth. nF</td>
<td>9.</td>
<td>94.</td>
<td>2 - 141)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i chloroeth. nF, TotalT</td>
<td>97)</td>
<td>94.</td>
<td>- 134.</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-\i chlorop\n\n\npan\nF</td>
<td>102b</td>
<td>100.</td>
<td>73 - 124)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-\i chlorop\n\n\npan\nF</td>
<td>108.</td>
<td>106.</td>
<td>55 - 157)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-\i chlorop\n\n\npan\nF</td>
<td>9.</td>
<td>9.</td>
<td>75 - 120.</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>LCS 680-1)</td>
<td>2149/9.</td>
<td>%c.</td>
<td>LimitT</td>
<td>P</td>
<td>P LimitT</td>
<td>LCS QualT</td>
<td>LCST QualT</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>1,1,-i chloropropion F</td>
<td>104.</td>
<td>102b</td>
<td>77 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl benz F</td>
<td>100.</td>
<td>99.</td>
<td>11</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT xylol F</td>
<td>99.</td>
<td>100.</td>
<td>2 - 142b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HT xylol F</td>
<td>9.</td>
<td>97)</td>
<td>34 - 1)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropyl benz F</td>
<td>99.</td>
<td>99.</td>
<td>2 - 121</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT xylol F</td>
<td>93F</td>
<td>93F</td>
<td>70 - 125T</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MT xylol F</td>
<td>99.</td>
<td>9.</td>
<td>40 - 151</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT xylol F</td>
<td>95T</td>
<td>94.</td>
<td>77 - 121</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xylol F & p-Xylol F</td>
<td>9.</td>
<td>9.</td>
<td>3 - 11</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butyl benz F</td>
<td>11)</td>
<td>120.</td>
<td>4 - 13F</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P xylol benz F</td>
<td>97)</td>
<td>9.</td>
<td>0 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xylol F</td>
<td>108.</td>
<td>108.</td>
<td>3 - 119</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyl benz F</td>
<td>101)</td>
<td>103F</td>
<td>3 - 139</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbo-Butyl benz F</td>
<td>101)</td>
<td>101)</td>
<td>77 - 12b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene F</td>
<td>9.</td>
<td>9.</td>
<td>2 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-t Butyl benz F</td>
<td>9.</td>
<td>99.</td>
<td>0 - 124</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2- TET chloroethan F</td>
<td>94.</td>
<td>94.</td>
<td>9 - 129</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2, TET chloroethan F</td>
<td>107)</td>
<td>108.</td>
<td>1 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TET chloro. n F</td>
<td>93F</td>
<td>94.</td>
<td>7 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluen F</td>
<td>100.</td>
<td>9.</td>
<td>1 - 117</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,3- o-naphthalene F</td>
<td>97)</td>
<td>94.</td>
<td>72 - 131</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2,3- o-naphthalene F</td>
<td>107)</td>
<td>107)</td>
<td>73 - 12b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-T chloro benz F F</td>
<td>9.</td>
<td>101)</td>
<td>0 - 135T</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-T chloro benz F F</td>
<td>99.</td>
<td>103F</td>
<td>0 - 132b</td>
<td>5T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-T chloroethan F F</td>
<td>107)</td>
<td>107)</td>
<td>7 - 127</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-T chloroethan F F</td>
<td>100.</td>
<td>9.</td>
<td>75 - 121</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T chloroeth F</td>
<td>9.</td>
<td>97)</td>
<td>4 - 115T</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T chloro fluoromethan F F</td>
<td>115T</td>
<td>113F</td>
<td>5T - 149</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-T chloro prop F F</td>
<td>91)</td>
<td>91)</td>
<td>70 - 130</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-T trimethyl benz F F</td>
<td>105T</td>
<td>104.</td>
<td>72 - 132b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-T trimethyl benz F F</td>
<td>9.</td>
<td>99.</td>
<td>72 - 133F</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl ac T T</td>
<td>105T</td>
<td>103F</td>
<td>10 - 217</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample/Uplodate/Recovery Report

Batch: 680-1821491

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2149/9.</th>
<th>nalysis Batch</th>
<th>680-1) 2149.</th>
<th>Instrument ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WaT</td>
<td>P p Batch. N/T</td>
<td>Unitsb ug/LF</td>
<td>Lab Fill iT</td>
<td>pq373.dF</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td></td>
<td></td>
<td>Initial WFight/Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/06/2010 1132b</td>
<td></td>
<td></td>
<td>Final WFight/Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>at T. p aT dF</td>
<td>10/06/2010 1132b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2149/10.</th>
<th>nalysis Batch</th>
<th>680-1) 2149.</th>
<th>Instrument ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WaT</td>
<td>P p Batch. N/T</td>
<td>Unitsb ug/LF</td>
<td>Lab Fill iT</td>
<td>pq375.dF</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td></td>
<td></td>
<td>Initial WFight/Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>at T. n alyzFdF</td>
<td>10/06/2010 1201</td>
<td></td>
<td></td>
<td>Final WFight/Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>at T. p aT dF</td>
<td>10/06/2010 1201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% c LCST</th>
<th>% c LCST</th>
<th>LimitT</th>
<th>P</th>
<th>P LimitT</th>
<th>LCS QualT</th>
<th>LCST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chloridF</td>
<td>111)</td>
<td>109.</td>
<td>59 - 144.</td>
<td>1)</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xy1TnFs, TotalT</td>
<td>101)</td>
<td>101)</td>
<td>4 - 11)</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>LCS % cT</th>
<th>LCST % cT</th>
<th>ccTplan cT Limitsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzFntF</td>
<td>9.</td>
<td>97)</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>i bromofluoromethanF</td>
<td>93F</td>
<td>92b</td>
<td>75 - 121)</td>
</tr>
<tr>
<td>Toluene dF (Surr)T</td>
<td>99.</td>
<td>9.</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-182239I

<table>
<thead>
<tr>
<th>Lab SampIT T</th>
<th>MB 680-1) 2239/T</th>
<th>nalysis Batch. 680-1) 2239.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClIFnt MatTxT</td>
<td>WatT</td>
<td></td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>at T. n lyzFed</td>
<td>10/07/2010 1153F</td>
<td></td>
</tr>
<tr>
<td>at P paT dF</td>
<td>10/07/2010 1153F</td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260Bv

<table>
<thead>
<tr>
<th>Preparatbn: 8030Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstTment IT MSP</td>
</tr>
<tr>
<td>Lab Fill IT pq395.dF</td>
</tr>
<tr>
<td>Initial WFight/Volume: 5 mL</td>
</tr>
<tr>
<td>Final WFight/Volume: 5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyT</th>
<th>sultT</th>
<th>QualT</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>cTTonF</td>
<td>25T</td>
<td>UT</td>
<td>25T</td>
</tr>
<tr>
<td>B. nZnF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omobenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omochloromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omoform</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>B. omothenanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-ButanonF (MEK)T</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>CaBen disulfidF</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>CaBen IMBCl2oridF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorobenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorodibromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChlorothanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>ChloromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-ChlorotolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>4-ChlorotolueneF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,2.-i chloroeth. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>cis-1,3.-i chloropipFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i bromo-3-ChloropipFpanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i bromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i bromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3.-i chlorobenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chlorobenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,4.-i chlorobenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i chlorobromomethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>i chlorodifluoromethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chloroethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chloroethanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chloroeth. nF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2.-i chloroeth. nF, TotalT</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2.-i chloropipFpanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2,2.-i chloropipFpanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3.-i chloropipFpanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1.-i chloropipFpanF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>iF thyl eth.</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>EthylbenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>HTxchlorobutadiFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>2-HTxanF</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>IsopropylbenzFNF</td>
<td>1.0.</td>
<td>UT</td>
<td>1.0.</td>
</tr>
<tr>
<td>MTthylTnF ChloridF</td>
<td>5.0.</td>
<td>U</td>
<td>5.0.</td>
</tr>
<tr>
<td>4-MTthyl-2-pFntanonF (MIBK)T</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>MTthyl T-1-butyl eth.</td>
<td>10.</td>
<td>UT</td>
<td>10.</td>
</tr>
<tr>
<td>m-XyTnF & p-XyTnF</td>
<td>2.0.</td>
<td>UT</td>
<td>2.0.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-182239I

Lab Sample IT MB 680-1) 2239/T
CiFnt MatTxIT WatT
i lutionF 1.0.
at T nalyT 10/07/2010 1153F
at T paT dF 10/07/2010 1153F
hydratc Batch. 680-1) 2239.

nalyT sultT QualT LF
NaphthaleneF 5.0. UT 5.0.
 n-ButylbenzeneF 1.0. UT 1.0.
 N-PentylbenzeneF 1.0. UT 1.0.
 o-XyleneF 1.0. UT 1.0.
p-IsopropyltolueneF 1.0. UT 1.0.
sy-ButylbenzeneF 1.0. UT 1.0.
StyreneF 1.0. UT 1.0.
TolueneF 1.0. UT 1.0.
Toluenes, 1,2,3-i chloroetheneF
Toluenes, 1,2,3-i chloropropeneF 1.0. UT 1.0.
1,2,4-TetrachlorobenzeneF 1.0. UT 1.0.
1,2,3-TetrachlorobenzeneF 1.0. UT 1.0.
1,1,1-TetrachloroethaneF 1.0. UT 1.0.
1,1,2-TetrachloroethaneF 1.0. UT 1.0.
TetrachloroethyleneF 1.0. UT 1.0.
TetrachloroethyleneF 1.0. UT 1.0.
TetrachlorofluoromethaneF 1.0. UT 1.0.
1,2,3-TetrachloropropeneF 1.0. UT 1.0.
1,2,4-TetrachlorobenzeneF 1.0. UT 1.0.
1,3,5-TetrachlorobenzeneF 1.0. UT 1.0.
Vinyl acetateF 2.0. UT 2.0.
Vinyl chlorideF 1.0. UT 1.0.
Xylenes, TotalF 2.0. UT 2.0.

Surrogates % cT ccTptd cT Limits
4-Bromo-2-fluorobenzeneF 92b 75 - 120.
4-Bromo-2-fluorobenzeneF 90. 75 - 121.
TolueneF (Sum) F 9. 75 - 120.
Lab Control Sample/P;
Lab ControlSample\U\Update\Recovery Reportd Batch: 680-182239I

<table>
<thead>
<tr>
<th>LCS Lab SampIT IT</th>
<th>LCS 680-1) 2239/5T</th>
<th>nalysis Batch</th>
<th>680-1) 2239.</th>
<th>Inst\ lent IT</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifnt Mat\xIT T</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
<td>Unisb ug/LF</td>
<td>Lab Fit T IT</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>Initial WF\it/Volume:.</td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
<td></td>
<td>Final WF\it/Volume:.</td>
</tr>
<tr>
<td>atP paT dF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCST Lab SampIT IT</th>
<th>LCST 680-1) 2239/T</th>
<th>nalysis Batch</th>
<th>680-1) 2239.</th>
<th>Inst\ lent IT</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifnt Mat\xIT T</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
<td>Unisb ug/LF</td>
<td>Lab Fit T IT</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>Initial WF\it/Volume:.</td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
<td></td>
<td>Final WF\it/Volume:.</td>
</tr>
<tr>
<td>atP paT dF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyT</th>
<th>LCS</th>
<th>LCST</th>
<th>LCST</th>
<th>LimitT</th>
<th>P</th>
<th>P</th>
<th>LimitT</th>
<th>LCS QualT</th>
<th>LCST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>cTtoN</td>
<td>7) 17 - 175T</td>
<td>1) 50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nF</td>
<td>9. 99. 77 - 119. 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omobenzF</td>
<td>94. 93F 55 - 131) 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omochloromethanF</td>
<td>9. 9. 10 - 150. 2b 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omofor.</td>
<td>99. 100. 2 - 133F 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omoetanF</td>
<td>143F 14. 12 - 14) 0. 50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButanonF (MEK)T</td>
<td>100. 9. 33 - 157) 2b 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaBon disulfidF</td>
<td>93F 93F 55 - 131) 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaBon ITBchloridF</td>
<td>11) 117) 71 - 135T 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorobenzF</td>
<td>95T 97) 5 - 11) 2b 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorodibromomethanF</td>
<td>104. 106. 75 - 133F 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChloroethanF</td>
<td>124. 114. 40 - 1) 5T 9. 50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>101) 99. 2 - 120. 2b 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChlorometanF</td>
<td>105T 100. 4. - 142b 5T 50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ChlorotholenF</td>
<td>94. 94. 2 - 123F 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-ChlorotholenF</td>
<td>9. 9. 3 - 122b 2b 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2.-i chloroeth. nF</td>
<td>93F 93F 9 - 134. 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3.-i chloropBpF</td>
<td>107) 107) 7) - 12b 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i bromo-3-ChloropBpanF</td>
<td>5T 2b 49 - 140. 4. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i bromoethanF</td>
<td>95T 95T 0 - 121) 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3.-i chlorobenzF</td>
<td>94. 97) 7) - 119. 3F 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i chlorobenzF</td>
<td>9. 9. 7) - 125T 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4.-i chlorobenzF</td>
<td>93F 93F 79 - 124. 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i chlorobromomethanF</td>
<td>107) 108. 7) - 127) 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i chlorodifluoromethanF</td>
<td>7) 34 - 154. 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1.-i chlorooethanF</td>
<td>101) 100. 74 - 127) 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i chloroethanF</td>
<td>99. 9. 132b 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1.-i chloroeth. nF</td>
<td>95T 95T 2 - 141) 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i chloroeth. nF, TotalT</td>
<td>9. 95T - 134. 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2.-i chloropBpanF</td>
<td>101) 100. 73 - 124. 0. 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2.-i chloropBpanF</td>
<td>110. 110. 55 - 157) 1) 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3.-i chloropBpanF</td>
<td>94. 97) 75 - 120. 3F 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS Lab Sample IT</td>
<td>LCS 680-1) 2239/5T</td>
<td>n alysis Batch.</td>
<td>680-1) 2239.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clifnt MatTxT T</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td>Unit</td>
<td>ug/LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCST Lab Sample IT</th>
<th>LCST 680-1) 2239/T</th>
<th>n alysis Batch.</th>
<th>680-1) 2239.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifnt MatTxT T</td>
<td>WatT</td>
<td>P</td>
<td>p Batch. N/T</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td>Unit</td>
<td>ug/LF</td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nalyt</th>
<th>%</th>
<th>.c.</th>
<th>LCST</th>
<th>LCST</th>
<th>LimitT</th>
<th>P</th>
<th>P</th>
<th>LimitT</th>
<th>LCS QualT</th>
<th>LCST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-i chloropropFpF nF</td>
<td>104.</td>
<td>103F</td>
<td>77 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EthylbenzF nF</td>
<td>9.</td>
<td>9.</td>
<td>- 11)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTxachlorobutadiF nF</td>
<td>101)</td>
<td>101)</td>
<td>2 - 142b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HTxanF nF</td>
<td>95T</td>
<td>94.</td>
<td>34 - 1)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsoFpFybenzF nF</td>
<td>100.</td>
<td>99.</td>
<td>2 - 121)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTTyltnF nF ChloridF</td>
<td>95T</td>
<td>92b</td>
<td>70 - 12ST</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MTTyl-2-pFpFtanF nF (MiBK)T</td>
<td>95T</td>
<td>9.</td>
<td>40 - 151)</td>
<td>3F</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTTyl IT t-butyl eth.</td>
<td>94.</td>
<td>93F</td>
<td>77 - 21)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-XyltnF nF & p-XyltnF nF</td>
<td>97)</td>
<td>9.</td>
<td>3 - 11)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-ButylbenzF nF</td>
<td>117)</td>
<td>119.</td>
<td>4 - 13F</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P olybenzF nF</td>
<td>97)</td>
<td>9.</td>
<td>0 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-XyltnF</td>
<td>109.</td>
<td>108.</td>
<td>3 - 119</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-IsopFpFyltoluenF</td>
<td>100.</td>
<td>102b</td>
<td>3 - 139</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-ButylbenzF nF</td>
<td>100.</td>
<td>101)</td>
<td>77 - 12b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stytn F</td>
<td>9.</td>
<td>97)</td>
<td>2 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT t-ButylbenzF nF</td>
<td>99.</td>
<td>99.</td>
<td>0 - 124</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-ITIThloroethanF</td>
<td>91)</td>
<td>93F</td>
<td>9 - 129</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-ITIThloroethanF</td>
<td>106.</td>
<td>107)</td>
<td>1 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIThloroeth. nF</td>
<td>91)</td>
<td>92b</td>
<td>7) - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToluenF</td>
<td>99.</td>
<td>101)</td>
<td>1 - 117)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tans-1,2,-i chloroeth. nF</td>
<td>9.</td>
<td>9.</td>
<td>72 - 131)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tans-1,3,-i chloropropFpF nF</td>
<td>107)</td>
<td>106.</td>
<td>73 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-TIThlorobenzF nF</td>
<td>93F</td>
<td>95T</td>
<td>0 - 13ST</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-TIThlorobenzF nF</td>
<td>92b</td>
<td>9.</td>
<td>0 - 132b</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-TIThloroethanF</td>
<td>107)</td>
<td>108.</td>
<td>7) - 127)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-TIThloroethanF</td>
<td>9.</td>
<td>9.</td>
<td>75 - 121)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIThloroth. nF</td>
<td>9.</td>
<td>97)</td>
<td>4 - 11ST</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIThlorofluoromethanF</td>
<td>117)</td>
<td>117)</td>
<td>5ST - 149</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-TIThloropropFanF</td>
<td>91)</td>
<td>9.</td>
<td>70 - 130</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-TIThmylbenzF nF</td>
<td>103F</td>
<td>106.</td>
<td>72 - 132b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-TIThmylbenzF nF</td>
<td>9.</td>
<td>9.</td>
<td>72 - 133F</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl actinaT</td>
<td>108.</td>
<td>104.</td>
<td>10 - 217)</td>
<td>4.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample/UU

Lab Control Sample/Update/Recovery Report

Batch: 680-182239

Method: 8260Bv

Preparation: 8030Bv

<table>
<thead>
<tr>
<th>LCS Lab Sample IT</th>
<th>LCS 680-1) 2239/5T</th>
<th>Analysis Batch</th>
<th>680-1) 2239.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P P Batch. N/T</td>
<td></td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td>Unitsb ug/LF</td>
<td></td>
</tr>
<tr>
<td>atT n alyzFdF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/07/2010 095T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCST Lab Sample IT</th>
<th>LCST 680-1) 2239/T</th>
<th>Analysis Batch</th>
<th>680-1) 2239.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P P Batch. N/T</td>
<td></td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0</td>
<td>Unitsb ug/LF</td>
<td></td>
</tr>
<tr>
<td>atT n alyzFdF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/07/2010 1025T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analytes

<table>
<thead>
<tr>
<th>Vinyl chlorideF</th>
<th>111) 110.</th>
<th>59 - 144.</th>
<th>1) 50.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XyI TnFs, TotalT</td>
<td>101) 101)</td>
<td>4 - 11)</td>
<td>0. 30.</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>4-BromofluorobenzFmF</th>
<th>97) 97) 75 - 120.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BromofluoromethanF</td>
<td>95T 93F 75 - 121)</td>
</tr>
<tr>
<td>Toluene dF (Surr)T</td>
<td>97) 99. 75 - 120.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-1827U8i

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab SampIT IT</td>
<td>MB 680-1) 27) 9/14-</td>
</tr>
<tr>
<td>Cifnt MataIT</td>
<td>WatT</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/15/2010 213F</td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
</tr>
<tr>
<td>AnalyT</td>
<td>sultT</td>
</tr>
<tr>
<td>sbnicT</td>
<td>20.</td>
</tr>
<tr>
<td>BaTum.</td>
<td>10.</td>
</tr>
<tr>
<td>Cadmium.</td>
<td>5.0.</td>
</tr>
<tr>
<td>Ch.onium.</td>
<td>10.</td>
</tr>
<tr>
<td>IbnF</td>
<td>50.</td>
</tr>
<tr>
<td>LFadF</td>
<td>10.</td>
</tr>
<tr>
<td>STITnium.</td>
<td>20.</td>
</tr>
<tr>
<td>Silver.</td>
<td>10.</td>
</tr>
<tr>
<td>Sodium.</td>
<td>1000.</td>
</tr>
<tr>
<td>Unitsb ug/LF</td>
<td>20.</td>
</tr>
<tr>
<td>QualT</td>
<td>LF</td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Preparation:</th>
<th>8005AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalaRecoverableV</td>
<td></td>
</tr>
<tr>
<td>Instrument IT</td>
<td>ICP</td>
</tr>
<tr>
<td>Lab Fill IT</td>
<td>1015101039.ch.</td>
</tr>
<tr>
<td>Initial WFaIt/Volume:</td>
<td>50 mL</td>
</tr>
<tr>
<td>Final WFaIt/Volume:</td>
<td>50 mL</td>
</tr>
</tbody>
</table>

LabaControlSampleV Batch: 680-1827U8i

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab SampIT IT</td>
<td>LCS 680-1) 27) 9/15-</td>
</tr>
<tr>
<td>Cifnt MataIT</td>
<td>WatT</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/15/2010 2141</td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
</tr>
<tr>
<td>AnalyT</td>
<td>sultT</td>
</tr>
<tr>
<td>sbnicT</td>
<td>2000.</td>
</tr>
<tr>
<td>BaTum.</td>
<td>200.</td>
</tr>
<tr>
<td>Cadmium.</td>
<td>50.0.</td>
</tr>
<tr>
<td>Ch.onium.</td>
<td>200.</td>
</tr>
<tr>
<td>IbnF</td>
<td>1000.</td>
</tr>
<tr>
<td>LFadF</td>
<td>500.</td>
</tr>
<tr>
<td>STITnium.</td>
<td>2000.</td>
</tr>
<tr>
<td>Silver.</td>
<td>50.0.</td>
</tr>
<tr>
<td>Sodium.</td>
<td>5000.</td>
</tr>
</tbody>
</table>
Matrix Spike/U
Matrix Spike\DUplode\Recovery Reportd Batch: 680-1827U9I

<table>
<thead>
<tr>
<th>Method: 6010Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatbn: 8005AU</td>
</tr>
<tr>
<td>TotalRecoverableV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS Lab SampIT IT</th>
<th>0-6. 177)- 1)</th>
<th>nalysis Batch. 680-1) 3127)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P p Batch. 680-1) 27) 9.</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/15/2010 2202b</td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MST Lab SampIT IT</th>
<th>0-6. 177)- 1)</th>
<th>nalysis Batch. 680-1) 3127)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P p Batch. 680-1) 27) 9.</td>
</tr>
<tr>
<td>i lutionF</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/15/2010 2208.</td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% c.</th>
<th>MST</th>
<th>MST</th>
<th>LimitT</th>
<th>P</th>
<th>P</th>
<th>LimitT</th>
<th>MS QualT</th>
<th>MST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>sbnicT</td>
<td>108.</td>
<td>109.</td>
<td>75 - 125T</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaTum.</td>
<td>100.</td>
<td>101</td>
<td>75 - 125T</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium.</td>
<td>106.</td>
<td>108.</td>
<td>75 - 125T</td>
<td>1)</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.onium.</td>
<td>102b</td>
<td>103F</td>
<td>75 - 125T</td>
<td>1)</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbF</td>
<td>11)</td>
<td>12b</td>
<td>75 - 125T</td>
<td>2b</td>
<td>20.</td>
<td>4.</td>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>LFadF</td>
<td>106.</td>
<td>106.</td>
<td>75 - 125T</td>
<td>1)</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STTmium.</td>
<td>105T</td>
<td>107</td>
<td>75 - 125T</td>
<td>1)</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver.</td>
<td>94.</td>
<td>94.</td>
<td>75 - 125T</td>
<td>0.</td>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix Spike/U
Matrix Spike\DUplode\Recovery Reportd Batch: 680-1827U9I

<table>
<thead>
<tr>
<th>Method: 6010Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatbn: 8005AU</td>
</tr>
<tr>
<td>TotalRecoverableV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS Lab SampIT IT</th>
<th>0-6. 177)- 1)</th>
<th>nalysis Batch. 680-1) 3394.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P p Batch. 680-1) 27) 9.</td>
</tr>
<tr>
<td>i lutionF</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/1/2010 2014.</td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MST Lab SampIT IT</th>
<th>0-6. 177)- 1)</th>
<th>nalysis Batch. 680-1) 3394.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliFnt MatTxT</td>
<td>WatT</td>
<td>P p Batch. 680-1) 27) 9.</td>
</tr>
<tr>
<td>i lutionF</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>atT. n alyzFdF</td>
<td>10/1/2010 2019.</td>
<td></td>
</tr>
<tr>
<td>atT P paT dF</td>
<td>10/13/2010 0953F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% c.</th>
<th>MST</th>
<th>MST</th>
<th>LimitT</th>
<th>P</th>
<th>P</th>
<th>LimitT</th>
<th>MS QualT</th>
<th>MST QualT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium.</td>
<td>353F</td>
<td>530.</td>
<td>75 - 125T</td>
<td>3F</td>
<td>20.</td>
<td>4.</td>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-182103I

| Sample | MB 680-1) 2103/1-.
| Lab SampIT T | ICIFnT MatfT X T | 1.0.
| i lutionF | atT. n alyzFdF | atT P paT dF | 10/07/2010 | 1159.
10/06/2010	1220.		
nalyT	sulT	QualT	LF
680-1) 220I.			
nalyT	sulT	QualT	LF
0.20.	UT	0.20.	

Lab Control Sample V Batch: 680-182103I

| Sample | LCS 680-1) 2103/2-.
| Lab SampIT T | ICIFnT MatfT X T | 1.0.
| i lutionF | atT. n alyzFdF | atT P paT dF | 10/07/2010 | 1201.
10/06/2010	1220.				
nalyT	SpikT. mountT	sulT	% . c.	LimitT	QualT
2.50.	2.39.	9.	0 - 120.		

Matrix Spoke /U

Matrix Spoke V Update Recovery Reportd Batch: 680-182103I

| Sample | MS Lab SampIT T IT | ICIFnT MatfT X T | 1.0.
Lab SampIT T	i lutionF	atT. n alyzFdF	atT P paT dF	10/07/2010	1315T			
10/06/2010	1220.							
nalyT	sulT	% . c.	LimitT	P	P	LimitT	MS QualT	MST QualT
680-1) 220I.	680-1) 2103F	0.20.	93F	95T	0 - 120.	3F	20.	

QualdCon trolDReV ltd

Job Number: 680-6177-1)
Method Blank - Batch: 680-182274P

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample IT</td>
<td>MB 680-1) 2274/1</td>
</tr>
<tr>
<td>CilFnt MatTxT</td>
<td>WatT</td>
</tr>
<tr>
<td>i lution F</td>
<td>1.0.</td>
</tr>
<tr>
<td>at T. n alyzF</td>
<td>10/07/2010 1100.</td>
</tr>
<tr>
<td>at T P paT dF</td>
<td>N/T</td>
</tr>
<tr>
<td>n alyt T</td>
<td></td>
</tr>
<tr>
<td>sal T</td>
<td>5.0.</td>
</tr>
<tr>
<td>Qual T</td>
<td>U</td>
</tr>
<tr>
<td>LF</td>
<td>5.0.</td>
</tr>
</tbody>
</table>

Lab Control Sample V Batch: 680-182274P

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample IT</td>
<td>LCS 680-1) 2274/2b</td>
</tr>
<tr>
<td>CilFnt MatTxT</td>
<td>WatT</td>
</tr>
<tr>
<td>i lution F</td>
<td>1.0.</td>
</tr>
<tr>
<td>at T. n alyzF</td>
<td>10/07/2010 1100.</td>
</tr>
<tr>
<td>at T P paT dF</td>
<td>N/T</td>
</tr>
<tr>
<td>n alyt T</td>
<td></td>
</tr>
<tr>
<td>Spik T. mount T</td>
<td></td>
</tr>
<tr>
<td>sal T</td>
<td>20.0.</td>
</tr>
<tr>
<td>% c. Limit T</td>
<td>94. 75 - 125T</td>
</tr>
</tbody>
</table>

Method: 90386

- Preparatbn: N/AU
- Instrument IT KONELAB1)
- Lab Fill IT KONE11007101SO4B.xlsb
- Initial W/Volume: 2 mL
- Final W/Volume: 2 mL

Method: 90386

- Preparatbn: N/AU
- Instrument IT KONELAB1)
- Lab Fill IT KONE11007101SO4B.xlsb
- Initial W/Volume: 2 mL
- Final W/Volume: 2 mL
Analysis Request and Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Savannah
5102 LaRoche Avenue
Savannah, GA 31404

Web site: www.testamericainc.com
Phone: (912) 354-7858
Fax: (912) 352-0165

Project Information

Project Reference: UNC-Chapel Hill

Project No.: NC0209000-000006

Client (Site) PM:

- **Name:** Glen Pinnix
- **Phone:** 919-854-1282
- **Fax:** 919-854-5700

Client Name: Arcadis

Client E-mail: glen.pinnix@arcadis-us.com

Client Address:
801 Corporate Center Dr. *300 Peachtree* NC 27607

Company Contracting this Work (If Applicable):

Required Analysis

- **UOCs:**
- **RAA:**
- **RA:**
- **Sulfate**

Preservation

Preservative:

Sample Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Sample Identification</th>
<th>COMPOSITES (G. D. GRAB & AGW)</th>
<th>AQUEOUS SOLUTIONS</th>
<th>SOILS & SEDIMENTOLOGY</th>
<th>NORMATIVE</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-30-10</td>
<td>1230</td>
<td>MW-1 (0930 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
<tr>
<td>9-30-10</td>
<td>115</td>
<td>MW-2 (0930 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
<tr>
<td>9-29-10</td>
<td>1645</td>
<td>MW-3 (0929 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
<tr>
<td>9-29-10</td>
<td>1430</td>
<td>MW-14 (0929 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
<tr>
<td>9-30-10</td>
<td>1330</td>
<td>MW-38 (0930 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
<tr>
<td>9-30-10</td>
<td>1015</td>
<td>MW-39 (0930 2010)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>3 / 1</td>
<td></td>
</tr>
</tbody>
</table>

Trip Blank

Temp Blank

Other Information

- **Received By (Signature):**
- **Date:** 9-30-10
- **Time:** 1600

- **Relinquished By (Signature):**
- **Date:** 9-30-10
- **Time:** 1600

- **Received By (Signature):**
- **Date:**
- **Time:**

- **Relinquished By (Signature):**
- **Date:**
- **Time:**

Laboratory Use Only

- **Received for Laboratory By (Signature):**
 - **Date:** 10/11/2011
 - **Time:** 0945
 - **Custody Intact:** Yes
 - **Custody Seal No.:**
 - **Savannah Log No.:** 1080-10318
 - **Laboratory Remarks:** Temp 1.8
Login Sample Reded Chedk Listc

Client: ARCADIS U.S., Inc.T

Login Number: c177c List SourVe: TestAmerVa Sa vannahc
Creator: Daughtey, Bedhc
List Number: 1u

<table>
<thead>
<tr>
<th>Question</th>
<th>F/NAc</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radi cal acti vity eitTer was not measured or, if measured, is ahor below T</td>
<td>N/AT</td>
<td></td>
</tr>
<tr>
<td>ackg, un dc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAe cooler's cts seal, ifp esent, is int!cl.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>TAe cooler or samples dcnor appeahto Tave been comp. m!led or T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>ampered wC. T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples were rcei ved on ice.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Cooler Temp !ature is accep alle.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Cooler Temp !ature is recordd.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>COC if p esent.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>COC if fglde out in ink and leg. le.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>COC if fglde out wC all pertinent infgmn ah n.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Is TTe F.eid Sampler's name p esent on COC?N</td>
<td>FalseT</td>
<td></td>
</tr>
<tr>
<td>TAere are no daccrepancies between TTe sample IDs on TTe cont!nens and T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>e COC.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples are rcei ved wC n H!ding TAe.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Sample cont!nens Tave leg. le l abel s.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Cont!nens are not bro!ken or leakng.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/Fmes are p v!led.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>App p are sample cont!nens are used.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely fglde.T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>Sample PAservah n Verf!pc</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>TAere is sufifent vC fgl all requestd analyses, incl. any requestd T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>MS/MSDdT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA sample v!ls dcnor T ave Teadspace or bubble if <6mm (1/4") in T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>d!meter.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessaty, s!ff Tave been infgme d off any sT T d time or quick TAT T</td>
<td>TAeT</td>
<td></td>
</tr>
<tr>
<td>needsT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multif as T samples are not p esent.T</td>
<td>N/AT</td>
<td></td>
</tr>
<tr>
<td>Samples dcnor re quire splitting or comp sT m.T</td>
<td>N/AT</td>
<td></td>
</tr>
</tbody>
</table>
The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LA000244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q
CommDn:
No additional comments.

pDU
All samples were received in good condition and within temperature requirements.

GC/MS VOA U
No analytical or quality issues were noted.

MMb Is U
No analytical or quality issues were noted.

GM:ra ChdmiUry U
No analytical or quality issues were noted.

VOA Pre# U
No analytical or quality issues were noted.
METHOD SUMMARY:

Matrix: Water

<table>
<thead>
<tr>
<th>Description</th>
<th>Lab Location</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile O2 & Tc Compounds (GC/MS)</td>
<td>T2L SAV/2</td>
<td>SW/M 820 B2</td>
<td></td>
</tr>
<tr>
<td>Purg 2 aTD T 2pLK</td>
<td>T2L SAV/2</td>
<td>SW/M 5030B2</td>
<td></td>
</tr>
<tr>
<td>M2 als (ICP)</td>
<td>T2L SAV/2</td>
<td>SW/M 010C</td>
<td></td>
</tr>
<tr>
<td>PR patTo.. To.al.. covN abl or i ssolvNd M2 als2</td>
<td>T2L SAV/2</td>
<td>SW/M 3005M</td>
<td></td>
</tr>
<tr>
<td>M2 cury (CV2)</td>
<td>T2L SAV/2</td>
<td>SW/M 7470.</td>
<td></td>
</tr>
<tr>
<td>PR patTo.. M2 cury</td>
<td>T2L SAV/2</td>
<td>SW/M 7470.</td>
<td></td>
</tr>
<tr>
<td>SulfaT, Turbidime ic</td>
<td>T2L SAV/2</td>
<td>SW/M 903T</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

T2L SAV = T2s2 merica SavaT ah.

Method References:

SW/M 820 M = "T2s2M2 hods For Evaluating Solid Was2, Physical/Chemical M2 hods", Thijd Editio., November 19.

TestAmerica Savannah:
<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846</td>
<td>8260B4</td>
<td>L0nierz, CT LynnT</td>
</tr>
<tr>
<td>SW846</td>
<td>6010CT</td>
<td>BlTnd, B4 nT</td>
</tr>
<tr>
<td>W846</td>
<td>7470Ab</td>
<td>Eaton, Clifford</td>
</tr>
<tr>
<td>W846</td>
<td>9038b</td>
<td>Ross, Jonb</td>
</tr>
<tr>
<td>Lab Sa: ple IDV</td>
<td>Client Sa: ple IDV</td>
<td>Client Matrix2</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>680-61853-1b</td>
<td>MW-1b</td>
<td>Waterb</td>
</tr>
<tr>
<td>680-61853-2b</td>
<td>MW-2b</td>
<td>Waterb</td>
</tr>
<tr>
<td>680-61853-3b</td>
<td>MW-3b</td>
<td>Waterb</td>
</tr>
<tr>
<td>680-61853-4M</td>
<td>MW-38b</td>
<td>Waterb</td>
</tr>
<tr>
<td>680-61853-6b</td>
<td>MW-14M</td>
<td>Waterb</td>
</tr>
<tr>
<td>680-61853-7b</td>
<td>Trib Bank</td>
<td>Waterb</td>
</tr>
</tbody>
</table>
Analytical Data

Client Sample ID: MW-1d
Lab Sample ID: 680-61853-1b
Matrix: Water
Date Sampled: 10/04/2010 1338b
Date Received: 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoneb</td>
<td>1300b</td>
<td>Ub</td>
<td>1300b</td>
</tr>
<tr>
<td>Benzeneb</td>
<td>910b</td>
<td></td>
<td>910b</td>
</tr>
<tr>
<td>Bromobenzeneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>Bromochloromethaneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>Bromofromb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>Bromomethaneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>500b</td>
<td>Ub</td>
<td>500b</td>
</tr>
<tr>
<td>arbon disulfide</td>
<td>100b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>arbon tetrahydrofuran</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>h-orobenzene</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>h-orodibromomethaneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>h-orothane</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>h-oroformb</td>
<td>4400b</td>
<td></td>
<td>4400b</td>
</tr>
<tr>
<td>h-oromethane</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>2-Cb orotolueneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>4-Cb orotolueneb</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb propylene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,2-Dibromomethaneb</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Dibromomethaneb</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Dichloroformide</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>57b</td>
<td></td>
<td>57b</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>430b</td>
<td></td>
<td>430b</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50b</td>
<td>Ub</td>
<td>50b</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totalb</td>
<td>100b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>5300b</td>
<td>E</td>
<td>500b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>500b</td>
<td></td>
<td>500b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Methylene C8 olefin</td>
<td>680b</td>
<td></td>
<td>250b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>500b</td>
<td></td>
<td>500b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>500b</td>
<td></td>
<td>500b</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>100b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>250b</td>
<td></td>
<td>250b</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>50b</td>
<td></td>
<td>50b</td>
</tr>
</tbody>
</table>

estAmerica SavannahT
Page 6 of 53
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifierb</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>Toluene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>trans-1,2-Dichoroethene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>160b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>100b</td>
<td>U</td>
<td>100b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>50b</td>
<td>U</td>
<td>50b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>100b</td>
<td>U</td>
<td>100b</td>
</tr>
<tr>
<td>urangetb</td>
<td>%Recb</td>
<td>Qualifierb</td>
<td>Acceptance Limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>96b</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>98b</td>
<td></td>
<td>75 - 121b</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>101b</td>
<td></td>
<td>75 - 120b</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoneb</td>
<td>2500b</td>
<td>Ub</td>
<td>2500b</td>
</tr>
<tr>
<td>Benzeneb</td>
<td>7200b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Bromobenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Bromochloromethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Bromoformb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Bromomethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>2-Butane (MEK)b</td>
<td>1000b</td>
<td>Ub</td>
<td>1000b</td>
</tr>
<tr>
<td>Arbon disulfide</td>
<td>200b</td>
<td>Ub</td>
<td>200b</td>
</tr>
<tr>
<td>Arbon tetrachloroideb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>H orobenzeneb</td>
<td>250b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>H orodibromomethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>H oretheneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>H oroformb</td>
<td>1000b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>H oromethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>2-Cb orotolueneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>4-Cb orotolueneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>cis-1,2-Dich orotheneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>cis-1,3-Dich oropropeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb oropropene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dibromoethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Dibromomethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,3-Dich orobenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dich orobenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,4-Dich orobenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Dich orobromomethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Dich orodifluoromethaneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1-Dich orotheneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dich orotheneb</td>
<td>1100b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>1,1-Dich orotheneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2-Dich orotheneb, Totalb</td>
<td>200b</td>
<td>Ub</td>
<td>200b</td>
</tr>
<tr>
<td>1,2-Dich oropropeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>2,2-Dich oropropeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,3-Dich oropropeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1-Dich oropropeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>16000b</td>
<td>E.</td>
<td>1000b</td>
</tr>
<tr>
<td>Ethylbenzeneb</td>
<td>360b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>Hexachlorobutadieneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>2-Hexanoneb</td>
<td>1000b</td>
<td>Ub</td>
<td>1000b</td>
</tr>
<tr>
<td>Isopropylbenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Methylene C6 orideb</td>
<td>890b</td>
<td></td>
<td>500b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>1000b</td>
<td>Ub</td>
<td>1000b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>1000b</td>
<td>Ub</td>
<td>1000b</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>370b</td>
<td></td>
<td>200b</td>
</tr>
<tr>
<td>Naphthaleneb</td>
<td>500b</td>
<td>Ub</td>
<td>500b</td>
</tr>
<tr>
<td>n-Butylbenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>N-Propylbenzeneb</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
</tbody>
</table>
Analytical Data

Client Sample ID: MW-2T
Lab Sample ID: 680-61853-2b
Matrix: Water
Date Sampled: 10/04/2010 1415b
Date Received: 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS) T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>700b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>tyrene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachoroethane</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachoroethane</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Tetrachoroethene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Toluene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>trans-1,2-Dichoroethene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>140b</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropanene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>200b</td>
<td>Ub</td>
<td>200b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>100b</td>
<td>Ub</td>
<td>100b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>1100b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>surrogate</th>
<th>%Recb</th>
<th>Qualifier</th>
<th>Acceptance Lb/dsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>94c</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>96b</td>
<td></td>
<td>75 - 121b</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>100b</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Analyte</td>
<td>Result (μg/L)</td>
<td>Quality</td>
<td>RL0</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Acetone</td>
<td>25b</td>
<td>Ub</td>
<td>25b</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromofombe</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>arbon disulfide</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>h orobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h orodibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h orotane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h orofombe</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h oromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Cb orotoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>4-Cb orotoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,2-Dich orotheneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,3-Dich oropropeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb oropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dich orobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,4-Dich orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dich orodibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dich orodifluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich orothane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orothane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich orothene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orotenine, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>1,2-Dich oropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2,2-Dich oropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dich oropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Methylene Cb orideb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>n-Xylene & p-Xylene</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
</tbody>
</table>
Analytical Data

Client Sample ID: MW-3T
Lab Sample ID: 680-61853-3b
Matrix: Water
Date Sampled: 10/04/2010 1300b
Date Received: 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>surrogate</th>
<th>%Recb</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>94c</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>88b</td>
<td></td>
<td>75 - 121b</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>96b</td>
<td></td>
<td>75 - 120b</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)b</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoneb</td>
<td>25b</td>
<td>Ub</td>
<td>25b</td>
</tr>
<tr>
<td>Benzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromochloromethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromoformb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Arbon disulfide</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Arbon tetrachloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hlorobenzeneb</td>
<td>1.5b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hlorodibromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hloromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Cb orotolueneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>4-Cb orotolueneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb oropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichlorobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichlorobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,4-Dichlorobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichlorobromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichlorodifluoromethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>8.7b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>140b</td>
<td>E *b</td>
<td>10b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hexachlorobutadieneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Methylene Cb orideb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>M-Xylene & p-Xylene</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>N-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
</tbody>
</table>
Analytical Data

Client Sample ID: MW-38T
Lab Sample ID: 680-61853-4c
Matrix: Waterb
Date Sampled: 10/04/2010 1600b
Date Received: 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Xylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tyrene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,2-Dichoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>surrogate</td>
<td>%Recb</td>
<td>Qualifier</td>
<td>Acceptance Limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>90b</td>
<td>75 - 120b</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89.</td>
<td>75 - 121b</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>95b</td>
<td>75 - 120b</td>
<td></td>
</tr>
</tbody>
</table>
Client Sample ID:T | MW-39T
---|---
Lab Sample ID:b | 680-61853-5b
Client Matrix: | Water
Date Sampled: | 10/04/2010 1200b
Date Received: | 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS) T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25b</td>
<td>Ub</td>
<td>25b</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>arbon disulfide</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>aroo tetrahydrofuran</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>hromobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h dromobromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h oxide</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h form</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h methane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-C bromoethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>4-C bromoethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-C bromopropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichloroform</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10b</td>
<td>U*b</td>
<td>10b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Methylene Cbride</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Methyl tert-buty ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>m-Xylene & p-Xyleneb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (μg/L)b</th>
<th>Qualifierb</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tyrene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,2-Dichoroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,3-Dichoroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Vinyl ch orideb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>surrogate</td>
<td>%Recb</td>
<td>Qualifierb</td>
<td>Acceptance Limitsb</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89.</td>
<td>75 - 120b</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89.</td>
<td>75 - 121b</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>96b</td>
<td>75 - 120b</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (μg/L)b</th>
<th>Qualifier</th>
<th>RLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25b</td>
<td>Ub</td>
<td>25b</td>
</tr>
<tr>
<td>Benzenec</td>
<td>34c</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromoch oromethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>arbon disulfide</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>h orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h orodibromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h oronethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h orotritol</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Cb orotulene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>4-Cb orotulene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,2-Dich orenoeben</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,3-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dich orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,4-Dich orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dich orobromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dich orodifluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich orenoeben</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orenoeben</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich orenthene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dich orenthene, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>1,2-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2,2-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dich oropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>570b</td>
<td>E *b</td>
<td>10b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hexach orobutadiene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Methylene Cb orideb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Tyrene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachoroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Tetrachoroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,2-Dichoroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>2.9</td>
<td></td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>surrogate</th>
<th>%Recb</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>91b</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>92b</td>
<td></td>
<td>75 - 121b</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>97b</td>
<td></td>
<td>75 - 120b</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoneb</td>
<td>25b</td>
<td>Ub</td>
<td>25b</td>
</tr>
<tr>
<td>Benzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromobenzeneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromochloromethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromoformb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Bromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Butanone (MEK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Arbon disulfide</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Arbon tetrachloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h Orobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h Oribromomethaneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h Orformb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>h Oromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Cb Orotolene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>4-Cb Orotolene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Cb Propylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichloro benzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,4-Dichloro benzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>1,2-Dichloro propene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2,2-Dichloro propene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3-Dichloro propene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1-Dichloro propene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Methylene C8 oxide</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)b</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
</tbody>
</table>
Client Sample ID: Trip BlankT
Lab Sample ID:b 680-61853-7b
Matrix: Waterb
Date Sampled: 10/04/2010 0000b
Date Received: 10/05/2010 0938b

8260B Volatile Organic Compounds (GC/MS)T

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>p-Isopropyltolueneb</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,2-Dichroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>trans-1,3-Dichropropene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0b</td>
<td>Ub</td>
<td>1.0b</td>
</tr>
<tr>
<td>Xylenes, Totalb</td>
<td>2.0b</td>
<td>Ub</td>
<td>2.0b</td>
</tr>
<tr>
<td>surrogate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Recb</td>
<td>93b</td>
<td></td>
<td>75 - 120b</td>
</tr>
<tr>
<td>Qualifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptance Limitsb</td>
<td>91b</td>
<td></td>
<td>75 - 121b</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>96b</td>
<td></td>
<td>75 - 120b</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recoveries

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010Cb</td>
<td>3005Ab</td>
<td>1.0b</td>
<td>10/15/2010</td>
<td>10/13/2010</td>
<td>Arsenicb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barium</td>
<td>33b</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lead</td>
<td>10b</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Selenium</td>
<td>20b</td>
<td></td>
<td>20b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron</td>
<td>8200b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Admix</td>
<td>5.0b</td>
<td></td>
<td>5.0b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hromiumb</td>
<td>10b</td>
<td></td>
<td>10b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
<th>Dilution</th>
<th>Date Analyzed</th>
<th>Date Prepared</th>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7470Ab</td>
<td>7470Ab</td>
<td>1.0b</td>
<td>10/13/2010</td>
<td>10/08/2010</td>
<td>Mercury</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recovery

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>6010Cb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Barium</td>
<td>3005Ab</td>
<td>21</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Admium</td>
<td></td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>Hromium</td>
<td></td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>6000b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Selenium</td>
<td></td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Verv</td>
<td></td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Osmium</td>
<td></td>
<td>67000b</td>
<td></td>
<td>100b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>7470Ab</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recoveries:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenicb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Bariumb</td>
<td>240</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>admiumb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>hromiumb</td>
<td>170b</td>
<td>10b</td>
<td>50</td>
</tr>
<tr>
<td>Ironb</td>
<td>1000b</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Lead</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>eleniumb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>verb</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recovered:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenicb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Barium</td>
<td>59</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td>admiumb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>rheniumb</td>
<td>18b</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td>Ironb</td>
<td>16000b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>eleniumb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>verb</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>odiumb</td>
<td>41000b</td>
<td></td>
<td>1000b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA):

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)-Total Recoveries

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenicb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Bariumb</td>
<td>69.</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td>admiumb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>hromiumb</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Ironb</td>
<td>71b</td>
<td></td>
<td>50b</td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>eleniumb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>verb</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>odiumb</td>
<td>23000b</td>
<td></td>
<td>1000b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
Client Sample ID:T MW-14
Lab Sample ID:b 680-61853-6b
Matric:b Water

6010C Metals (ICP)-Total Recoverable:

<table>
<thead>
<tr>
<th>Method</th>
<th>6010Cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Batch:</td>
<td>680-183127b</td>
</tr>
<tr>
<td>Instrument ID:b</td>
<td>ICPDb</td>
</tr>
<tr>
<td>Lab File ID:b</td>
<td>1015101039.chrb</td>
</tr>
<tr>
<td>Initial Weight/Volume:b</td>
<td>50 mL0</td>
</tr>
<tr>
<td>Final Weight/Volume:b</td>
<td>50 mL0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifierb</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenicb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>Bariumb</td>
<td>31b</td>
<td></td>
<td>10b</td>
</tr>
<tr>
<td>admiumb</td>
<td>5.0b</td>
<td>Ub</td>
<td>5.0b</td>
</tr>
<tr>
<td>hromiumb</td>
<td>10b</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>Ironb</td>
<td>140</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Lead</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>eleniumb</td>
<td>20b</td>
<td>Ub</td>
<td>20b</td>
</tr>
<tr>
<td>verb</td>
<td>10</td>
<td>Ub</td>
<td>10b</td>
</tr>
<tr>
<td>odiumb</td>
<td>19000b</td>
<td></td>
<td>1000b</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA):

<table>
<thead>
<tr>
<th>Method</th>
<th>7470Ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Batch:</td>
<td>680-182841b</td>
</tr>
<tr>
<td>Prep Batch:</td>
<td>680-182342b</td>
</tr>
<tr>
<td>Instrument ID:b</td>
<td>LEEMAN1b</td>
</tr>
<tr>
<td>Lab File ID:</td>
<td>101 210.chrb</td>
</tr>
<tr>
<td>Initial Weight/Volume:b</td>
<td>50 mL0</td>
</tr>
<tr>
<td>Final Weight/Volume:b</td>
<td>50 mL0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)b</th>
<th>Qualifierb</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20b</td>
<td>Ub</td>
<td>0.20b</td>
</tr>
</tbody>
</table>
General Chemistry

<table>
<thead>
<tr>
<th>Client Sample ID:</th>
<th>MW-1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample ID:</td>
<td>680-61853-1b</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Waterb</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>10/04/2010 1338b</td>
</tr>
<tr>
<td>Date Received:</td>
<td>10/05/2010 0938b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>Dilb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulfateb</td>
<td>260b</td>
<td>mg/L0</td>
<td></td>
<td>50b</td>
<td>10b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b Date Analyzed: 10/14/2010 1737
<table>
<thead>
<tr>
<th>Analyteb</th>
<th>Resultb</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>Dilb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulfateb</td>
<td>280b</td>
<td></td>
<td>mg/L0</td>
<td>50b</td>
<td>10b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b
Date Analyzed: 10/14/2010 1735
<table>
<thead>
<tr>
<th>Analyteb</th>
<th>Resultb</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>Dilb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>uifateb</td>
<td>57b</td>
<td>mg/L0</td>
<td></td>
<td>10b</td>
<td>2.0b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b
Date Analyzed: 10/14/2010 1716
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>Dilb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulfateb</td>
<td>27b</td>
<td>mg/L0</td>
<td></td>
<td>5.0b</td>
<td>1.0b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b
Date Analyzed: 10/14/2010 1708
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>Dilb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulfateb</td>
<td>12b</td>
<td>mg/L0</td>
<td></td>
<td>5.0b</td>
<td>1.0b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b
Date Analyzed: 10/14/2010 1708
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualb</th>
<th>Unitsb</th>
<th>RL0</th>
<th>DILb</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulfateb</td>
<td>21b</td>
<td>mg/L0</td>
<td></td>
<td>5.0b</td>
<td>1.0b</td>
<td>9038b</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183035b Date Analyzed: 10/14/2010 1708
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G /MN VOAb</td>
<td>Ub</td>
<td>Indicate the analyte was analyzed for but not detected. b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L* or L* D exceed the control limitb</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>Rebuilt exceeded ca. ration range. b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPD of the L* and L* D exceed the control limitb</td>
</tr>
<tr>
<td>Meta.</td>
<td>Ub</td>
<td>Indicate the analyte was analyzed for but not detected. b</td>
</tr>
<tr>
<td>Genera. Chembryl</td>
<td>Ub</td>
<td>Indicate the analyte was analyzed for but not detected. b</td>
</tr>
<tr>
<td>alys</td>
<td>sult</td>
<td>QualR</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>c o.</td>
<td>25</td>
<td>U</td>
</tr>
<tr>
<td>B zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>B.omob. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>B.omohrom. hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>B.omofrom.</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>B.omohrome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Chloroeb. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Chlorodibromome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Chloroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Chlorome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2-Chloro.oue</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>4-Chloro.oue</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>cis-1,2.-ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>cis-1,3.-ic hlorop2p2</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic bromo-3-Chlorop2pab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic bromoe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>i bromome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,3.-ic hloroboe. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic hloroboe. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,4.-ic hloroboe. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>ic hlorobromome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>ic hlorodifluorome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1.-ic hloroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic hloroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1.-ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic hloroe.h. , To.al</td>
<td>2.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2.-ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2,2.-ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,3.-ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1.-ic hlorop2p2</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>i hyl e h.</td>
<td>10.0</td>
<td>U</td>
</tr>
<tr>
<td>Effhyl e. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Hbxchlorobu.adi</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2-H xa o.</td>
<td>10.0</td>
<td>U</td>
</tr>
<tr>
<td>Isop2pylbe. zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>MNhyll Chlorid</td>
<td>5.0</td>
<td>U</td>
</tr>
<tr>
<td>4-MNhyll-2-p2 abo. (MIBK)N</td>
<td>10.0</td>
<td>U</td>
</tr>
<tr>
<td>MNhyll , -bu.yl e.h.</td>
<td>10.0</td>
<td>U</td>
</tr>
<tr>
<td>m-Xyl</td>
<td>2.0</td>
<td>U</td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-1822u9I

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>MB 680-1) 2239/F</th>
<th>alysis Batch</th>
<th>680-1) 2239c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CII</td>
<td>MaxxJ</td>
<td>Wab</td>
<td>1.0.</td>
</tr>
<tr>
<td>il u.o.</td>
<td>1.0.</td>
<td>Unit µg/LR</td>
<td>1.0.</td>
</tr>
<tr>
<td>ab.</td>
<td>aly2Ud</td>
<td>10/07/2010 1153T</td>
<td>10/07/2010 1153T</td>
</tr>
<tr>
<td>ab P</td>
<td>Pab d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naph,hal)</td>
<td>5.0.</td>
<td>U)</td>
<td>5.0.</td>
</tr>
<tr>
<td>-Bu,yle. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>N-P opylbe. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>o-Xyl</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>p-lisolp0yilp</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>sbc-Bu,yle. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>StyS</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>-Bu yle. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2,2-Tb achoroe.hab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1,2-Tb achoroe.hab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tb achoroe.h.</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Toluoe.</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>abs-1,2-.ic aloroe.h.</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>abs-1,3-.ic hlorop2p2</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-Ttchioroe. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-Ttchioroe. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1-Ttchioroe.hab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2-Ttchioroe.hab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Ttchloroe.h.</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Ttchlorofuorome.hab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-Ttchlorop2pab</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-Tttme.ylbe. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3,5-Tttme.ylbe. zU</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Viny) ac</td>
<td>2.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Viny) chlorid</td>
<td>1.0.</td>
<td>U</td>
<td>1.0.</td>
</tr>
<tr>
<td>Xyl)</td>
<td>2.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
</tbody>
</table>

Method: 8260Bv

<table>
<thead>
<tr>
<th>Inj sample ID</th>
<th>MSP</th>
<th>Lab Fil ID</th>
<th>pq395.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Wtgh./Volume:</td>
<td>5 mL</td>
<td>Final Wtgh./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

Surrogab

<table>
<thead>
<tr>
<th>%</th>
<th>c)</th>
<th>cc</th>
<th>p2,tc</th>
<th>Limit #b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-B.oomofuorobe. zU</td>
<td>92b</td>
<td>75 - 120.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromofuorome.hab</td>
<td>90.</td>
<td>75 - 121)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu. - d (Sur)N</td>
<td>9c</td>
<td>75 - 120.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Sample ID</td>
<td>Lab Site</td>
<td>Matrix</td>
<td>Analysis Batch</td>
<td>Reference Batch</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LB 680-1) 2145/7-</td>
<td>MabixJ</td>
<td>Wab</td>
<td>680-1) 2239c</td>
<td>Plab ch. N/F</td>
</tr>
<tr>
<td>CLS u.i.o.</td>
<td>G680-1 07/010 1223T</td>
<td>20.</td>
<td>Unit.tbg ug/LR</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/06/2010</td>
<td>10/07/2010</td>
<td>1223T</td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/06/2010</td>
<td>1/0 7b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRachab Batch</td>
<td>680-1) 2145M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-chloro.hab</td>
<td>20.</td>
<td>U)</td>
<td>20.</td>
</tr>
<tr>
<td>1,1-chloro.h.h.</td>
<td>20.</td>
<td>U)</td>
<td>20.</td>
</tr>
<tr>
<td>Tc. chloro.h.</td>
<td>20.</td>
<td>U)</td>
<td>20.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogab</th>
<th>% . c)</th>
<th>cc) p2ab</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-9Hfluorob. zU</td>
<td>93T</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.hab</td>
<td>75 - 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue. d (SurjN)</td>
<td>9c</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Alysis Balzch.: 680-1) 2239c

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2239/5M</th>
<th>Alysis Balzch.</th>
<th>Injßume. ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Balzch. N/F</td>
<td>Lab Filj ID</td>
<td>pq3T.d</td>
</tr>
<tr>
<td>il u. i.o.</td>
<td>1.0</td>
<td>Unitßb ug/LR</td>
<td>Initial WMg./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/07/2010 095M</td>
<td></td>
<td>Final WMg./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSID Lab Sample ID</th>
<th>LCSID 680-1) 2239/F</th>
<th>Alysis Balzch.</th>
<th>Inßßme. ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Balzch. N/F</td>
<td>Lab Filj ID</td>
<td>pq3T.d</td>
</tr>
<tr>
<td>il u. i.o.</td>
<td>1.0</td>
<td>Unitßb ug/LR</td>
<td>Initial WMg./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/07/2010 1025M</td>
<td></td>
<td>Final WMg./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AlyS</th>
<th>% c.) LCS</th>
<th>Limit</th>
<th>P</th>
<th>Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o.</td>
<td>7b</td>
<td>17 - 175M</td>
<td>1</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. zU</td>
<td>9c</td>
<td>99c</td>
<td>77 - 119c</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>B. omochlorome. zU</td>
<td>94c</td>
<td>93T</td>
<td>0 - 124c</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>B. omochlorome.hab</td>
<td>9c</td>
<td>9c</td>
<td>10 - 150</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>B. omoform.</td>
<td>99c</td>
<td>100</td>
<td>2 - 133T</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>B. omone. hab</td>
<td>143T</td>
<td>14c</td>
<td>12 - 134c</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>2-Bu,abo. (MEM)/N</td>
<td>100.</td>
<td>9c</td>
<td>33 - 157b</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Caßbo. disulfid</td>
<td>93T</td>
<td>93T</td>
<td>55 - 131</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Caßbo. a. achlorid</td>
<td>11j</td>
<td>117b</td>
<td>71 - 135</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Chlorob. zU</td>
<td>95M</td>
<td>97b</td>
<td>5 - 111</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Chlorodibromobrome.hab</td>
<td>104c</td>
<td>106</td>
<td>75 - 133T</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Chloro.hab</td>
<td>124c</td>
<td>114c</td>
<td>40 - 135</td>
<td>9c</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>101j</td>
<td>99c</td>
<td>2 - 120</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>Chloro.hab</td>
<td>105M</td>
<td>100</td>
<td>4c - 142b</td>
<td>5M</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>2-Chloro. olue.</td>
<td>94c</td>
<td>94c</td>
<td>2 - 123T</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>4-Chloro. olue.</td>
<td>9c</td>
<td>9c</td>
<td>3 - 122b</td>
<td>2b</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-i hloroe.h.</td>
<td>93T</td>
<td>93T</td>
<td>9 - 134c</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-i hlorop2p2</td>
<td>107b</td>
<td>107b</td>
<td>7b - 12b</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i bromo-3-Chlorop2pab</td>
<td>5M</td>
<td>2b</td>
<td>49 - 140</td>
<td>4c</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i bromoe.hab</td>
<td>95M</td>
<td>95M</td>
<td>0 - 121</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>i bromone.hab</td>
<td>94c</td>
<td>97b</td>
<td>7b - 119c</td>
<td>3T</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,3-i hloroe. zU</td>
<td>94c</td>
<td>95M</td>
<td>7b - 125M</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i hloroe. zU</td>
<td>93T</td>
<td>93T</td>
<td>79 - 124c</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,4-,i hloroe. zU</td>
<td>9c</td>
<td>9c</td>
<td>1 - 122b</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>ic hlorobrome.hab</td>
<td>107b</td>
<td>108</td>
<td>7b - 127b</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>ic hlorodifluorome.hab</td>
<td>7b</td>
<td>34 - 154</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-,i hloroe.hab</td>
<td>101j</td>
<td>100</td>
<td>74 - 127b</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i hloroe.hab</td>
<td>99c</td>
<td>9c</td>
<td>- 132b</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,1-,i hloroe.h.</td>
<td>95M</td>
<td>95M</td>
<td>2 - 141</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i hloroe.h. (To.al)</td>
<td>9c</td>
<td>95M</td>
<td>- 134</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,2-,i hlorop2pab</td>
<td>101j</td>
<td>100</td>
<td>73 - 124c</td>
<td>0</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>2,2-,i hlorop2pab</td>
<td>110.</td>
<td>110</td>
<td>55 - 157b</td>
<td>1</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>1,3-,i hlorop2pab</td>
<td>94c</td>
<td>97b</td>
<td>75 - 120</td>
<td>3T</td>
<td>30.</td>
<td></td>
</tr>
</tbody>
</table>
LabID: LuluConrouSVMpe/I

Lab ID: LuluConrouSVMpe/UPucv eRcovery Reporu- Bv ch: 680-1822u9l

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2239/5M</th>
<th>alysis Batch</th>
<th>680-1) 2239c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clw) MabixJ Wab</td>
<td>p Batch. N/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>il u.i.o. 1.0</td>
<td>Unit b ug/LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd 10/07/2010 095M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d 10/07/2010 095M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID</th>
<th>LCSD(680-1) 2239/F</th>
<th>alysis Batch</th>
<th>680-1) 2239c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clw) MabixJ Wab</td>
<td>p Batch. N/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>il u.i.o. 1.0</td>
<td>Unit b ug/LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd 10/07/2010 1025M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d 10/07/2010 1025M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260Bv

Prepuri on: 8060Bv

<table>
<thead>
<tr>
<th>alvs</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
</table>
| 1.1.-ic hlorop2p2 | 104c | 103T | 77 - 122b | 1) | 30.
| Efhyb, zU | 9c | 9c | - 11) 0 | 30. | |
| Hbxchlororbu.adij | 101) | 101) | 2 - 142b | 1) | 30. |
| 2-Hbxabo. | 95M | 94c | 34 - 11) 1 | 30. |
| Isop2pylbe. zU | 100. | 99c | 2 - 121) 1 | 30. |
| Mhnylel Chlorid | 95M | 92b | 70 - 125M 4c | 30. |
| 4-Mhnylel-2-p2 abo. (MBK)N | 95M | 9c | 40 - 151) 3T | 30. |
| Mhnylel -bu.yl e.h. | 94c | 93T | 77 - 121) 2b | 30. |
| m-Xyl & p-Xyl | 97b | 9c | 3 - 11) 1) | 30. |
| Naph.alal | 107b | 112b | 4c - 135M 4c | 30. |
| -Bu.ylbe. zU | 117b | 119c | 4 - 13T 2b | 30. |
| N-P opylbe. zU | 97b | 9c | 0 - 12b 1) | 30. |
| o-Xyl | 109c | 108. | 3 - 119c 1) | 30. |
| p-Iso2pylblue. | 100. | 102b | 3 - 139c 2b | 30. |
| sbc-Bu.ylbe. zU | 100. | 101) | 77 - 12b 2b | 30. |
| StyS | 9c | 97b | 2 - 122b 1) | 30. |
| -Bu.ylbe. zU | 99c | 99c | 0 - 124c 0. | 30. |
| 1,1,2,2-Tb achirole.hab | 91) | 93T | 9 - 129c 2b | 30. |
| 1,1,1,2-Tb achirole.hab | 106. | 107b | 1 - 12b 1) | 30. |
| Tb achirole.h. | 91) | 92b | 7b - 12b 1) | 30. |
| Tolue. | 99c | 101) | 1 - 117b 1) | 30. |
| abs-1,2,-ic hlorole.h. | 9c | 9c | 72 - 131) 1 | 30. |
| abs-1,3,-ic hlorop2p2 | 107b | 106. | 73 - 12b 1) | 30. |
| 1,2,4-Tbchloro. zU | 93T | 95M | 0 - 135M 2b | 30. |
| 1,2,3-Tbchloro. zU | 92b | 9c | 0 - 132b 4c | 30. |
| 1,1,1-Tbchloro.hab | 107b | 108. | 7b - 127b 1) | 30. |
| 1,1,2-Tbchloro.hab | 9c | 9c | 75 - 121) 0. | 30. |
| Tbcchloro.h. | 9c | 97b | 4 - 115M 2b | 30. |
| Tbcchlorofluorome.hab | 117b | 117b | 5M 149c 0. | 50. |
| 1,2,3-Tbchlorop2pab | 91) | 9c | 70 - 130. 2b | 30. |
| 1,2,4-Tbme.hylbe. zU | 103T | 106. | 72 - 132b 2b | 30. |
| 1,3,5-Tbme.hylbe. zU | 9c | 9c | 72 - 133T 2b | 30. |
| Vinyl ac) ab | 108. | 104c | 10 - 217b 4c | 30. |
Quality Control Report

Method: 8260Bv
Preparation: 8060Bv

Lab: ConrouStream

Sample ID: LCS 680-1-2239c

Batch: 680-1-2239c

Sample ID: LCS 680-1-3201c

Batch: 680-1-3201c

Table 1: Analytical Data

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1-2239c</th>
<th>alysis Batch: 680-1-2239c</th>
<th>Instrume. ID) MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td>Lab Fil ID) pq3T7.d</td>
</tr>
<tr>
<td>il u.io. ab alyzUd</td>
<td>10/07/2010 095M</td>
<td>Unit$\text{b}^# \text{ug/LR}$</td>
<td>Initial WMgh./Volume.: 5 mL</td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/07/2010 095M</td>
<td></td>
<td>Final WMgh./Volume.: 5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID</th>
<th>LCSD 680-1-2239c</th>
<th>alysis Batch: 680-1-2239c</th>
<th>Instrume. ID) MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>il u.io. ab alyzUd</td>
<td>10/07/2010 1025M</td>
<td>Unit$\text{b}^# \text{ug/LR}$</td>
<td>Initial WMgh./Volume.: 5 mL</td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/07/2010 1025M</td>
<td></td>
<td>Final WMgh./Volume.: 5 mL</td>
</tr>
</tbody>
</table>

Table 2: Analytical Results

<table>
<thead>
<tr>
<th>alyS</th>
<th>% c) LCS)</th>
<th>% c) LCSD)</th>
<th>Limit)</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chloride</td>
<td>111)</td>
<td>110.</td>
<td>1)</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylo(s, To.al)</td>
<td>101)</td>
<td>101)</td>
<td>4 - 11)</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Surrogates

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>LCS % c)</th>
<th>LCSD % c)</th>
<th>cc) Sublim. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-2-chloro-3U</td>
<td>97b</td>
<td>97b</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>i Bromo-2-Chloro-1</td>
<td>99M</td>
<td>93T</td>
<td>75 - 121)</td>
</tr>
<tr>
<td>Toluene - d (Surj)N</td>
<td>97b</td>
<td>99c</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 680-182404

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>MB 680-1) 2404/7b</th>
<th>alysis Batch</th>
<th>680-1) 2404c</th>
<th>lnjection ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli</td>
<td>MabixJ</td>
<td>Wab</td>
<td>P p Batch: N/F</td>
<td>UnitLb ug/LR</td>
<td></td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/08/2010 1224c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 1224c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>c o.</td>
<td>25</td>
<td>U</td>
<td>25M</td>
</tr>
<tr>
<td>B zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omoe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omohrome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omofrm.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omohrome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Bu.abo. (MEK)N</td>
<td>10.0</td>
<td>U</td>
<td>10.0</td>
</tr>
<tr>
<td>Cato. disulfid</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbo. acchlorid</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloro. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromohrome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorohab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorofrm.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorohbme hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Chloro.oclue.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>4-Chloro.oclue.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-.ic chloroh.e.h.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-.ic chlorop2bp2</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-.i bromo-3-Chlorop2b pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-.i bromoe hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>i bromome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-.ic hlorobe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-.ic hlorobe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,4-.ic hlorobe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorobromohrome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorodifluorohrome hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-.ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-.ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-.ic hloroe.h. , To.al</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-.ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2,2-.ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-.ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-.ic hlorop2p2</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>hyl e h.</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Efhybe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Hbxachlorobu.abi)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-H xa o.</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>Isop2pylbe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>MNhyl</td>
<td>Chlorid</td>
<td>5.0</td>
<td>U</td>
</tr>
<tr>
<td>4-MNHyl-2-p2 abo. (MIBK)N</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>MNhyl. -bu.yl e.h.</td>
<td>10</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>m-Xyl & p-Xyl</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 680-182404

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naph. hal)</td>
<td>5.0</td>
<td>U)</td>
<td>5.0</td>
</tr>
<tr>
<td>-Bu. ylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>N-P opylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl)</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropyltoluene.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>s-Bu-ylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>StyS</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>-Bu ylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tb aehloroe.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tb aehloroe.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tb aehloroe.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tolue.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>abs-1,2-ic hloroe.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>abs-1,3-ic hlorop2p2</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Tbcchloroe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Tbcchloroe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Tbcchloroe.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Tbcchloroe.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tbcchloroe.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tbcchlorofluorome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Tbchlorop2pab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Tbrme.ylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-Tbrme.ylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl ac)</td>
<td>2.0</td>
<td>U)</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Xyl) s, Toluol)</td>
<td>2.0</td>
<td>U)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogab</th>
<th>% c)</th>
<th>cc) p2atc</th>
<th>Limitb</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluoroe. zU</td>
<td>91)</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.hab</td>
<td>90.</td>
<td>75 - 121.</td>
<td></td>
</tr>
<tr>
<td>Tolue. - d (Sur)N</td>
<td>97b</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260Bv

Preparation on: 8060Bv
<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS (%)</th>
<th>LCSD (%)</th>
<th>Limit (%)</th>
<th>P (%)</th>
<th>Limit (%)</th>
<th>LCS Qual (%)</th>
<th>LCSD Qual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o.</td>
<td>5M</td>
<td>1)</td>
<td>17 - 175M</td>
<td>5M</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. zU</td>
<td>9c</td>
<td>9c</td>
<td>77 - 119c</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omoh. zU</td>
<td>93T</td>
<td>90</td>
<td>0 - 124c</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omohlorome.hab</td>
<td>95M</td>
<td>97b</td>
<td>10 - 150c</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omohlorome. hab</td>
<td>97b</td>
<td>9c</td>
<td>2 - 133T</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B; omoh. hab</td>
<td>147b</td>
<td>1 2b</td>
<td>12 - 1 4c</td>
<td>10.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu.abo. (MEK)N</td>
<td>95M</td>
<td>9c</td>
<td>33 - 157b</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caibo. disulfid</td>
<td>9c</td>
<td>95M</td>
<td>55 - 131T</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caibo. achlor.</td>
<td>11j</td>
<td>11k</td>
<td>71 - 135M</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorob. zU</td>
<td>97b</td>
<td>9c</td>
<td>5 - 11)</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromobenzene.hab</td>
<td>103T</td>
<td>102b</td>
<td>75 - 133T</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro. hab</td>
<td>12b</td>
<td>137b</td>
<td>40 - 1 5M</td>
<td>7b</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>99c</td>
<td>9c</td>
<td>2 - 120c</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorame.hab</td>
<td>109c</td>
<td>110</td>
<td>4c - 142b</td>
<td>0.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloro. olue.</td>
<td>94c</td>
<td>92b</td>
<td>2 - 123T</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro. olue.</td>
<td>94c</td>
<td>93T</td>
<td>3 - 122b</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-ic hloroe.h.</td>
<td>95M</td>
<td>93T</td>
<td>9 - 134c</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-ic hlorop2p2</td>
<td>104c</td>
<td>105M</td>
<td>7b - 12b</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-i bromo-3-Chloro.2p2b</td>
<td>7b</td>
<td>7b</td>
<td>49 - 140</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-i bromoe. hab</td>
<td>9c</td>
<td>92b</td>
<td>0 - 121)</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromome. hab</td>
<td>94c</td>
<td>94c</td>
<td>7b - 119c</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-ic hloroe. zU</td>
<td>92b</td>
<td>90</td>
<td>7b - 125M</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroe. zU</td>
<td>92b</td>
<td>9c</td>
<td>79 - 124c</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-ic hloroe. zU</td>
<td>93T</td>
<td>92b</td>
<td>1 - 122b</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorobrome. hab</td>
<td>106.</td>
<td>106.</td>
<td>7b - 127b</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ic hlorofluorobreme. hab</td>
<td>9c</td>
<td>9c</td>
<td>34 - 154c</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloroe.hab</td>
<td>99c</td>
<td>100</td>
<td>74 - 127b</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroe.hab</td>
<td>95M</td>
<td>9c</td>
<td>1 - 132b</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-ic hloro.e.h.</td>
<td>97b</td>
<td>9c</td>
<td>2 - 141)</td>
<td>1)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hloroe.e.h. (To.al)</td>
<td>9c</td>
<td>95M</td>
<td>1 - 134c</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-ic hlorop2p2b</td>
<td>100.</td>
<td>100.</td>
<td>73 - 124c</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-ic hlorop2p2b</td>
<td>111j</td>
<td>113T</td>
<td>55 - 157b</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-ic hlorop2p2b</td>
<td>92b</td>
<td>92b</td>
<td>75 - 120.</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quy ConourReV

\[\text{Job Number: 680-61) 53-1} \]

Lubi\text{ConourSVMpe/U}

Lubi\text{ConourSVMpe/DUpucv eRecovery Reporu- Bv ch: 680-182404

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2404/4c</th>
<th>alysis Batch 680-1) 2404c</th>
<th>In\text{bume. ID)</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ Wab</td>
<td>P p Batch. N/F</td>
<td>Unit$b ugi/LR</td>
<td>Lab Fil) ID)</td>
<td>pg403.d</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td></td>
<td>Initial Wmgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>10/08/2010 1015M</td>
<td>ab P pab d</td>
<td></td>
<td>Final Wmgh./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-1) 2404/5M</th>
<th>alysis Batch 680-1) 2404c</th>
<th>In\text{bume. ID)</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ Wab</td>
<td>P p Batch. N/F</td>
<td>Unit$b ugi/LR</td>
<td>Lab Fil) ID)</td>
<td>pg405.d</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td></td>
<td>Initial Wmgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>10/08/2010 105M</td>
<td>ab P pab d</td>
<td></td>
<td>Final Wmgh./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS(%)</th>
<th>LCSD(%)</th>
<th>Limit (%)</th>
<th>P</th>
<th>P Limit (%)</th>
<th>LCS Qual (%)</th>
<th>LCSD Qual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-ic hlorop2p2</td>
<td>102b</td>
<td>102b</td>
<td>77 - 122b</td>
<td>0.</td>
<td>30.</td>
<td>U *b</td>
<td></td>
</tr>
<tr>
<td>i) hyl e.h.</td>
<td>101)</td>
<td>0</td>
<td>70 - 130.</td>
<td>200</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efylbe. zU</td>
<td>100.</td>
<td>9c</td>
<td>- 11)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hbxachlorobu.adj)</td>
<td>93T</td>
<td>9c</td>
<td>2 - 142b</td>
<td>4c</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hbxabo.</td>
<td>92b</td>
<td>91)</td>
<td>34 - 1)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isop2pylb. zU</td>
<td>99c</td>
<td>97b</td>
<td>2 - 12T)</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNylhL Chlorid</td>
<td>95M</td>
<td>95M</td>
<td>70 - 125M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MNylh-L-2p2 abo. (MIBK)N</td>
<td>91)</td>
<td>92b</td>
<td>40 - 151)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNylh. -bu.yl e.h.</td>
<td>95M</td>
<td>93T</td>
<td>77 - 121)</td>
<td>2T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl & p-Xyl)</td>
<td>9c</td>
<td>97b</td>
<td>3 - 11)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naph.hal) -Bu.ylbe. zU</td>
<td>102b</td>
<td>97b</td>
<td>4c - 135M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P oplbe. zU</td>
<td>115M</td>
<td>11.0</td>
<td>4 - 13T</td>
<td>4c</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl)</td>
<td>9c</td>
<td>94c</td>
<td>0 - 12b</td>
<td>2T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isop2pyllblue.</td>
<td>109c</td>
<td>106.</td>
<td>3 - 119c</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-Bu.ylbe. zU</td>
<td>10c</td>
<td>94c</td>
<td>77 - 12b</td>
<td>4c</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyS</td>
<td>97b</td>
<td>97b</td>
<td>2 - 122b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylbe. zU</td>
<td>97b</td>
<td>93T</td>
<td>0 - 124c</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tb acloroe.hab</td>
<td>906.</td>
<td>9 - 129c</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tb acloroe.hab</td>
<td>106.</td>
<td>104c</td>
<td>1 - 12b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb acloroe.h.</td>
<td>93T</td>
<td>91)</td>
<td>7b - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue.</td>
<td>9c</td>
<td>9c</td>
<td>1 - 117b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,2-ic hloroe.h.</td>
<td>9c</td>
<td>97b</td>
<td>72 - 131)</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,3-ic hlorop2p2</td>
<td>102b</td>
<td>104c</td>
<td>73 - 12b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tbchlorobe. zU</td>
<td>7b</td>
<td>2b</td>
<td>0 - 135M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tbchlorobe. zU</td>
<td>0.</td>
<td>0 - 132b</td>
<td>7b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tbchlorobe.hab</td>
<td>106.</td>
<td>107b</td>
<td>7b - 127b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tbchlorobe.hab</td>
<td>95M</td>
<td>93T</td>
<td>75 - 121)</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tbchloroe.h.</td>
<td>95M</td>
<td>95M</td>
<td>4 - 115M</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tbchlorofluorome.hab</td>
<td>119c</td>
<td>120.</td>
<td>5M - 149c</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tbchloror2pab</td>
<td>4c</td>
<td>70 - 130.</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tbme.hylbe. zU</td>
<td>101)</td>
<td>101)</td>
<td>72 - 132b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tbme.hylbe. zU</td>
<td>97b</td>
<td>94c</td>
<td>72 - 133T</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS Sample</th>
<th>Analysis Batch</th>
<th>P p Batch</th>
<th>MSP</th>
<th>Lab File ID</th>
<th>Initial Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli</td>
<td>MabixJ</td>
<td>Wab</td>
<td>680-1) 2404/4c</td>
<td>N/F</td>
<td>pq403.d</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>alyzUd</td>
<td>10/08/2010 1015M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 1015M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS Sample ID</th>
<th>LCS Sample</th>
<th>Analysis Batch</th>
<th>P p Batch</th>
<th>MSP</th>
<th>Lab File ID</th>
<th>Initial Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli</td>
<td>MabixJ</td>
<td>Wab</td>
<td>680-1) 2404/5M</td>
<td>N/F</td>
<td>pq405.d</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>alyzUd</td>
<td>10/08/2010 105M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 105M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

alyS

<table>
<thead>
<tr>
<th>Substance</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl ac</td>
<td>108</td>
<td>106</td>
<td>10 - 217b</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>117b</td>
<td>114c</td>
<td>59 - 144c</td>
<td>3T</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylo</td>
<td>102b</td>
<td>100</td>
<td>4 - 11</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Substance</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromoanisole</td>
<td>94c</td>
<td>94c</td>
<td></td>
<td></td>
<td>75 - 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>92b</td>
<td>92b</td>
<td></td>
<td></td>
<td>75 - 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>9c</td>
<td>9c</td>
<td></td>
<td></td>
<td>75 - 120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-1825086

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>MB 680-1) 2508/23T</th>
<th>alysis Batch</th>
<th>680-1) 2508.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CII</td>
<td>MabixJ</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
</tr>
<tr>
<td>ii u.i.o.</td>
<td>1.0.</td>
<td>UnitTest ug/LR</td>
<td></td>
</tr>
<tr>
<td>ab. alyZud</td>
<td>10/08/2010 1209c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 1209c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suitl</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>c o.</td>
<td>25</td>
<td>U</td>
<td>25M</td>
</tr>
<tr>
<td>B zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omob. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omoclorome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omoforizm</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>B.omome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Catbo. disulfid</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbo. achochlor</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorob. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroe.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroforizm</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Chloro.oleu.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>4-Chloro.oleu.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2. ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3. ic hlorop2p2</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2. i hloro-3-Chlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2. i bromoe.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>i bromome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3. ic hlorob. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2. ic hlorob. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,4. ic hlorob. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorobromome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>ic hlorofluorome.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1. ic hloroe.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2. ic hloroe.hab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1. ic hloroe.h.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2. ic hloroe.h. To.al</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2. ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2,2. ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3. ic hlorop2pab</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1. ic hlorop2p2</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>i hyl e h.</td>
<td>10.</td>
<td>U</td>
<td>10.</td>
</tr>
<tr>
<td>Effylbe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Hbxchlorobu.adi)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-H xa o.</td>
<td>10.</td>
<td>U</td>
<td>10.</td>
</tr>
<tr>
<td>Isop2pylybe. zU</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>MNNyl</td>
<td>Chlorid</td>
<td>5.0</td>
<td>U</td>
</tr>
<tr>
<td>MNNyl. bu.yle.e.h.</td>
<td>10.</td>
<td>U</td>
<td>10.</td>
</tr>
<tr>
<td>m-Xyl & p-Xyl</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>
MeVod Bv nk - Bv ch: 680-1825086

<table>
<thead>
<tr>
<th>Lab Sampl ID</th>
<th>Wab</th>
<th>MB 680-1) 2508/23T</th>
<th>alysis Batch. 680-1) 2508.</th>
<th>Unit: ug/LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli</td>
<td>MaxiJ</td>
<td>1.0.</td>
<td>P P Batch. N/F</td>
<td>10/08/2010 1209c</td>
</tr>
<tr>
<td>U.i.o.</td>
<td>ab P pab d</td>
<td>10/08/2010 1209c</td>
<td>10/08/2010 1209c</td>
<td></td>
</tr>
</tbody>
</table>

MeVod: 8260Bv

<table>
<thead>
<tr>
<th>Initial WMgh./Volume:</th>
<th>5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finial WMgh./Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naph,hal)</td>
<td>5.0.</td>
<td>U)</td>
<td>5.0.</td>
</tr>
<tr>
<td>-Bu,ylbe. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>N-P optye. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>o-Xyl</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>p-Isop2opylglue.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>sbc-Bu,ylbe. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>StyS</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>-Bu,ylbe. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2,2-Tb achloroe.hab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1,2-Tb achloroe.hab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tb achloroe.h.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tolu.e</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>abs-1,2-.ic hloroe.h.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>abs-1,3-.ic hlorop2p2</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-Tbchlore. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-Tbchlore. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,1-Tbchlore. hab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,1,2-Tbchlore. hab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tbchlore.h.</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tbchlorofluore.hab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,3-Tbchlorop2pab</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,2,4-Tbme,ylbe. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>1,3,5-Tbme,ylbe. zU</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Vinyl ac. ab</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0.</td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.0.</td>
<td>U)</td>
<td>1.0.</td>
</tr>
<tr>
<td>Xyl (s, To.al)</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0.</td>
</tr>
</tbody>
</table>

Surrogab % c) cc) p2atc) Limit:b

<table>
<thead>
<tr>
<th>Surrogab</th>
<th>% c</th>
<th>cc) p2atc)</th>
<th>Limit:b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-B.omofluorobe. zU</td>
<td>94c</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>i bromofluorome.hab</td>
<td>95M</td>
<td>75 - 121.</td>
<td></td>
</tr>
<tr>
<td>Tolu.e. - d (Sur) N</td>
<td>9c</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>

Quy ConrouReV
QUy ConrouReV

Method: 8260Bv
Preparation: 8060Bv

LCS Lab Sample (ID) LCS 680-1) 2508/20.

<table>
<thead>
<tr>
<th>Cli/</th>
<th>Lab ID</th>
<th>Sample</th>
<th>alysis Batch</th>
<th>P p Batch</th>
<th>N/F</th>
<th>Unit μg/LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1.0</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab.</td>
<td>abzUd</td>
<td>10/08/2010 1000.</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P</td>
<td>pab d</td>
<td>10/08/2010 1000.</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCSD Lab Sample (ID) LCSD(80-1) 2508(21)

<table>
<thead>
<tr>
<th>Cli/</th>
<th>Lab ID</th>
<th>Sample</th>
<th>alysis Batch</th>
<th>P p Batch</th>
<th>N/F</th>
<th>Unit μg/LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1.0</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab.</td>
<td>abzUd</td>
<td>10/08/2010 1029c</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P</td>
<td>pab d</td>
<td>10/08/2010 1029c</td>
<td>680-1) 2508</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

alyS

<table>
<thead>
<tr>
<th>LCS</th>
<th>% c.</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>5M</td>
<td>17 - 175M</td>
<td>3T</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103T</td>
<td>77 - 119c</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92b</td>
<td>0 - 124c</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93T</td>
<td>10 - 150.</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101)</td>
<td>2 - 133T</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>12 - 14c</td>
<td>24c</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>33 - 157b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105M</td>
<td>71 - 135M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97b</td>
<td>5 - 111</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>75 - 133T</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td>10.</td>
<td>11</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>2 - 120.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>1</td>
<td>4c- 142b</td>
<td>4c</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93T</td>
<td>2 - 123T</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94c</td>
<td>3 - 122b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>9 - 134c</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109c</td>
<td>7b- 12b</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109c</td>
<td>7b</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102b</td>
<td>7b- 119c</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>7b- 125M</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92b</td>
<td>79 - 124c</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td>1 - 122b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111)</td>
<td>7b- 127b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>34 - 154c</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97b</td>
<td>74 - 127b</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102b</td>
<td>132b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94c</td>
<td>2 - 141</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97b</td>
<td>99c</td>
<td>3b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104c</td>
<td>73 - 124c</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112b</td>
<td>55 - 157b</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>75 - 120.</td>
<td>1</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LubiConrouSmpue/U
**LubiConrouSmpue\(\text{\textregistered}\) Recovery Reporu- Bv ch: 880-1825086

MeVhid: 8260Bv
Prepurr on: 8060Bv

<table>
<thead>
<tr>
<th>LCS Lab Samp(l) ID</th>
<th>LCS 680-1) 2508/20.</th>
<th>alysis Batch</th>
<th>680-1) 2508.</th>
<th>Injsume. ID</th>
<th>MSP2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td>Unit\textregistered ug/LR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/08/2010 1000.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. pab d</td>
<td>10/08/2010 1000.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD(Lab Samp) l ID</th>
<th>LCSD(680-1) 2508/21)</th>
<th>alysis Batch</th>
<th>680-1) 2508.</th>
<th>Injsume. ID</th>
<th>MSP2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td>Unit\textregistered ug/LR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/08/2010 1029c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. pab d</td>
<td>10/08/2010 1029c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS(%)</th>
<th>LCSD(%)</th>
<th>Limit(%)</th>
<th>P</th>
<th>P</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ic hlorop2p2</td>
<td>110.</td>
<td>109c</td>
<td>77 - 122b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efhyb. ZU</td>
<td>95M</td>
<td>9c</td>
<td>- 11)</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hbxachlorobu.adij</td>
<td>97b</td>
<td>97b</td>
<td>2 - 142b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hbxabo.</td>
<td>108.</td>
<td>108.</td>
<td>34 - 1)1)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isop2pylye. ZU</td>
<td>95M</td>
<td>97b</td>
<td>2 - 121)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNHy1y Chlorid</td>
<td></td>
<td></td>
<td>70 - 125M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MNHy1y-2-p2 abo. (MIBK)N</td>
<td>104c</td>
<td>101)</td>
<td>40 - 151)</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNHy1y -bu.yl e.h.</td>
<td>9c</td>
<td>9c</td>
<td>77 - 121)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl & p-Xylj</td>
<td>94c</td>
<td>9c</td>
<td>3 - 11)</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naph.hal]</td>
<td>9c</td>
<td>100.</td>
<td>4c - 135M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.yle. ZU</td>
<td>9c</td>
<td>9c</td>
<td>4 - 13T</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P olyb. ZU</td>
<td>97b</td>
<td>9c</td>
<td>0 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xylj</td>
<td>9c</td>
<td>9c</td>
<td>3 - 119c</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isop2pylylblue.</td>
<td>93T</td>
<td>94c</td>
<td>3 - 139c</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-Bu,yle. ZU</td>
<td>9c</td>
<td>94c</td>
<td>77 - 12b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyS</td>
<td>94c</td>
<td>94c</td>
<td>2 - 122b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.yle. ZU</td>
<td>95M</td>
<td>9c</td>
<td>0 - 124c</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tb a chloride.hab</td>
<td>104c</td>
<td>103T</td>
<td>9 - 129c</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tb a chloride.hab</td>
<td>104c</td>
<td>103T</td>
<td>1 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb a chloride.h.</td>
<td>100.</td>
<td>101)</td>
<td>7b - 12b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu.</td>
<td>9c</td>
<td>95M</td>
<td>1 - 117b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,2-ic hloroe.h.</td>
<td>97b</td>
<td>100.</td>
<td>72 - 131)</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,3-ic hlorop2p2</td>
<td>103T</td>
<td>104c</td>
<td>73 - 12b</td>
<td>1)</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Thchlorobe. ZU</td>
<td>90.</td>
<td>92b</td>
<td>0 - 135M</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Thchlorebe. ZU</td>
<td>90.</td>
<td>92b</td>
<td>0 - 132b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Thchloroeb.hab</td>
<td>111)</td>
<td>111)</td>
<td>7b - 127b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Thchloroeb.hab</td>
<td>101)</td>
<td>100.</td>
<td>75 - 121)</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thchloroeb.h.</td>
<td>101)</td>
<td>101)</td>
<td>4 - 115M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thchlorofluorome.hab</td>
<td>104c</td>
<td>101)</td>
<td>5M 149c</td>
<td>4c</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Thchlorebe2pab</td>
<td>97b</td>
<td>100.</td>
<td>70 - 130.</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tbme. ylb. ZU</td>
<td>93T</td>
<td>95M</td>
<td>72 - 132b</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tbme. ylb. ZU</td>
<td>93T</td>
<td>95M</td>
<td>72 - 133T</td>
<td>2b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl ac) ab</td>
<td>111)</td>
<td>108.</td>
<td>10 - 217b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LC Sample ID: 680-1 2508/20

<table>
<thead>
<tr>
<th>Client</th>
<th>Lab Sample ID</th>
<th>Lab</th>
<th>Wab</th>
<th>P</th>
<th>Batch</th>
<th>ID</th>
<th>ug/LR</th>
<th>Initial Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>451</td>
<td>LCS 680-1 2508/20</td>
<td>680-1</td>
<td>2508.</td>
<td>1.0</td>
<td>ab_P_pab_d</td>
<td>10/08/2010 1000.</td>
<td>10/08/2010 1000.</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

LCSD Sample ID: 680-1 2508/21

<table>
<thead>
<tr>
<th>Client</th>
<th>Lab Sample ID</th>
<th>Lab</th>
<th>Wab</th>
<th>P</th>
<th>Batch</th>
<th>ID</th>
<th>ug/LR</th>
<th>Initial Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>452</td>
<td>LCSD 680-1 2508/21</td>
<td>680-1</td>
<td>2508.</td>
<td>1.0</td>
<td>ab_P_pab_d</td>
<td>10/08/2010 1029c</td>
<td>10/08/2010 1029c</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

Analyses

<table>
<thead>
<tr>
<th>Substance</th>
<th>LCS</th>
<th>LCSD</th>
<th>Limit</th>
<th>P</th>
<th>P Limit</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chloride</td>
<td>99c</td>
<td>101</td>
<td>59 - 144c</td>
<td>2b</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>95M</td>
<td>9c</td>
<td>4 - 11</td>
<td>2b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Substance</th>
<th>LCS</th>
<th>LCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-5-fluorobenzene (zU)</td>
<td>93T</td>
<td>94c</td>
</tr>
<tr>
<td>i Bromo-5-fluorobenzene (hab)</td>
<td>9c</td>
<td>97b</td>
</tr>
<tr>
<td>Toluene (SurrN)</td>
<td>95M</td>
<td>95M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>LCS</th>
<th>LCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-5-fluorobenzene (zU)</td>
<td>93T</td>
<td>94c</td>
</tr>
<tr>
<td>i Bromo-5-fluorobenzene (hab)</td>
<td>9c</td>
<td>97b</td>
</tr>
<tr>
<td>Toluene (SurrN)</td>
<td>95M</td>
<td>95M</td>
</tr>
</tbody>
</table>
MeVhod Bv nk - Bv ch: 680-182769l

<table>
<thead>
<tr>
<th>Lab SampI) ID</th>
<th>MB 680-1) 27b9/14-</th>
<th>alysis Batch. 680-1) 3127b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Batch. 680-1) 27b9c</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td>Unit# ug/LR</td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/15/2010 213T</td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/13/2010 0953T</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>sult()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babium.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>Cadmium.</td>
<td>5.0</td>
<td>U)</td>
<td>5.0</td>
</tr>
<tr>
<td>Ch.onium.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>lJo.</td>
<td>50.</td>
<td>U)</td>
<td>50.</td>
</tr>
<tr>
<td>Sodium.</td>
<td>1000.</td>
<td>U)</td>
<td>1000.</td>
</tr>
</tbody>
</table>

LUBlConrouSVMpeV Bv ch: 680-182769l

<table>
<thead>
<tr>
<th>Lab SampI) ID</th>
<th>LCS 680-1) 27b9/15-</th>
<th>alysis Batch. 680-1) 3127b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cli) MabixJ</td>
<td>Wab</td>
<td>P p Batch. 680-1) 27b9c</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0</td>
<td>Unit# ug/LR</td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/15/2010 2141)</td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/13/2010 0953T</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>Spike. mou.</th>
<th>sult()</th>
<th>% . c.)</th>
<th>Limit()</th>
<th>Qual()</th>
</tr>
</thead>
<tbody>
<tr>
<td>sb ic)</td>
<td>2000.</td>
<td>2030.</td>
<td>101)</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Babium.</td>
<td>2000.</td>
<td>2010.</td>
<td>101)</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Cadmium.</td>
<td>50.0.</td>
<td>50.4c</td>
<td>101)</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Ch.onium.</td>
<td>200.</td>
<td>199c</td>
<td>99c</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>lJo.</td>
<td>1000.</td>
<td>1010.</td>
<td>101)</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>LRad</td>
<td>500.</td>
<td>520.</td>
<td>104c</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>S)J) i um.</td>
<td>2000.</td>
<td>2030.</td>
<td>101)</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Silvb</td>
<td>50.0.</td>
<td>4c.4c</td>
<td>93T</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Sodium.</td>
<td>5000.</td>
<td>4990.</td>
<td>100.</td>
<td>75 - 125M</td>
<td></td>
</tr>
</tbody>
</table>
MeVnod Bv nk - Bv ch: 680-182u42u

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>MB 680-1) 2342/1-</th>
<th>alysis Batch. 680-1) 2b41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cil</td>
<td>MabixJ</td>
<td>Wab</td>
</tr>
<tr>
<td>u.i.o.</td>
<td>1.0.</td>
<td>P p Batch. 680-1) 2342b</td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/13/2010 1233T</td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 1022b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>sult()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN curyS</td>
<td>0.20.</td>
<td>U)</td>
<td>0.20.</td>
</tr>
</tbody>
</table>

MeVnod: b470AV

<table>
<thead>
<tr>
<th>Prepuru on: b470AV</th>
</tr>
</thead>
</table>

LUbLConrouSVMpeV Bv ch: 680-182u42u

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>LCS 680-1) 2342/2-</th>
<th>alysis Batch. 680-1) 2b41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cil</td>
<td>MabixJ</td>
<td>Wab</td>
</tr>
<tr>
<td>u.i.o.</td>
<td>1.0.</td>
<td>P p Batch. 680-1) 2342b</td>
</tr>
<tr>
<td>ab. alyzUd</td>
<td>10/13/2010 1233T</td>
<td></td>
</tr>
<tr>
<td>ab P pab d</td>
<td>10/08/2010 1022b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>Spike , mou.</th>
<th>sult()</th>
<th>% . c.)</th>
<th>Limit()</th>
<th>Qual()</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN curyS</td>
<td>2.50.</td>
<td>2.17b</td>
<td>7b</td>
<td>0 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Bv measurement

Me hod Bv nk - Bv ch: 680-186065l

<table>
<thead>
<tr>
<th>Lab Sampl ID</th>
<th>MB 680-1) 3035/13T</th>
<th>alysis Batch. 680-1) 3035M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cll</td>
<td>MabixJ Wab</td>
<td>P p Batch. N/F</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0.</td>
<td>Unitlb mg/LR</td>
</tr>
<tr>
<td>ab. alyz Ud</td>
<td>10/14/2010 173T</td>
<td></td>
</tr>
<tr>
<td>a e P pa d</td>
<td>N/F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>sult()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfab</td>
<td>5.0.</td>
<td>U)</td>
<td>5.0.</td>
</tr>
</tbody>
</table>

Me hod: 90686

<table>
<thead>
<tr>
<th>Lab Sampl ID</th>
<th>LCS 680-1) 3035/14c</th>
<th>alysis Batch. 680-1) 3035M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cll</td>
<td>MabixJ Wab</td>
<td>P p Batch. N/F</td>
</tr>
<tr>
<td>il u.i.o.</td>
<td>1.0.</td>
<td>Unitlb mg/LR</td>
</tr>
<tr>
<td>ab. alyz Ud</td>
<td>10/14/2010 1739c</td>
<td></td>
</tr>
<tr>
<td>a e P pa d</td>
<td>N/F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>Spike . mou.</th>
<th>sult()</th>
<th>% . c.)</th>
<th>Limit()</th>
<th>Qual()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfab</td>
<td>20.0.</td>
<td>19.)</td>
<td>9c</td>
<td>75 - 125M</td>
<td></td>
</tr>
</tbody>
</table>
Chain of Custody Record

Client Contact
- **Project Manager:** Alan Pinnix
- **Tel/Fax:** 919-854-1282

Site Contact
- **Lab Contact:** Kathy Smith

Analysis Turnaround Time
- **Calendar (C) or Work Days (W):**
 - 2 weeks
 - 1 week
 - 2 days
 - 1 day

Sample Identification

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>Time</th>
<th>Type</th>
<th>Matrix</th>
<th>No. of</th>
<th>VOC</th>
<th>Metals</th>
<th>TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>10/4/10</td>
<td>1300</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MW-2</td>
<td>10/4/10</td>
<td>1415</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MW-3</td>
<td>10/4/10</td>
<td>1300</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MW-38</td>
<td>10/4/10</td>
<td>1600</td>
<td>GW</td>
<td>GW</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MW-39</td>
<td>10/4/10</td>
<td>1200</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MW-40</td>
<td>10/4/10</td>
<td>1500</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Special Instructions/QC Requirements & Comments:
- **Temperature:** 680 - 61853
- **Sample Disposal:** A fee may be assessed if samples are retained longer than 1 month
- **Sample Disposal Options:**
 - Return to Client
 - Disposal By Lab
 - Archive For

Preservation Used:
1 = Ice, 2 = HCl, 3 = H2SO4, 4 = HNO3, 5 = NaOH, 6 = Other

Possible Hazard Identification:
- Non-Hazard
- Flammable
- Skin Irritant
- Poison B
- Unknown

Remarks:
- Trip Blank 2 Vials only

Date/Time:
- **10/4/10**
<table>
<thead>
<tr>
<th>Question</th>
<th>/F/</th>
<th>NA/</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either was not measured or, if measured, is at or below background</td>
<td>N/A</td>
<td>Ab</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal is present, is intact.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The cooler or sample es do not appear to have been compromised or tampered with.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es were received on ice.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The cooler temperature is acceptable.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The cooler is recorded.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Ocibus present.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Ocibus filed out in ink and legible.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Ocibus filed out with pertinent information.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Is the Field Stamp er's name present on CDC?</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and the CDC.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es are received without holding on me.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es containers have legible labels.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The athers are not broken or leaking.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es collection dates times are provided.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es bottles are complete and filed.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The amp es preservation verified.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested by the CDC.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>The VOA sample es vs are do not have headspace or bubbling, i.e., <6mm (1/4") in diameter.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick ball needs.</td>
<td></td>
<td></td>
<td>rueb</td>
</tr>
<tr>
<td>Multiphasic sample es are not present.</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>The amp es do not require spacing or composting.</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-62026-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
10/29/2010

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

TestAmerica Laboratories, Inc.
TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404
Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com
Comments
No additional comments.

ceipt U
All samples were received in good condition within temperature requirements.

GC/MS VOA U
Method: 8260B: The following samples were diluted due to the abundance of non-target analytes: MW-1 (680-62026-1), MW-2 M (680-62026-2). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals U
No analytical or quality issues were noted.

General Chemistry U
No analytical or quality issues were noted.

VOA Prep U
No analytical or quality issues were noted.
METHOD SUMMARY:

CiFntT, CADF IS U.S., Inc.
Job Number: 680-6202M1F

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix:</td>
<td>Water:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL SAV = T, stAmerica Savannah,

Method References:

SM = "Stand,a,d M, thods For Th, Examinatio. Of Wat, And Wast, wat,".
Updat, s.,

TestAmerica Savannah:
<table>
<thead>
<tr>
<th>MethodM</th>
<th>AnalystM</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846 60b0C</td>
<td>earden, Robert</td>
<td>R, C,</td>
</tr>
<tr>
<td>SW846 , 4A0A</td>
<td>land, rian</td>
<td>CEc</td>
</tr>
<tr>
<td>SW846 9038b</td>
<td>Eaton, Cli</td>
<td>JR,</td>
</tr>
<tr>
<td>SW846 8260b</td>
<td>Rob, Jon</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Client Sa:</td>
<td>MW-b</td>
<td>MW-2I</td>
</tr>
<tr>
<td>Client Matrix2:</td>
<td>Ground Waterl</td>
<td>Ground Waterl</td>
</tr>
<tr>
<td>Date/Time : Sa: pledb</td>
<td>0/08/20b0 , 4, 5U</td>
<td>0/08/2010 1630I</td>
</tr>
<tr>
<td>Date/Time : Receivedb</td>
<td>0/09/20b0 , 006b</td>
<td>0/09/2010 1006I</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)M</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneM</td>
<td>2500M</td>
<td>UM</td>
<td>2500M</td>
</tr>
<tr>
<td>BenzeneM</td>
<td>800M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>BromobenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>BromochloromethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>BromoformM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>100M</td>
<td>U ^M</td>
<td>100M</td>
</tr>
<tr>
<td>2-Butanone (MEK)M</td>
<td>1000M</td>
<td>UM</td>
<td>1000M</td>
</tr>
<tr>
<td>Carbon disulfideM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Carbon tetrachlorideM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ChlorobenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ChlorodibromomethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ChloroethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ChloriformM</td>
<td>4500M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ChloromethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>2-ChlorotolueneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>4-ChlorotolueneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2-DibromoethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>dichlorobromomethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>dichlorodifluoromethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1-DichloroethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2-DichloroethaneM</td>
<td>490M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1-DichloroetheneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-DichloropropaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>2,2-DichloropropaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,3-DichloropropaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1-DichloropropeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>ethyl etherM</td>
<td>5000M</td>
<td>UM</td>
<td>1000M</td>
</tr>
<tr>
<td>EthylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>HexachlorobutadieneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>2-HexanoneM</td>
<td>1000M</td>
<td>UM</td>
<td>1000M</td>
</tr>
<tr>
<td>IsopropylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>Isobutene ChlorideM</td>
<td>720M</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)M</td>
<td>1000M</td>
<td>UM</td>
<td>1000M</td>
</tr>
<tr>
<td>hyl tert-butyl etherM</td>
<td>1000M</td>
<td>UM</td>
<td>1000</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>NaphthaleneM</td>
<td>500M</td>
<td>UM</td>
<td>500M</td>
</tr>
<tr>
<td>n-ButylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)M</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>p-IsopropyltolueneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>sec-ButylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>StyreneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>rt-ButylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneM</td>
<td>620M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1,1,2-TetrachloroethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>TetrachloroetheneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>TolueneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>rans-1,2-DichloroetheneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>rans-1,3-DichloropropeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>TrichloroetheneM</td>
<td>140M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>TrichlorofluoromethaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2,3-TrichloropropaneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>Vinyl acetateM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Vinyl chlorideM</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>Xylenes, TotalM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>SurrogateM</td>
<td>%RecM</td>
<td>QualifierM</td>
<td>Acceptance LimitsM</td>
</tr>
<tr>
<td>4-BromofluorobenzeneM</td>
<td>102M</td>
<td>75 - 120M</td>
<td></td>
</tr>
<tr>
<td>tribromofluoromethaneM</td>
<td>94M</td>
<td>75 - 121M</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>111M</td>
<td>75 - 120M</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneM</td>
<td>5000M</td>
<td>UM</td>
<td>5000M</td>
</tr>
<tr>
<td>BenzeneM</td>
<td>7600M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>BromobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>BromochloromethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>BromoformM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>200M</td>
<td>U *M</td>
<td>200M</td>
</tr>
<tr>
<td>2-Butanone (MEK)M</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>Carbon disulfideM</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>Carbon tetrachlorideM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>ChlorobenzeneM</td>
<td>220M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>ChlorodibromomethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>ChloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>ChloroformM</td>
<td>1100M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>ChloromethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2-ChlorotolueneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>4-ChlorotolueneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-DibromomethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>DichloromethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>DichlorodifluoromethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1-DichloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-DichloroethaneM</td>
<td>1400M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1-DichloroetheneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalM</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>1,2-DichloropropaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2,2-DichloropropaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,3-DichloropropaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1-DichloropropeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Ethyl etherM</td>
<td>14000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>EthylbenzeneM</td>
<td>410M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>HexachlorobutadieneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2-HexanoneM</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>IsopropylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Hylyene ChlorideM</td>
<td>1300M</td>
<td>UM</td>
<td>1000</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)M</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>n-Tert-butyl etherM</td>
<td>2000M</td>
<td>UM</td>
<td>2000</td>
</tr>
<tr>
<td>n-Xylene & p-XyleneM</td>
<td>430M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>NaphthaleneM</td>
<td>1000M</td>
<td>UM</td>
<td>1000M</td>
</tr>
<tr>
<td>n-ButylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)M</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneM</td>
<td>570M</td>
<td></td>
<td>200M</td>
</tr>
<tr>
<td>p-IsopropyltolueneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>sec-ButylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>styreneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>rt-ButylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>TetrachloroetheneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>TolueneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>rans-1,2-DichloroetheneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>rans-1,3-DichloropropeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>TrichloroetheneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>TrichlorofluoromethaneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2,3-TrichloropropeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Vinyl acetateM</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>Vinyl chlorideM</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Xylenes, TotalM</td>
<td>1000M</td>
<td></td>
<td>400M</td>
</tr>
<tr>
<td>SurrogateM</td>
<td>%RecM</td>
<td>QualifierM</td>
<td>Acceptance LimitsM</td>
</tr>
<tr>
<td>4-BromofluorobenzeneM</td>
<td>102M</td>
<td></td>
<td>75 - 120M</td>
</tr>
<tr>
<td>tBromofluoromethaneM</td>
<td>94M</td>
<td></td>
<td>75 - 121M</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>110M</td>
<td></td>
<td>75 - 120M</td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.
Job Number: 680-62026-1M

Client Sample ID: MW-3T
Lab Sample ID: 680-62026-3M
Received: 10/09/2010 1006M
Sampled: 10/08/2010 1550M

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneM</td>
<td>25M</td>
<td>UM</td>
<td>25M</td>
</tr>
<tr>
<td>BenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromochloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromoformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-Butanone (MEK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Carbon disulfideM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Carbon tetrachlorideM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorodibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>4-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DibromoethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>DichlorobromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>DichlorodifluoromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>1,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>isopropyl etherM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>EthylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>HexachlorobutadieneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-HexanoneM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IsopropylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Isobutylene ChlorideM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>tert-butyl etherM</td>
<td>10M</td>
<td>UM</td>
<td>10</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>NaphthaleneM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0</td>
</tr>
<tr>
<td>n-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
</tbody>
</table>

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-62026-1M

Client Sample ID: MW-3T

Lab Sample ID: 680-62026-3M

Client Matrix: Ground Water

Received: 10/09/2010 1006M

Sampled: 10/08/2010 1550M

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Xylene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,2-Dichloroethene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,3-Dichloropropene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1,2-Trichloroethane</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
</tbody>
</table>

Surrogate

4-BromofluorobenzeneM	97M	75 - 120M
BromofluoromethaneM	93M	75 - 121M
Toluene-d8 (Surr)	114M	75 - 120M
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneM</td>
<td>25M</td>
<td>UM</td>
<td>25M</td>
</tr>
<tr>
<td>BenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromochloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromoformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-Butanone (MEK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Carbon disulfideM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Carbon tetrachlorideM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorobenzeneM</td>
<td>2.1M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorodibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>4-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>dibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>dichlorobromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>dichlorodifluoromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichloroethaneM</td>
<td>21M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>1,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>iethyl etherM</td>
<td>390M</td>
<td>EM</td>
<td>10M</td>
</tr>
<tr>
<td>EthylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>HexachlorobutadieneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-HexanoneM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IsopropylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>hylene ChlorideM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>hyl tert-butyl etherM</td>
<td>10M</td>
<td>UM</td>
<td>10</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>NaphthaleneM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>n-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)M</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>p-IsopropyltolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>sec-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>StyreneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rt-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1,2-TetrachloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TetrachloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,2-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TrichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TrichlorofluoromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-TrichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Vinyl acetateM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Vinyl chlorideM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Xylenes, TotalM</td>
<td>2.0M</td>
<td></td>
<td>2.0M</td>
</tr>
<tr>
<td>SurrogateM</td>
<td>%RecM</td>
<td>QualifierM</td>
<td>Acceptance LimitsM</td>
</tr>
<tr>
<td>4-BromofluorobenzeneM</td>
<td>99M</td>
<td></td>
<td>75 - 120M</td>
</tr>
<tr>
<td>1-bromofluoromethaneM</td>
<td>96M</td>
<td></td>
<td>75 - 121M</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>112M</td>
<td></td>
<td>75 - 120M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetoneM</td>
<td>25M</td>
<td>UM</td>
<td>25M</td>
</tr>
<tr>
<td>BenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromochloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromoformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>BromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-Butanone (MEK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Carbon disulfideM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Carbon tetrachlorideM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChlorodibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloroformM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>ChloromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>4-ChlorotolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,2-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>cis-1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DibromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>bromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,4-DichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>dichlorobromomethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>dichlorodifluoromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-DichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2-Dichloroethene, TotalM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>1,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2,2-DichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>iethyl etherM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>EthylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>HexachlorobutadieneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>2-HexanoneM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IsopropylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Hydrene ChlorideM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)M</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>1,3-buty1 etherM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>m-Xylene & p-XyleneM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>NaphthaleneM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>n-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>AnalyteM</th>
<th>Result (ug/L)M</th>
<th>QualifierM</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-XyleneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>p-IsopropyltolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>sec-ButylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>StyreneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2,2-TetrachloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1,2-TetrachloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TetrachloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TolueneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,2-DichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>rans-1,3-DichloropropeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-TrichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-TrichlorobenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,1-TrichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,1,2-TrichloroethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TrichloroetheneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>TrichlorofluoromethaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,3-TrichloropropaneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,2,4-TrimethylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>1,3,5-TrimethylbenzeneM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Vinyl acetateM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Vinyl chlorideM</td>
<td>1.0M</td>
<td>UM</td>
<td>1.0M</td>
</tr>
<tr>
<td>Xylenes, TotalM</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogateM</th>
<th>%RecM</th>
<th>QualifierM</th>
<th>Acceptance LimitsM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromofluorobenzeneM</td>
<td>98M</td>
<td>75 - 120M</td>
<td></td>
</tr>
<tr>
<td>t-BromofluoromethaneM</td>
<td>93M</td>
<td>75 - 121M</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>113M</td>
<td>75 - 120M</td>
<td></td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicM</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>BariumM</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>CadmiumM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>ChromiumM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IronM</td>
<td>6100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>LeadM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>SeleniumM</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Silver</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicM</td>
<td>20</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>BariumM</td>
<td>50</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>CadmiumM</td>
<td>5.0</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>ChromiumM</td>
<td>10</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IronM</td>
<td>7600</td>
<td></td>
<td>100M</td>
</tr>
<tr>
<td>LeadM</td>
<td>10</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>SeleniumM</td>
<td>20</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>SilverM</td>
<td>10</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>SodiumM</td>
<td>65000</td>
<td></td>
<td>1000M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20</td>
<td>UM</td>
<td>0.20</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>250M</td>
<td>50M</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>140M</td>
<td>10M</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>300M</td>
<td>100M</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Silver</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArsenicM</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>BariumM</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>CadmiumM</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>ChromiumM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>IronM</td>
<td>260M</td>
<td></td>
<td>100M</td>
</tr>
<tr>
<td>LeadM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>SeleniumM</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>SilverM</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>SodiumM</td>
<td>42000M</td>
<td></td>
<td>1000M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>63M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Iron</td>
<td>100M</td>
<td>UM</td>
<td>100M</td>
</tr>
<tr>
<td>Lead</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Silver</td>
<td>10M</td>
<td>UM</td>
<td>10M</td>
</tr>
<tr>
<td>Sodium</td>
<td>23000M</td>
<td></td>
<td>1000M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Client: ARCADIS U.S., Inc.

Job Number: 680-62026-1M

Sampled: 10/08/2010 1500M

Received: 10/09/2010 1006M
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLM</th>
<th>il</th>
<th>hod</th>
<th>Sample ID: Sample Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>SulfateM</td>
<td>290M</td>
<td>mg/LM</td>
<td></td>
<td>100M</td>
<td>20M</td>
<td>9038M</td>
<td>680-62026-1M Ground Water</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183526M Analyzed: 10/20/2010 1239
General Chemistry

Client Sample ID: MW-2T

<table>
<thead>
<tr>
<th>Lab Sample ID:M</th>
<th>680-62026-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Matrix:M</td>
<td>Ground Water</td>
</tr>
</tbody>
</table>

Sampled: 10/08/2010 1630M
Received: 10/09/2010 1006M

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLM</th>
<th>il</th>
<th>hdm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>270M</td>
<td>mg/LM</td>
<td></td>
<td>100M</td>
<td>20M</td>
<td>9038M</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183526M
Analyzed: 10/20/2010 1239
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLM</th>
<th>il</th>
<th>hod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>53M</td>
<td>mg/LM</td>
<td>10M</td>
<td>2.0M</td>
<td>9038M</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183526M
Analyzed: 10/20/2010 1239
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLM</th>
<th>il</th>
<th>hod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>26</td>
<td>mg/LM</td>
<td></td>
<td>5.0</td>
<td>1.0</td>
<td>9038</td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183526M Analyzed: 10/20/2010 1231
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual</th>
<th>Units</th>
<th>RLM</th>
<th>il</th>
<th>hod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>14</td>
<td>mg/L</td>
<td>5.0M</td>
<td>1.0M</td>
<td>9038M</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch: 680-183526M
Analyzed: 10/20/2010 1231
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS VOAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>IndicaT s thM analyT was analyz</td>
<td>d for but not dT cteMl.M</td>
</tr>
<tr>
<td>*I</td>
<td>LCS or LCSD ektbeeVls thM control limitTF</td>
<td></td>
</tr>
<tr>
<td>EI</td>
<td>Reblit ektbeeVd calibraTion rangeM</td>
<td></td>
</tr>
<tr>
<td>*I</td>
<td>RPI o f thM LCS and LCSD ektbeeVls thM control limitTF</td>
<td></td>
</tr>
<tr>
<td>MT alsT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>IndicaT s thM analyT was analyz</td>
<td>d for but not dT cteMl.M</td>
</tr>
<tr>
<td>4</td>
<td>MS, MSD: ThT analyT preMht in thMTori ginal sample is 4 M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>imeMgreMtr thTn thM a fix spikl concentr aTion; thTfore, M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control limitMare not applicableM</td>
<td></td>
</tr>
<tr>
<td>Gther al ChTmi sTyT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>IndicaT s thM analyT was analyz</td>
<td>d for but not dT cteMl.M</td>
</tr>
<tr>
<td>A, lyt,</td>
<td>su lt,</td>
<td>Qu, l,</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>A, to</td>
<td>25M</td>
<td>U</td>
</tr>
<tr>
<td>BM zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>BM mo. zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>BM mo. hlorometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>BM formM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>BM momemethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2-But, o. (ME)</td>
<td>10</td>
<td>U</td>
</tr>
<tr>
<td>bo, disulfidM</td>
<td>2.0</td>
<td>U</td>
</tr>
<tr>
<td>bo, t, hloridM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>hlorobe. zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>hlorodibromometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>hloroformM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>hlorometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2- hlorobuio</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>4- hlorobuio</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>is-1,2- hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>is-1,3- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloro-3- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>ibromometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,3- hloro, zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloro, zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,4- hloro, zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>ichloroarehriometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>ichlorofluorometM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1- hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1- hloroethM</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloroethM Tot, l</td>
<td>2.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2,2- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,3- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1- hloropropF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>i, thyl ethM</td>
<td>10</td>
<td>U</td>
</tr>
<tr>
<td>Ethylbe, zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Hl xT hlorobut,d i</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>2-Hl xT o</td>
<td>10</td>
<td>U</td>
</tr>
<tr>
<td>Isopropylbe, zF</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>MTthyl, hloridM</td>
<td>5.0</td>
<td>U</td>
</tr>
<tr>
<td>4-MTthyl-2-pF t, o. (MIBK)</td>
<td>10</td>
<td>U</td>
</tr>
<tr>
<td>MTthyl t, t-butyl ethM</td>
<td>10</td>
<td>U</td>
</tr>
<tr>
<td>m-Xyl & p-Xyl</td>
<td>2.0</td>
<td>U</td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-183T9

<table>
<thead>
<tr>
<th>Substance</th>
<th>A, lyt,</th>
<th>su It,</th>
<th>Qu, l,</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, phthM,</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>-Butylbe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>N-, o-pylybe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropyltolue.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>se -Butylbe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>StyT</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>t, t-Butylbe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Ti t, hloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1,2-Ti t, hloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ti t, hloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Tolu.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>t, s-1,2- dichloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>t, s-1,3- dichlorobipF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-M-Ticlorob. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Ticlorob. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-TicloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-TicloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>TifloroethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>TiflorofluoromethM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-TifloroethpF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-M-Timethybe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-Timethybe. zF</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl. t, t</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl. o.hloridM</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Xyl. es. Tot. l</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrog t, %, Acc, pt, Limits.

<table>
<thead>
<tr>
<th>Substance</th>
<th>%</th>
<th>Acc, pt</th>
<th>Limits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BMmofluorob. zF</td>
<td>100</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>ibromofluoromethM</td>
<td>9M</td>
<td>75 - 121,</td>
<td></td>
</tr>
<tr>
<td>Tolu. - dM(Surr)l</td>
<td>109M</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Luby ConrousVmpqev
Luby ConrousVmpqev
Vpucv eRecovery Rerporu - Bv ch: 880-183791

<table>
<thead>
<tr>
<th>LFS, LFb S, mpl, l,</th>
<th>LFS, 680-1, 3229/9M</th>
<th>An, lysis BMchM 680-1, 3229M</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, ixT</td>
<td>W, t</td>
<td>p BMchMN/A,</td>
</tr>
<tr>
<td>dilution</td>
<td>1.0.</td>
<td>Units: ug/LF</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/15/2010 1049M</td>
<td></td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/15/2010 1049M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LFS, LFb S, mpl, l,</th>
<th>LFS, 680-1, 3229/12M</th>
<th>An, lysis BMchM 680-1, 3229M</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, ixT</td>
<td>W, t</td>
<td>p BMch: N/A,</td>
</tr>
<tr>
<td>dilution</td>
<td>1.0.</td>
<td>Units: ug/LF</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/15/2010 2003,</td>
<td></td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/15/2010 2003,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, ly,</th>
<th>LFS, LFS, Limit,</th>
<th>Limit, LFS Qu I, LFS, Qu I,</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, to</td>
<td>122M 112M 17-175M 50.</td>
<td></td>
</tr>
<tr>
<td>BM zF</td>
<td>101, 110 77-119M 30.</td>
<td></td>
</tr>
<tr>
<td>BMmobe, zF</td>
<td>103, 104I 0-124M 1, 30.</td>
<td></td>
</tr>
<tr>
<td>BMmoe, hioromethM</td>
<td>109M 105M 10-150 4M 30.</td>
<td></td>
</tr>
<tr>
<td>BMmoeform</td>
<td>91, 7I 2-133 4M 30.</td>
<td></td>
</tr>
<tr>
<td>bo, disulfDm</td>
<td>11, 111, 55-131 5M 30.</td>
<td></td>
</tr>
<tr>
<td>bo, t, t, hloridM</td>
<td>107I 111, 71-135M 4I 30.</td>
<td></td>
</tr>
<tr>
<td>horob, zF</td>
<td>99M 9M 5-11 1, 30.</td>
<td></td>
</tr>
<tr>
<td>hlorobidromomethM</td>
<td>110, 105M 75-133 4I 30.</td>
<td></td>
</tr>
<tr>
<td>hloroeuthM</td>
<td>145M 1, 4I 40-1, 5M 12M 50.</td>
<td></td>
</tr>
<tr>
<td>hloromethM</td>
<td>123, 125M 41-142M 2M 50.</td>
<td></td>
</tr>
<tr>
<td>2- hlorotolue.</td>
<td>108, 109M 2-123 1, 30.</td>
<td></td>
</tr>
<tr>
<td>4- hlorotolue.</td>
<td>1108, 109M 3-122M 1, 30.</td>
<td></td>
</tr>
<tr>
<td>i s, 1-2-. ichloroeuthM</td>
<td>102M 9M 9-134I 4I 30.</td>
<td></td>
</tr>
<tr>
<td>i s, 1-3-. ichloropRPF</td>
<td>109M 109M 71-12M 0, 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromo-3-, hloropRPF</td>
<td>105M 103, 49-140, 2M 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromothM</td>
<td>102M 110, 0-121, 7I 30.</td>
<td></td>
</tr>
<tr>
<td>ibromomethM</td>
<td>102M 112M 71-119M 9M 30.</td>
<td></td>
</tr>
<tr>
<td>1,3-. ichlorobe, zF</td>
<td>105M 107I 71-125M 2M 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ichlorobe, zF</td>
<td>104I 108, 79-124I 3, 30.</td>
<td></td>
</tr>
<tr>
<td>1,4-. ichlorobe, zF</td>
<td>104I 106, 1-122M 2M 30.</td>
<td></td>
</tr>
<tr>
<td>ichlorobromomethM</td>
<td>105M 115M 71-127I 9M 30.</td>
<td></td>
</tr>
<tr>
<td>ichlorodifluoromethM</td>
<td>137I 123, 34-154I 11, 30.</td>
<td></td>
</tr>
<tr>
<td>1,1-. ichloroeuthM</td>
<td>102M 101, 74-127I 1, 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloroeuthM</td>
<td>102M 115M - 132M 12M 30.</td>
<td></td>
</tr>
<tr>
<td>1,1-. ichloroeuthM</td>
<td>11, 107I 2-141, 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloroeuthM</td>
<td>103, 99M - 134I 4I 30.</td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloropRPF</td>
<td>103, 113, 73-124I 9M 30.</td>
<td></td>
</tr>
<tr>
<td>2M- ichloropRPF</td>
<td>11, 9M 55-157I 2M 30.</td>
<td></td>
</tr>
<tr>
<td>1,3-. ichloropRPF</td>
<td>103, 114I 75-120, 10, 30.</td>
<td></td>
</tr>
</tbody>
</table>

Qu y ConrouRev

Job Number: 680-6202M1,

Method: 8660Bv
Preparation: 8030Bv
<table>
<thead>
<tr>
<th>A, lýt,</th>
<th>Lfs,</th>
<th>Lfs,</th>
<th>Limit,</th>
<th>Limit,</th>
<th>Lfs Qu l,</th>
<th>Lfs,</th>
<th>Qu l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1- dichlorobiphenyl</td>
<td>107I</td>
<td>113</td>
<td>77 - 122M</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Ethylbenzene, zF</td>
<td>108.</td>
<td>107I</td>
<td>- 11</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>HI xT, hlorobut,d i,</td>
<td>104I</td>
<td>97i</td>
<td>2 - 142M</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2-HI xT o.</td>
<td>114I</td>
<td>121</td>
<td>34 - 1.1</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>isopropylbenzene, zF</td>
<td>92M</td>
<td>93</td>
<td>2 - 121</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>MTethyl, . hloridM</td>
<td>105M</td>
<td>9M</td>
<td>70 - 125M</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4-MTethyl-2-pF t, o. (MIBK)</td>
<td>112M</td>
<td>125M</td>
<td>40 - 151</td>
<td>11</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>MTethyl t, t-butyl ethM</td>
<td>102M</td>
<td>97i</td>
<td>77 - 121</td>
<td>5M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m-Xyl, & p-Xyl, N. phthM, -Butylbenzene, zF</td>
<td>106.</td>
<td>106.</td>
<td>3 - 11</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>N. opylbenzene, zF</td>
<td>112M</td>
<td>111</td>
<td>0 - 12M</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>o-Xyl,</td>
<td>105M</td>
<td>107I</td>
<td>3 - 119M</td>
<td>2M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>p-Isopropyltoluene, se.-Butylbenzene, zF</td>
<td>112M</td>
<td>114I</td>
<td>77 - 12M</td>
<td>2M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>StyT</td>
<td>9M</td>
<td>2 - 122M</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>t, t-Butylbenzene, zF</td>
<td>94I</td>
<td>94I</td>
<td>0 - 124I</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2-M-TI t, hloroethM</td>
<td>103,</td>
<td>106.</td>
<td>9 - 129M</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,1,1.1,2-TI t, hloroethM</td>
<td>103,</td>
<td>100.</td>
<td>1 - 12M</td>
<td>2M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>TI t, hloroethM</td>
<td>99M</td>
<td>92M</td>
<td>71 - 12M</td>
<td>7I</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Tolue.</td>
<td>107I</td>
<td>11I</td>
<td>1 - 111I</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>t, s-1,2- dichloroethM</td>
<td>104I</td>
<td>101,</td>
<td>72 - 131</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>t, s-1,3- dichlorobiphenyl</td>
<td>112M</td>
<td>113</td>
<td>73 - 12M</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,2-M-TIchloroethene, zF</td>
<td>7I</td>
<td>2M</td>
<td>0 - 135M</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-TIchloroethene, zF</td>
<td>9I</td>
<td>0 - 132M</td>
<td>4I</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,1,1-TIchloroethM</td>
<td>106.,</td>
<td>109M</td>
<td>7I - 127I</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2-TIchloroethM</td>
<td>104I</td>
<td>111</td>
<td>75 - 121</td>
<td>7I</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>TIchloroethM</td>
<td>9M</td>
<td>101</td>
<td>4 - 115M</td>
<td>5M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>TIchlorofluoromethylM</td>
<td>121,</td>
<td>12M</td>
<td>5M - 149M</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-TIchloropropF</td>
<td>105M</td>
<td>109M</td>
<td>70 - 130</td>
<td>4I</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,2-M-TI methylbenzene, zF</td>
<td>9M</td>
<td>97I</td>
<td>72 - 132M</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1,3,5-TI methylbenzene, zF</td>
<td>102M</td>
<td>104I</td>
<td>72 - 133</td>
<td>2M</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl, t, t,</td>
<td>120.</td>
<td>9M</td>
<td>10 - 217I</td>
<td>23</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
Recovery Report - Bv ch: 880-183T9l

<table>
<thead>
<tr>
<th>Lff</th>
<th>Lfb S, mpl, l,</th>
<th>Lff</th>
<th>680-1, 3229/9M</th>
<th>An, lysis BMchM 680-1, 3229M</th>
<th>p BMchM/N/A,</th>
<th>Units: ug/LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, ixT</td>
<td>W, t,</td>
<td>ilutio.</td>
<td>1.0.</td>
<td>t, An, lyzFm</td>
<td>10/15/2010</td>
<td>1049M</td>
</tr>
<tr>
<td>t . pF dM</td>
<td>10/15/2010</td>
<td>1049M</td>
<td>Fin, I W, ight/Volume.:</td>
<td>5 mL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lff</th>
<th>Lfb S, mpl, l,</th>
<th>Lff</th>
<th>680-1, 3229/12M</th>
<th>An, lysis BMchM 680-1, 3229M</th>
<th>p BMch: N/A,</th>
<th>Units: ug/LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, ixT</td>
<td>W, t,</td>
<td>ilutio.</td>
<td>1.0.</td>
<td>t, An, lyzFm</td>
<td>10/15/2010</td>
<td>2003,</td>
</tr>
<tr>
<td>t . pF dM</td>
<td>10/15/2010</td>
<td>2003,</td>
<td>Fin, I W, ight/Volume.:</td>
<td>5 mL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyl, es. Tot, l,</td>
<td>106.</td>
<td>106.</td>
<td>4 - 11,</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog t,</th>
<th>4-BMmethofluoroe. zF</th>
<th>Lff</th>
<th>105M</th>
<th>104I</th>
<th>75 - 120.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ibromofluoromethM</td>
<td>102M</td>
<td>95M</td>
<td>75 - 121,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolu. - dM(Surr)</td>
<td>106.</td>
<td>112M</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>

Qu y ConrouReV
Method Bv

Liv, t, A, A, IS U.S., Inc.

Method: 880-183T451

LFB S, mpl, l, MB 680-1, 3245/9M

| Li, t MTT,ixT | W, t, ilution. | 1.0. | t, An, lyzFdM | 10/1, 2010 1212M | t, pF dM | 10/1, 2010 1212M |

An, lysis BMchM 680-1, 3245M

| p BMchMN/A, | Units.: ug/LF |

Method: 8660Bv

Preparation: 8030Bv

| Instume, t l, | MSOM |

LFB Fil, l, ogq3, 3.dM

| Ini., l W, ight/Volume.: | 5 mL |

| Fin, l W, ight/Volume.: | 5 mL |

A, lyt, su It, Qu, l, LF

| A, to. | 25M | U | 25M |

| BM zF | 1.0. | U | 1.0. |

| BMmobe, zF | 1.0. | U | 1.0. |

| BMmgo, hloromethM | 1.0. | U | 1.0. |

| BMmform. | 1.0. | U | 1.0. |

| BMmomethM | 1.0. | U | 1.0. |

| 2-But, o, (MEK)l | 10. | U | 10. |

| bo, disulfidM | 2.0. | U | 2.0. |

| bo, t, t, hloridM | 1.0. | U | 1.0. |

| hlorobe, zF | 1.0. | U | 1.0. |

| hlorodibromomethM | 1.0. | U | 1.0. |

| hloroethM | 1.0. | U | 1.0. |

| hlorform. | 1.0. | U | 1.0. |

| hloromethM | 1.0. | U | 1.0. |

| 2- hlorotoluue. | 1.0. | U | 1.0. |

| 4- hlorotoluue. | 1.0. | U | 1.0. |

| i-s-1.2- hloroethM | 1.0. | U | 1.0. |

| i-s 1-3- hloropbopF | 1.0. | U | 1.0. |

| 1.2- hibromo-3- hloropbopF | 1.0. | U | 1.0. |

| 1.2- hibromothM | 1.0. | U | 1.0. |

| ibromomethM | 1.0. | U | 1.0. |

| 1.2- hichloroze, zF | 1.0. | U | 1.0. |

| 1.2- hichloroze, zF | 1.0. | U | 1.0. |

| 1.4- hichloroze, zF | 1.0. | U | 1.0. |

| hichlorobromomethM | 1.0. | U | 1.0. |

| hichlorodifluoromethM | 1.0. | U | 1.0. |

| hichloroethM Tot, l, | 2.0. | U | 2.0. |

| hichloropbopF | 1.0. | U | 1.0. |

| 2-hloropbopF | 1.0. | U | 1.0. |

| 1.3- hichloropbopF | 1.0. | U | 1.0. |

| 1.1- hichloropbopF | 1.0. | U | 1.0. |

| i, thyl ethM | 10. | U | 10. |

| Ethylbe, zF | 1.0. | U | 1.0. |

| Hi xT hlorobut, d i, | 1.0. | U | 1.0. |

| 2-Hi xT o. | 10. | U | 10. |

| Isopbopylbe, zF | 1.0. | U | 1.0. |

| MThyl, hloridM | 5.0. | U | 5.0. |

| 4-MThyl-2-pF t, o, (MBK)l | 10. | U | 10. |

| MThyl t, t-butyly ethM | 10. | U | 10. |

| m-Xyl, & p-Xyl, | 2.0. | U | 2.0. |
Qu y ConrouReV

Method Bv nk - Bv ch: 680-183T451

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>su lt,</th>
<th>Qu, l,</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. pbhornM</td>
<td>5.0 U</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>-Butylbe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>N- opylbe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl.</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropyltolue.</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>se.-Butylbe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>StyT</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>t, t-Butylbe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,3-ti t, chlorineothM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1,2,3-ti t, chlorineothM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Ti t, chlorineothM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>t, s-1,2- dichloroethM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>t, s-1,3- dichloropropF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Ticlororobe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Ticlororobe. zF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-TiclororothM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>TicloroethM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>TiclorofluoromethM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-TicloropropF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,2M-TicloroethylzF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-TicloroethylzF</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl, t, t</td>
<td>2.0 U</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl, ethylidM</td>
<td>1.0 U</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Xyl, es. Tot, l</td>
<td>2.0 U</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrog t, %, Acc, pt, Limits.

4-BMmofluorobenzene zF	101	75 - 120
ibromofluoromethM	95M	75 - 121
Toluene - dM(Surj)	110	75 - 120
Lucy ConrouReV

Lucy ConrouReV

Method: 8660Bv

Preparation: 8030Bv

<table>
<thead>
<tr>
<th>LFS</th>
<th>LFB S, mpl, l</th>
<th>LFS 680-1, 3245/41</th>
<th>An, lysis BMChM 680-1, 3245M</th>
<th>Inst.ume.t I, MSOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, xT</td>
<td>W, t</td>
<td>10/1, 2010 1019M</td>
<td>p BMChM: N/A, ug/LF</td>
<td>LFB Fil, l, oo355.dM</td>
</tr>
<tr>
<td>iluor.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Init, l W, ight/Volume.: 5 mL</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/1, 2010 1047M</td>
<td></td>
<td></td>
<td>Fin, l W, ight/Volume.: 5 mL</td>
</tr>
<tr>
<td>t. pF dM</td>
<td>10/1, 2010 1019M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LFS</th>
<th>LFB S, mpl, l</th>
<th>LFS 680-1, 3245/5M</th>
<th>An, lysis BMChM 680-1, 3245M</th>
<th>Inst.ume.t I, MSOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t MTT, xT</td>
<td>W, t</td>
<td>10/1, 2010 1047I</td>
<td>p BMCh: N/A, ug/LF</td>
<td>LFB Fil, l, oo357.dM</td>
</tr>
<tr>
<td>iluor.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Init, l W, ight/Volume.: 5 mL</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/1, 2010 1047I</td>
<td></td>
<td></td>
<td>Fin, l W, ight/Volume.: 5 mL</td>
</tr>
<tr>
<td>t. pF dM</td>
<td>10/1, 2010 1047I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, lyt.</th>
<th>LFS</th>
<th>LFS</th>
<th>Limit,</th>
<th>Limit,</th>
<th>LFS Qu I, LFS, Qu I,</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM zF</td>
<td>104I</td>
<td>103.</td>
<td>77 - 119M</td>
<td>1.</td>
<td>30.</td>
</tr>
<tr>
<td>BMmbo. zF</td>
<td>106.</td>
<td>106.</td>
<td>0 - 124I</td>
<td>0.</td>
<td>30.</td>
</tr>
<tr>
<td>BMmo. hioroethM</td>
<td>107I</td>
<td>109M</td>
<td>10 - 150.</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>BMmomoform</td>
<td>91.</td>
<td>94I</td>
<td>2 - 133.</td>
<td>3.</td>
<td>30.</td>
</tr>
<tr>
<td>BMmommethM</td>
<td>109M</td>
<td>19M</td>
<td>12 - 1, 4I</td>
<td>5M</td>
<td>50.</td>
</tr>
</tbody>
</table>

2-But, o. (MEK)I
bo. disulfidM
bo. t, t, hloridM
hloro. zF
hlorodibromomethM
hloroethM
hloroform.
hloromethM
hlorotolue.
4-. hlorotolue.
i s-1,2-. ichoroethM
i s-1,3-. ichororPbF
1,2-. ibromo-3-. hloropPbF
1,2-. ibromoethM
1,3-. ibromomethM
1,3-. i chloro. zF
1,2-. i chloro. zF
1,4-. i chloro. zF
ichlorobromomethM
ichlorodifluoromethM
i chloroethM
i chlorothetaM
i chlorothetaM
1,2-. ichloroporPbF
2M-. ichloroporPbF
1,3-. ichloroporPbF

TeV Americo

Page 34 of 42
LubConrouSvmpeV
LubConrouSvmpeVpucv eRecovery Reporu- Bv ch: 680-183T45I

<table>
<thead>
<tr>
<th>LFS</th>
<th>LFB S, mpl, l</th>
<th>LFS, 680-1, 3245/41</th>
<th>An, lysis BMchM 680-1, 3245M</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t</td>
<td>MTI ixT</td>
<td>W, t</td>
<td>p BMchM/N/A,</td>
</tr>
<tr>
<td>ilutio.</td>
<td>1.0</td>
<td></td>
<td>Units: ug/LF</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/1, /2010 1019M</td>
<td></td>
<td>Inst,ume.t l,</td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/1, /2010 1019M</td>
<td></td>
<td>MSOM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LFS</th>
<th>LFB S, mpl, l</th>
<th>LFS, 680-1, 3245/5M</th>
<th>An, lysis BMchM 680-1, 3245M</th>
</tr>
</thead>
<tbody>
<tr>
<td>li, t</td>
<td>MTI ixT</td>
<td>W, t</td>
<td>p BMch: N/A,</td>
</tr>
<tr>
<td>ilutio.</td>
<td>1.0</td>
<td></td>
<td>Units: ug/LF</td>
</tr>
<tr>
<td>t, An, lyzFdM</td>
<td>10/1, /2010 1047l</td>
<td></td>
<td>Inst,ume.t l,</td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/1, /2010 1047l</td>
<td></td>
<td>MSOM</td>
</tr>
</tbody>
</table>

A. lyt.

<table>
<thead>
<tr>
<th>%</th>
<th>LFS,</th>
<th>LFS,</th>
<th>Limit,</th>
<th>Limit,</th>
<th>LFS Qu l,</th>
<th>LFS,</th>
<th>Qu l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-ichlorobipF</td>
<td>108.</td>
<td>109M</td>
<td>77 - 122M</td>
<td>0.</td>
<td>30.</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>i, thyl ethM</td>
<td>0.</td>
<td>0.</td>
<td>70 - 130.</td>
<td>N.</td>
<td>3 0.</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Ethylbe. zF</td>
<td>107I</td>
<td>107I</td>
<td>- 11,</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI xT hlorobut,d i,</td>
<td>104I</td>
<td>105M</td>
<td>2 - 142M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HI xT d o.</td>
<td>11,</td>
<td>11,</td>
<td>34 - 1, 10</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isopropylbe. zF</td>
<td>93,</td>
<td>94I</td>
<td>2 - 121,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTHyl . hloridM</td>
<td>104I</td>
<td>104I</td>
<td>70 - 125M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MTHyl-2-pF t,</td>
<td>111,</td>
<td>109M</td>
<td>40 - 151,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTHyl t, t-buty ethM</td>
<td>103,</td>
<td>104I</td>
<td>77 - 121,</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl, & p-Xyl,</td>
<td>105M</td>
<td>107I</td>
<td>3 - 11,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phtHin</td>
<td>97I</td>
<td>100.</td>
<td>41 - 135M</td>
<td>3,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Butybe. zF</td>
<td>105M</td>
<td>107I</td>
<td>4 - 13,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N- popybe. zF</td>
<td>111,</td>
<td>113,</td>
<td>0 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl,</td>
<td>106.</td>
<td>110.</td>
<td>3 - 119M</td>
<td>4I</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-isopropyltolue.</td>
<td>101,</td>
<td>103,</td>
<td>3 - 139M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>se.-Butybe. zF</td>
<td>110,</td>
<td>113,</td>
<td>77 - 12M</td>
<td>3,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyT</td>
<td>7I</td>
<td>90,</td>
<td>2 - 122M</td>
<td>3,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t, t-Butybe. zF</td>
<td>94I</td>
<td>95M</td>
<td>0 - 124I</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Ti t, hloroethM</td>
<td>103,</td>
<td>104I</td>
<td>9 - 129M</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Ti t, hloroethM</td>
<td>103,</td>
<td>104I</td>
<td>1 - 12M</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl t, hloroethM</td>
<td>99M</td>
<td>104I</td>
<td>7I - 12M</td>
<td>5M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu.</td>
<td>106.</td>
<td>106.</td>
<td>1 - 117I</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l, s-1,2-. ichloroethM</td>
<td>104I</td>
<td>104I</td>
<td>72 - 131,</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l, s-1,3-. ichlorobipF</td>
<td>114I</td>
<td>113,</td>
<td>73 - 12M</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2M-Tichlorobe. zF</td>
<td>9M</td>
<td>92M</td>
<td>0 - 135M</td>
<td>3,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tichlorobe. zF</td>
<td>93,</td>
<td>95M</td>
<td>0 - 132M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-TichloroethM</td>
<td>107I</td>
<td>106.</td>
<td>7I - 127I</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-TichloroethM</td>
<td>101,</td>
<td>103,</td>
<td>75 - 121,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TichloroethM</td>
<td>100.</td>
<td>100.</td>
<td>4 - 115M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TichlorofluoromethM</td>
<td>121,</td>
<td>102M</td>
<td>5M - 149M</td>
<td>17I</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-TichloroethF</td>
<td>105M</td>
<td>106.</td>
<td>70 - 130.</td>
<td>1,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2M-Timethylbe. zF</td>
<td>9M</td>
<td>9M</td>
<td>72 - 132M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Timethylbe. zF</td>
<td>102M</td>
<td>105M</td>
<td>72 - 133,</td>
<td>3,</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quy ConrouReV

Lub\ConrouSVmples/V
Lub\ConrouSVmples\vRcovery Report: Bv ch: 880-183T451
Me\hod: 8660Bv
Prepuru on: 8030Bv

<table>
<thead>
<tr>
<th>LFb</th>
<th>LFB S, mpl, l,</th>
<th>LFB 680-1, 3245/4I</th>
<th>An, lysis BMchM 680-1, 3245M</th>
<th>Inst,ume.t l,</th>
<th>MSOM</th>
<th>LFB Fil, l,</th>
<th>oq355.dM</th>
<th>Initi, I W, ight/Volume.:</th>
<th>5 mL</th>
<th>Fin, I W, ight/Volume.:</th>
<th>5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>li, t MTt ixT</td>
<td>W, t</td>
<td>p BMchMN/A,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ilutio.</td>
<td></td>
<td>Units:. ug/LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t,</td>
<td>An, lyzFdaM</td>
<td>10/1, 2010 1019M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t,</td>
<td>pF dM</td>
<td>10/1, 2010 1019M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LFb</th>
<th>LFB S, mpl, l,</th>
<th>LFB, 680-1, 3245/5M</th>
<th>An, lysis BMchM 680-1, 3245M</th>
<th>Inst,ume.t l,</th>
<th>MSOM</th>
<th>LFB Fil, l,</th>
<th>oq357.dM</th>
<th>Initi, I W, ight/Volume.:</th>
<th>5 mL</th>
<th>Fin, I W, ight/Volume.:</th>
<th>5 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>li, t MTt ixT</td>
<td>W, t</td>
<td>p BMch: N/A,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ilutio.</td>
<td></td>
<td>Units:. ug/LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t,</td>
<td>An, lyzFdaM</td>
<td>10/1, 2010 1047I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t,</td>
<td>pF dM</td>
<td>10/1, 2010 1047I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>%</th>
<th>LFS,</th>
<th>LFS,</th>
<th>Limit,</th>
<th>Limit,</th>
<th>LFS Qu l,</th>
<th>LFS,</th>
<th>Qu l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl t,</td>
<td>t t,</td>
<td>172M</td>
<td>1 9M</td>
<td>10 - 217I</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl hloridM</td>
<td>11,</td>
<td>11,</td>
<td>59 - 144I</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl, es. Tot, l,</td>
<td>105M</td>
<td>108,</td>
<td>4 - 11,</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog t,</th>
<th>LFS %</th>
<th>LFS, %</th>
<th>Acc, pt,</th>
<th>Limits,</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BMmoflourobe. zF</td>
<td>105M</td>
<td>108.</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>ibromofluoromethM</td>
<td>103,</td>
<td>103,</td>
<td>75 - 121.</td>
<td></td>
</tr>
<tr>
<td>Tolu. - dM(Surr)</td>
<td>107I</td>
<td>107I</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 680-1865 13T

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFb S, mpl, l</td>
<td>MB 680-1, 2513/1-A</td>
</tr>
<tr>
<td>li, t MTT,ixT</td>
<td>W, t</td>
</tr>
<tr>
<td>ilutio.</td>
<td>1.0</td>
</tr>
<tr>
<td>t, An, lyzFdm</td>
<td>10/12/2010 2131</td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/11/2010 1141</td>
</tr>
<tr>
<td>An, lysis BMchM 680-1, 2792M</td>
<td>p BMchM 680-1, 2513,</td>
</tr>
<tr>
<td>Units:</td>
<td>ug/LF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>su lt,</th>
<th>Qu. l,</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMium.</td>
<td>50.</td>
<td>U</td>
<td>50.</td>
</tr>
<tr>
<td>d mium.</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>hdmium.</td>
<td>10.</td>
<td>U</td>
<td>10.</td>
</tr>
<tr>
<td>l.o.</td>
<td>100.</td>
<td>U</td>
<td>100.</td>
</tr>
<tr>
<td>S, l, i um.</td>
<td>20.</td>
<td>U</td>
<td>20.</td>
</tr>
<tr>
<td>Sodium.</td>
<td>1000.</td>
<td>U</td>
<td>1000.</td>
</tr>
</tbody>
</table>

LubCounrouSvmpeV Bv ch: 680-1865 13T

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFb S, mpl, l</td>
<td>MB 680-1, 2513/2-A</td>
</tr>
<tr>
<td>li, t MTT,ixT</td>
<td>W, t</td>
</tr>
<tr>
<td>ilutio.</td>
<td>1.0</td>
</tr>
<tr>
<td>t, An, lyzFdm</td>
<td>10/12/2010 2131</td>
</tr>
<tr>
<td>t, pF dM</td>
<td>10/11/2010 1141</td>
</tr>
<tr>
<td>An, lysis BMchM 680-1, 2792M</td>
<td>p BMchM 680-1, 2513,</td>
</tr>
<tr>
<td>Units:</td>
<td>ug/LF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>Spike Amou.t,</th>
<th>su lt,</th>
<th>%,</th>
<th>Limit,</th>
<th>Qu. l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.se,ic</td>
<td>2000.</td>
<td>2000.</td>
<td>100.</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>BMium.</td>
<td>2000.</td>
<td>2070.</td>
<td>104I</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>d mium.</td>
<td>50.0</td>
<td>50.4I</td>
<td>101,</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>hdmium.</td>
<td>200.</td>
<td>204I</td>
<td>102M</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>l.o.</td>
<td>1000.</td>
<td>9M</td>
<td>99M</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>LF dM</td>
<td>500.</td>
<td>510.</td>
<td>102M</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>S, l, i um.</td>
<td>2000.</td>
<td>2050.</td>
<td>102M</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Silv</td>
<td>50.0</td>
<td>41.5M</td>
<td>97I</td>
<td>75 - 125M</td>
<td></td>
</tr>
<tr>
<td>Sodium.</td>
<td>5000.</td>
<td>41.20.</td>
<td>9M</td>
<td>75 - 125M</td>
<td></td>
</tr>
</tbody>
</table>
Mv ria Spuke/V

Mv ria Spuke/V Recovery Repor- By ch: 680-1865 13T

| MS LfB S, mpl, i, | 0-6. 202M1, | An, lysis BMchM 680-1, 2792M | **Method: 8010Cu**
| - | - | - | 1.0, IC,
| li, t MTT,ixT | W, t, | p BMchM 680-1, 2513, | LfB Fil, i, 1012101012105.chM
| li. | | | Ini, I W, icht/Volume:. 50 mL
| ti, An, lyzFdM | 10/12/2010 215M | | Fin, I W, icht/Volume:. 50 mL
| t. | pF dM | 10/11/2010 114I | |
| An, lysis BMchM 680-1, 2792M | p BMchM 680-1, 2513, | |

Mv ria Spuke/V

Mv ria Spuke/V Recovery Repor- By ch: 680-1865 13T

<table>
<thead>
<tr>
<th>A, lyt.</th>
<th>MS,</th>
<th>MS,</th>
<th>Limit,</th>
<th>MS Qu. I,</th>
<th>MS, Qu. I,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bmium.</td>
<td>103,</td>
<td>105M</td>
<td>75 - 125M</td>
<td>2M</td>
<td>20.</td>
</tr>
<tr>
<td>d mium.</td>
<td>104I</td>
<td>106.</td>
<td>75 - 125M</td>
<td>2M</td>
<td>20.</td>
</tr>
<tr>
<td>hdmium.</td>
<td>104I</td>
<td>106.</td>
<td>75 - 125M</td>
<td>2M</td>
<td>20.</td>
</tr>
<tr>
<td>F, l.o.</td>
<td>5M</td>
<td>75 - 125M</td>
<td>0.</td>
<td>20.</td>
<td>4I</td>
</tr>
<tr>
<td>S, i um.</td>
<td>107I</td>
<td>109M</td>
<td>75 - 125M</td>
<td>2M</td>
<td>20.</td>
</tr>
<tr>
<td>Silv</td>
<td>99M</td>
<td>100.</td>
<td>75 - 125M</td>
<td>2M</td>
<td>20.</td>
</tr>
</tbody>
</table>

Mv ria Spuke/V

Mv ria Spuke/V Recovery Repor- By ch: 680-1865 13T

| MS LfB S, mpl, i, | 0-6. 202M1, | An, lysis BMchM 680-1, 4533, | **Method: 8010Cu**
| - | - | - | 1.0, VMI, IC,
| li, t MTT,ixT | W, t, | p BMchM 680-1, 2513, | LfB Fil, i, E102M010.csvl
| li. | | | Ini, I W, icht/Volume:. 50 mL
| ti, An, lyzFdM | 10/2M2010 1435M | | Fin, I W, icht/Volume:. 50 mL
| t. | pF dM | 10/11/2010 114I | |
| An, lysis BMchM 680-1, 4533, | p BMchM 680-1, 2513, | |

Mv ria Spuke/V

Mv ria Spuke/V Recovery Repor- By ch: 680-1865 13T

<table>
<thead>
<tr>
<th>A, lyt.</th>
<th>MS,</th>
<th>MS,</th>
<th>Limit,</th>
<th>MS Qu. I,</th>
<th>MS, Qu. I,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium.</td>
<td>-115M</td>
<td>-54I</td>
<td>75 - 125M</td>
<td>1,</td>
<td>20.</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>4I</td>
<td>4I</td>
</tr>
</tbody>
</table>

TeV Americv S v nn hc
MeVod Bv nk - Bv ch: 880-1866516

<table>
<thead>
<tr>
<th>LFb S, mpl, l,</th>
<th>MB 680-1, 2M51/1-A, lltio.</th>
<th>W, t, t. An, lyzFdM</th>
<th>10/13/2010 1357L</th>
<th>pF dM</th>
<th>10/12/2010 1047L</th>
</tr>
</thead>
<tbody>
<tr>
<td>An, lysis BMchM 680-1, 2M#1, p BMchM 680-1, 2M#1, Units.: ug/LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MeVod: 8470AV
Prepuru on: 8470AV

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>su lt,</th>
<th>Qu, l,</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT uryT</td>
<td>0.20.</td>
<td>U</td>
<td>0.20.</td>
</tr>
</tbody>
</table>

Lub\ConouroSVmpueV Bv ch: 880-1866516

<table>
<thead>
<tr>
<th>LFb S, mpl, l,</th>
<th>LFS 680-1, 2M51/2-A, lltio.</th>
<th>W, t, t. An, lyzFdM</th>
<th>10/13/2010 1400.</th>
<th>pF dM</th>
<th>10/12/2010 1047L</th>
</tr>
</thead>
<tbody>
<tr>
<td>An, lysis BMchM 680-1, 2M#1, p BMchM 680-1, 2M#1, Units.: ug/LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MeVod: 8470AV
Prepuru on: 8470AV

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>Spike Amou.t,</th>
<th>su lt,</th>
<th>% . ,</th>
<th>Limit,</th>
<th>Qu, l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT uryT</td>
<td>2.50.</td>
<td>2.11,</td>
<td>5M</td>
<td>0 - 120.</td>
<td></td>
</tr>
</tbody>
</table>

Mv ria Spuke/V
Mv ria SpukeV\Vpucv e\Recovery Reporu - Bv ch: 880-1866516

| MS LFb S, mpl, l, | 0-6. 202M5M | lltio. | W, t, t. An, lyzFdM | 10/13/2010 1424L | pF dM | 10/12/2010 1047L |
|------------------|-------------|--------|-------------------|------------------|------------------|
| An, lysis BMchM 680-1, 2M#1, p BMchM 680-1, 2M#1, Units.: ug/LF | | | | |

MeVod: 8470AV
Prepuru on: 8470AV

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>MS,</th>
<th>MS,</th>
<th>Limit,</th>
<th>Limit,</th>
<th>MS Qu, l,</th>
<th>MS, Qu, l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT uryT</td>
<td>4L</td>
<td>0 - 120.</td>
<td>3,</td>
<td>20.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qu y ConouroReV

Job Number: 680-6202M1,
Method Bv nk - Bv ch: 680-183526T

- **LFB S, mpl, 1:** MB 680-1, 352M
- **LFB S, mpl, 2:** MB 680-1, 352M
- **Li, t:** MTT, ixT
- **lli, t:** MTT, ixT
- **Ilutio:** 1.0
- **t:** An, lyzFdB
- **t:** pF, dM N/A
- **An, lysis BMchM 680-1, 352M**
- **p BMchMN/A,**
- **Units:** mg/LF

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>su lt,</th>
<th>Qu, l,</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulf t</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
</tbody>
</table>

LUB V conrouSVmpeV Bv ch: 680-183526T

- **LFB S, mpl, 1:** LFB 680-1, 352M
- **LFB S, mpl, 2:** LFB 680-1, 352M
- **Li, t:** MTT, ixT
- **lli, t:** MTT, ixT
- **Ilutio:** 1.0
- **t:** An, lyzFdB
- **t:** pF, dM N/A
- **An, lysis BMchM 680-1, 352M**
- **p BMchMN/A,**
- **Units:** mg/LF

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>Spike Amou.t,</th>
<th>su lt,</th>
<th>% ,</th>
<th>Limit,</th>
<th>Qu, l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulf t</td>
<td>20.0</td>
<td>1 .5M</td>
<td>92M</td>
<td>75 - 125M</td>
<td></td>
</tr>
</tbody>
</table>

DVpucv eV Bv ch: 680-183526T

- **LFB S, mpl, 1:** 0-6. 202M4I
- **LFB S, mpl, 2:** 0-6. 202M4I
- **Li, t:** MTT, ixT
- **lli, t:** MTT, ixT
- **Ilutio:** 1.0
- **t:** An, lyzFdB
- **t:** pF, dM N/A
- **An, lysis BMchM 680-1, 352M**
- **p BMchMN/A,**
- **Units:** mg/LF

<table>
<thead>
<tr>
<th>A, lyt,</th>
<th>S, mpl, .</th>
<th>su lt/Qu, l,</th>
<th>su lt,</th>
<th>Limit,</th>
<th>Qu, l,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulf t</td>
<td>2M</td>
<td>2M2M</td>
<td>7M</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Chain of Custody Record

Client Contact
- **Project Manager:** Alan Pinnix
- **Site Contact:** Alan Pinnix
- **Date:** 10/3/10
- **Carrier:** Fed Ex
- **COC No:** __ of __ COCs
- **Job No:**
- **SDG No:**

ARCADIS
- **Address:** 801 Corporate Center Drive, Suite 300
- **Phone:** 919-854-1282
- **Fax:** 919-854-5448
- **Project Name:** UNC Airport Road
- **Site:** Chapel Hill, NC
- **P.O. #:** NC000239.001800006

Analysis Turnaround Time

<table>
<thead>
<tr>
<th>TAT if different from below</th>
<th>2 weeks</th>
<th>1 week</th>
<th>2 days</th>
<th>1 day</th>
</tr>
</thead>
</table>

Sample Identification

MW-1	1415	GW	GW	X	X	X	X	X	X
MW-2	1630	GW	GW	X	X	X	*	X	
MW-3	1550	GW	GW	X	X	X	X	X	
MW-38	1345	GW	GW	X	X	X	X	X	
MW-39	1500	GW	GW	X	X	X		X	

Preservation Used:
- 1=Ice, 2=HCl, 3=H2SO4, 4=HNO3, 5=NaOH, 6=Other

Possible Hazard Identification
- Non-Hazard
- Flammable
- Skin Irritant
- Poison B
- Unknown

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
- Return To Client
- Disposal By Lab
- Archive For

Special Instructions/QC Requirements & Comments:

- **Relinquished by:** ARCADIS
 - **Date/Time:** 10/3/10 1700
 - **Received by:** Matha Daharty
 - **Date/Time:** 10-9-10 1000:
 - **Company:**

- **Relinquished by:**
 - **Date/Time:**
 - **Received by:**
 - **Company:**

- **Relinquished by:**
 - **Date/Time:**
 - **Received by:**
 - **Company:**
Login Sample ReTeT CheTk Listc

Client: ARCADIS U.S., Inc. M
Job Number: 680-62026-1M

Login Number: c 0T
Creator: Daughtey, BeLhc
List Number: 1/

<table>
<thead>
<tr>
<th>Question</th>
<th>cFR/NAM</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity was not measured or, if measured, is abhor below Mr basegnd: cooler's custody sTal, if preMnt, is intct. M cooler or sample do not appear to have been compromisM or M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>Sample was receivd on ice.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>Cooler Mm phature is acceptable.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>Cooler Mm phature is recordcd.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>COC is present.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>COC is filled with ink and legible.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>COC is filled with Mterial pertinent in formation.M</td>
<td>rueM</td>
<td></td>
</tr>
<tr>
<td>Is TM Mield Sampler's name preMnt on COC?1</td>
<td>N/Ay</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the sample IDs on the containers and y the COC.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Samples are received within Holding Time.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verifiedy</td>
<td>N/Ay</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested y MS/MSDsy</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>VOA sample vials do not have headspace or bubble is <6mm (1/4") in y meter.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>If necessary, staff have been informed of any short hold time or quick TAT y esdy</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.y</td>
<td>TruEY</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.y</td>
<td>TruEY</td>
<td></td>
</tr>
</tbody>
</table>
The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Commens:
No additional comments. M

Receipt e
All samples were received in good condition within temperature requirements. y

GC/MS VOA
Method(s) 826y A full list spike was utilized for this method. The laboratory’s SOP allo s f or four analytes to recover outside criteria for this method when a full list spike is utilized. The LCS/LCSD associated with batch 184244 had one analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8260B: A full list spike was utilized for this method. The laboratory’s SOP allo s f or 4 analytes to recover outside criteria for this method when a full list spike is utilized. The LCS/LCSD associated with batch 184306 had 1 analytes outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

No other analytical or quality issues were noted.

Metals e
No analytical or quality issues were noted.

General Chemistry e
No analytical or quality issues were noted.

VOA Prep e
No analytical or quality issues were noted.
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VolaM, OmaM: Compou. ds (GC/MS)y</td>
<td>L SAyM</td>
<td>SWM#8:2M8BM</td>
<td></td>
</tr>
<tr>
<td>PurgMaM: apF</td>
<td>L SAyM</td>
<td>SWM#5M503BM</td>
<td></td>
</tr>
<tr>
<td>My als (ICP)y</td>
<td>L SAyM</td>
<td>SWM#6010C)</td>
<td></td>
</tr>
<tr>
<td>P, pa aM., Ex/ ac (bl) My alsM</td>
<td>L SAyM</td>
<td>SM 3030C)</td>
<td></td>
</tr>
<tr>
<td>My cury (CVM)</td>
<td>L SAyM</td>
<td>SWM#7470.</td>
<td></td>
</tr>
<tr>
<td>P, pa aM., My cury/</td>
<td>L SAyM</td>
<td>SWM#7470.</td>
<td></td>
</tr>
<tr>
<td>SulfaM, urbidime. ic)</td>
<td>L SAyM</td>
<td>SWM#903U</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

L SAy = . sMmerica SavaM ah/

Method References:

SM = "StMaM My hods For . h/ Exami/ aMh. Of WaM . d WasMwaM ")

SWM# = "/ sMy hods For EvaluaM g Solid WaM, Physical/Chm ical My hods", . hi/d Edil/0., Nov/ember 1 9/ . d It$: UpdaMs.)
<table>
<thead>
<tr>
<th>Method</th>
<th>Analyst</th>
<th>Analyst ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW846 8260BI</td>
<td>Soy I', Eleiny</td>
<td>ESy</td>
</tr>
<tr>
<td>SW846 60MCy</td>
<td>Bl/ d, Brl</td>
<td>BCBI</td>
</tr>
<tr>
<td>SW846 7470Ay</td>
<td>V. squez, Ju/</td>
<td>JV.</td>
</tr>
<tr>
<td>SW846 9038M</td>
<td>RM&b, JM</td>
<td>JRM</td>
</tr>
<tr>
<td>Lab Sa: ple IDe</td>
<td>Client Sa: ple IDe</td>
<td>Client Matrix2</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>680-62283-M</td>
<td>MW-M</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-2M</td>
<td>MW-2M</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-3,</td>
<td>MW-3,</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-4A</td>
<td>MW-38M</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-5I</td>
<td>MW-39I</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-6y</td>
<td>MW-MIA</td>
<td>Watery</td>
</tr>
<tr>
<td>680-62283-7TBU</td>
<td>Trig Bla. k</td>
<td>Watery</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/flr</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>300M</td>
<td>UM</td>
<td>300M</td>
</tr>
<tr>
<td>Benzene</td>
<td>720M</td>
<td></td>
<td>50M</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Bromochlorometilene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Bromoforine</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Bromoformyl</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Bromomethyle</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2-Butyl e (MEK)</td>
<td>500M</td>
<td>UM</td>
<td>500M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>00M</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Chloroformyl</td>
<td>50M</td>
<td>U "y</td>
<td>50M</td>
</tr>
<tr>
<td>Chlorometilene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Chloroformyl</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Dichloromethyle</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>3900M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2-Hexafluoroethane</td>
<td>500M</td>
<td>UM</td>
<td>500M</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>540M</td>
<td>UM</td>
<td>250M</td>
</tr>
<tr>
<td>Methyl-2-pentyl e (MIBK)</td>
<td>500M</td>
<td>UM</td>
<td>500M</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>500M</td>
<td>UM</td>
<td>500M</td>
</tr>
<tr>
<td>n-Xylene & p-Xylene</td>
<td>00M</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>250M</td>
<td>UM</td>
<td>250M</td>
</tr>
<tr>
<td>N-Butylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Styrene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2,2,2-Tetrachloroethylether</td>
<td>620M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2,2,2-Tetrachloroethylether</td>
<td>620M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Tetrachloroethylether</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Toluene</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Trab-M2-Dichloroethylether</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Trab-M3-Dichloroethylether</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2,4-Trichloroanisole</td>
<td>88M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>2,3-Trichloroanisole</td>
<td>88M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>1,2-Trichloroanisole</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>1,2-Trichloroanisole</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Trichloroethylether</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Trichloroanisole-1,2,4</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Trichloroanisole-1,2,3</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>3,5-Trichloroanisole</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>VAethyl acetate</td>
<td>00M</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>VAethyl chloride</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>00M</td>
<td>UM</td>
<td>00M</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recy</th>
<th>Qual/qty</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>00M</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Dibromofluorobenzene</td>
<td>85U</td>
<td>75 - y2M</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>09S</td>
<td>75 - y20M</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>5000M</td>
<td>UM</td>
<td>5000M</td>
</tr>
<tr>
<td>Benzeney</td>
<td>7M0M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Bromobenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Bromofomry</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2-Butanone (MEKI)</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Chlorobenzeney</td>
<td>2M0M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Chloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Chloromet hylate</td>
<td>200M</td>
<td>U*y</td>
<td>200M</td>
</tr>
<tr>
<td>4-Chloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>cis-M2-Dichloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>cis-M3-Dichloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2,2-Dichloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2,2-Dichloromethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,3-Dichlorobenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichlorobenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2,4-Dichlorobenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Dichloroformy</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Dichlorofluoromethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>600M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2,2-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,3-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>1,2-Dichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Ethylene</td>
<td>3000M</td>
<td></td>
<td>2000M</td>
</tr>
<tr>
<td>Ethylbenzeney</td>
<td>370M</td>
<td></td>
<td>200M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>2-Hexene</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>Isopropylbenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>00M</td>
<td></td>
<td>00M</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>2000M</td>
<td>UM</td>
<td>2000M</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>000M</td>
<td>UM</td>
<td>000M</td>
</tr>
<tr>
<td>N-Butylbenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>N-Propylbenzeney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
</tbody>
</table>

Client Sample ID: MW-2T
Lab Sample ID: 680-62283-2M
Client Matrix: Watery
Date Sampled: y0/M8/20M0 y2M8U
Date Received: y0/M8/20M0 0934U
Analytical Data
Analytical Data

Client Sample ID: MW-2T
Lab Sample ID: 680-62283-2M
Client Matrix: Watery
Date Sampled: y0/M/20M y2/M/U
Date Received: y0/N/20M 0934U

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifiery</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Xylene</td>
<td>470M</td>
<td></td>
<td>200M</td>
</tr>
<tr>
<td>p-Isopropyltolueney</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Styrene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.1,2,2-Tetrachloroethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.1,2,3-Tetrachloroethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Toluene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>trabs-M2-Dichloroethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>trabs-M3-Dichloropropane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzene</td>
<td>350M</td>
<td></td>
<td>200M</td>
</tr>
<tr>
<td>.2,3-Trichlorobenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.1,2-Trichloroethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>620M</td>
<td></td>
<td>200M</td>
</tr>
<tr>
<td>Trichloroformylmethane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.2,3-Trichloropropane</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>.3,5-Trichlorobenzene</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>VAyl acetate</td>
<td>400M</td>
<td>UM</td>
<td>400M</td>
</tr>
<tr>
<td>VAyl chloride</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>860M</td>
<td></td>
<td>400M</td>
</tr>
</tbody>
</table>

Surrogates

- 4-Bromofluorobenzene: 0M, Acceptable Units: 75 - y20M
- Dibromofluorobenzene: 85U, Acceptable Units: 75 - y2M
- Toluene-d8 (Sur): 09S, Acceptable Units: 75 - y20M
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/Qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25U</td>
<td>UM</td>
<td>25U</td>
</tr>
<tr>
<td>Benzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromoformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromothane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Butyrate (MEK)</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Chloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Chloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>4-Chloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,4-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,4-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,5-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,5-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,2-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,2-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2,2-Dichloroformate</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Hexyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Methyl Chloride</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>sec-Butylbenzeney</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Styreneye</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>tert-Butylbenzeney</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>2,2,2-Tetrachloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,2-Tetrachloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Tricleney</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Traps-M2-Dichloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Traps-M3-Dichloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>2,4-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>2,3-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>VAylyl acetate</td>
<td>2.0</td>
<td>UM</td>
<td>2.0</td>
</tr>
<tr>
<td>VAylyl chloride</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0</td>
<td>UM</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recy</th>
<th>Qual/qty</th>
<th>Acceptable Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chlorofluorobenzene</td>
<td>95U</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Dibromofluorobenzene</td>
<td>87M</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Toluenol (Surj)</td>
<td>0M</td>
<td>75 - y20M</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Substance</th>
<th>Method (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25U</td>
<td>UM</td>
<td>25U</td>
</tr>
<tr>
<td>Benzeney</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromoformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Butab e (MEK)I</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Chloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chlorinated methylene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chlorinated hydrocarbon</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chlorobromomethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloroform</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>491S</td>
<td>0M</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Hexanoy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Methylene Chl/riple</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>4-Methyl-2-pentenyl e (MIBK)I</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Methyl tert-butyl ethere</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
</tbody>
</table>

Analytical Data

Client Sample ID: MW-38T

Lab Sample ID: 680-62283-4U

Client Matrix: Watery

Date Sampled: 07/08/2009

Date Received: 08/08/2009

Analytical Method: 680-M4244U

Instrument ID: MSO2M

Lab FAe ID: 0096.dl

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/fiery</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,2,4-Tetrachlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,2-Tetrachlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>trabs-M2-Dichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>trabs-M3-Dichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,3-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,3-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>.3,5-Trichlorobenzene</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>VAcyl acetate</td>
<td>2.0</td>
<td>UM</td>
<td>2.0</td>
</tr>
<tr>
<td>VAcyl chloride</td>
<td>0.0</td>
<td>UM</td>
<td>0.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0</td>
<td>UM</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recy</th>
<th>Qual/fiery</th>
<th>Acceptable</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>99S</td>
<td>75 - y20M</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Dibromofluorobenzene</td>
<td>86S</td>
<td>75 - y20M</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (SurR)</td>
<td>75 - y20M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
820B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25U</td>
<td>UM</td>
<td>25U</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Bromoformy</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.0M</td>
<td>U*y</td>
<td>0.0M</td>
</tr>
<tr>
<td>2-Chloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>4-Chloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>2,4-Dichloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>2,4-Dichloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>2-Dichloropropane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>1,2-Dichloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>1,2-Dichloroformate</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>2-Hexa nes</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>lsPropylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>4-Methyl-2-pentene (MIBK)</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
</tbody>
</table>

Date Sampled: y0/M8/20M0 y 35U
Date Received: y0/N8/20M0 0934U
Client Sample ID: MW-39e
Lab Sample ID: 680-62283-SU
Client Matrix: Watery

TestAmerica SevonnaThe
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/fiery</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>p-Methyltoluene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>sec-Butylbenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Styrene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>tert-Butylbenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.y-y,2,2-Tetrachloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.y,2,2-Tetrachloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Toluenes</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>trabs-M2-Dichloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>trabs-M3-Dichloropropane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.2,4-Trichlorobenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.2,3-Trichlorobenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.y-y-Trichloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.2,3-Trichloroethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.2,4-Trimethylbenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>.3,5-Trimethylbenzeno</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>VAyl acetate</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>VAyl chloride</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Xylenes, Total/</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Surrogate</td>
<td>%Recy</td>
<td>Qual/fiery</td>
<td>Acceptable Limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzeno</td>
<td>97M</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Dibromofluorobenzeno</td>
<td>85U</td>
<td>75 - y20M</td>
<td></td>
</tr>
<tr>
<td>Toluenes-d8 (Surr)</td>
<td>2M</td>
<td>75 - y20M</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)e

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>500</td>
<td>UM</td>
<td>500</td>
</tr>
<tr>
<td>Benzene</td>
<td>38</td>
<td>UM</td>
<td>38</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Bromoformy</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Bromomethylate</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>200M</td>
<td>UM</td>
<td>200M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>40M</td>
<td>UM</td>
<td>40M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Chloformate</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Chloroformate</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2-Chloroaldehyde</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>4-Chloroaldehyde</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,4-Dichloro-1-Methylbenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,3-Dichloro-1-Methylbenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,2-Dichloro-1-Methylbenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,3-Dichloro-1-Methylbenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,2-Dichloro-1-Methylbenzene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>770M</td>
<td>UM</td>
<td>770M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>sec-Butylbenzenes</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Styrene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>tert-Butylbenzenes</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>o,-2,2-Tetrachloroethane</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>p,2,2-Tetrachloroethane</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Toluenes</td>
<td>40M</td>
<td>UM</td>
<td>40M</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,3-Trichloropropene</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>2,4-Trichlorobenzenes</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>3-Chlorobenzenes</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>40M</td>
<td>UM</td>
<td>40M</td>
</tr>
<tr>
<td>Vinyl chloride/ide</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>40M</td>
<td>UM</td>
<td>40M</td>
</tr>
<tr>
<td>Surrogate</td>
<td>%Recy</td>
<td>Qualifier</td>
<td>Acceptable Limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzenes</td>
<td>98M</td>
<td></td>
<td>75 - 20M</td>
</tr>
<tr>
<td>Dibromofluorobenzenes</td>
<td>86y</td>
<td></td>
<td>75 - 20M</td>
</tr>
<tr>
<td>Toluenes-d8 (Surry)</td>
<td>06y</td>
<td></td>
<td>75 - 20M</td>
</tr>
</tbody>
</table>
Aromatic Hydrocarbons (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25U</td>
<td>UM</td>
<td>25U</td>
</tr>
<tr>
<td>Benzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromoformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Butanol (MEK)I</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloropicol (2-Chloropropane)</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Chloropropane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>4-Chloropropane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>3-Chlorobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Chlorobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>4-Chlorobenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Dichloroformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloroformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Chloroformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>4-Chloroformy</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>2-Hexyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>4-Methyl-2-pentene (MIBK)</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>.0M</td>
<td>UM</td>
<td>.0M</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qualifier</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Xyleney</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,y,2,2-Tetrachloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,y,y,2-Tetrachloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Tolueney</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>trans-M2-Dichloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>trans-M3-Dichloroacetyl</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,2,4-Trichlorobenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,2,3-Trichlorobenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,y,2-Trichloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,2,3-Trichloroacetyl</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,2,4-Trimethylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>,3,5-Trimethylbenzene</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>VAylic acetate</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
<tr>
<td>VAyclic chlorodecyle</td>
<td>0.0M</td>
<td>UM</td>
<td>0.0M</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>2.0M</td>
<td>UM</td>
<td>2.0M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recy</th>
<th>Qualifier</th>
<th>Acceptable</th>
<th>LunitsM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>96y</td>
<td>75 - y20M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluorobenzene</td>
<td>89S</td>
<td>75 - y20M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolueno-d8 (SurRj)</td>
<td>0M</td>
<td>75 - y20M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Data

6010C Metals (ICP)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvery</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Irony</td>
<td>4700M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.000006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Irony</td>
<td>4700M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
</tbody>
</table>

Client Sample ID: MW-1T
Lab Sample ID: 680-62283-M
Client Matrix: Watery
Date Sampled: y0/M8/20M0 y3, 5U
Date Received: y0/M8 /20M0 0934U

TestAmerica SeventeenThe
6010C Metals (ICP)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual./fiery</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Iron</td>
<td>8200M</td>
<td></td>
<td>00M</td>
</tr>
<tr>
<td>Sulfate</td>
<td>65000M</td>
<td></td>
<td>00M</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual./fiery</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
</tbody>
</table>

Client Sample ID: T MW-2T
Lab Sample ID:M 680-62283-2M
Client Matrix: M Watery
Date Sampled: y0/M8/20M0 y2M6U
Date Received: y0/M8/20M0 0934U
6010C Metals (ICP)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/Qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>230M</td>
<td></td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>33.0</td>
<td></td>
<td>0M</td>
</tr>
<tr>
<td>Iron</td>
<td>0</td>
<td>00M</td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>88000M</td>
<td>000M</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/Qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Iron</td>
<td>40M</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>Sulfur</td>
<td>43000M</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/Qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>65U</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Iron</td>
<td>0</td>
<td>UM</td>
<td>00M</td>
</tr>
<tr>
<td>Sulfate</td>
<td>2M000M</td>
<td>UM</td>
<td>000M</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qual/Qty</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
</tbody>
</table>
6010C Metals (ICP)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quali/feri</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
<tr>
<td>Barium</td>
<td>50M</td>
<td>UM</td>
<td>50M</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0M</td>
<td>UM</td>
<td>5.0M</td>
</tr>
<tr>
<td>Chromium</td>
<td>0M</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Iron</td>
<td>50M</td>
<td></td>
<td>00M</td>
</tr>
<tr>
<td>Sulfur</td>
<td>9 000M</td>
<td></td>
<td>00M</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>UM</td>
<td>0M</td>
</tr>
<tr>
<td>Selenium</td>
<td>20M</td>
<td>UM</td>
<td>20M</td>
</tr>
</tbody>
</table>

7470A Mercury (CVAA)e

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quali/feri</th>
<th>RL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.20M</td>
<td>UM</td>
<td>0.20M</td>
</tr>
<tr>
<td>Analyte</td>
<td>Result</td>
<td>Qual</td>
<td>UM sM</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Sulfate</td>
<td>3, 0M</td>
<td>mg/L0</td>
<td></td>
</tr>
</tbody>
</table>

Analyte Batch: 680-M-4334U
Date Analyzed: 01/27/20M 09 45U

Date Sampled: 09/28/20M 09 35U
Date Received: 09/28/20M 09 35U
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual/UM sM</th>
<th>RL0</th>
<th>Dil</th>
<th>MethMbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>270M</td>
<td>mg/L0</td>
<td>00M</td>
<td>20M</td>
<td>9038M</td>
</tr>
</tbody>
</table>

Analyte: Batch: 680-M64334U Date Analyzed: y0/27/20M0 y9 45U
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual/</th>
<th>UM sM</th>
<th>RL0</th>
<th>Dil</th>
<th>Meth BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>6y</td>
<td>mg/L0</td>
<td></td>
<td>25U</td>
<td>5.0M</td>
<td>9038M</td>
</tr>
</tbody>
</table>

Analyte: Sulfate
Batch: 680-M64334U
Date Analyzed: y0/27/20M0 y9 46y
General Chemistry

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual.</th>
<th>UM/mL</th>
<th>RL0</th>
<th>Dilution</th>
<th>Meths%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>26y</td>
<td>mg/L</td>
<td>5.0M</td>
<td>.0M</td>
<td>9038M</td>
<td></td>
</tr>
</tbody>
</table>

Analytes:
- Batch: 680-64334U
- Date Analyzed: 06/27/2020 9U

Client Sample ID: MW-38T
Lab Sample ID: 680-62283-4U
Client Matrix: Watery
Date Sampled: 06/20/20 5U
Date Received: 06/20/20 0934U
General Chemistry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Unit</th>
<th>RL0</th>
<th>Dilution</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>2M</td>
<td>mg/L</td>
<td>5.0M</td>
<td>.0M</td>
<td>9036M</td>
</tr>
</tbody>
</table>

Notes:
- Analyte: Sulfate
- Batch: 680-M64334U
- Date Analyzed: 07/27/2020

Client: ARCADIS U.S., Inc.

Sample ID: MW-39e

Lab Sample ID/M: 680-62283-5U

Client Matrix: Watery

Date Sampled: 07/08/2020

Date Received: 07/10/2020
General Chemistry

Client Sample ID: MW-14
Lab Sample ID: 680-62283-6y
Client Matrix: Watery
Date Sampled: y0/M8/20M0 y045U
Date Received: y0/M0 /20M0 0934U

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qual/</th>
<th>UM mM</th>
<th>RL0</th>
<th>Dil</th>
<th>MethMII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>2M</td>
<td>mg/L0</td>
<td>5.0M</td>
<td>.0M</td>
<td>9038M</td>
<td></td>
</tr>
</tbody>
</table>

Analyte Batch: 680-M64334U
Date Analyzed: y0/27/20M0 y9 39S
<table>
<thead>
<tr>
<th>Lab Section</th>
<th>u alifierM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/RS VOAy</td>
<td>UM</td>
<td>IngMatey the a. alyte wa. a. alyzed f r b ut not detected.y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCS or LCSD exceedMthe control/unity</td>
</tr>
<tr>
<td>etal/</td>
<td>UM</td>
<td>IngMatey the a. alyte wa. a. alyzed f r b ut not detected.y</td>
</tr>
<tr>
<td></td>
<td>4.</td>
<td>S, y SD: The a. alyte preyent in the origv al yample iy 4 y timey greater tha. t he matrix ypke concentrationytheref re, y control/unity are not appl/cable. y</td>
</tr>
<tr>
<td>General Chemiytryl</td>
<td>UM</td>
<td>IngMatey the a. alyte wa. a. alyzed f r b ut not detected.y</td>
</tr>
<tr>
<td>ANLYS</td>
<td>SUIT</td>
<td>QUALR</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Naph, haL</td>
<td>5.0</td>
<td>U</td>
</tr>
<tr>
<td>Di-Bu, yle, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>N-P opeybe, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>o-Xyl</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>p-Isop2oplytleue</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>sco-Bu, yle, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Sty</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Bu, yle, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1,2,3-Ty achoroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1,2,3-Ty achoroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Ty achoroe.h</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>abs-1,2-ichloroe.h</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>abs-1,2-ichlorop2p2</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2,4-Tyichloroe, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2,3-Tyichloroe, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1,1-Tyichloroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,1,2-Tyichloroe.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Tyichloroe.h</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Tyichlorofluorome.hab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2,3-Tyichlorop2pab</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,2,4-Tyme.hyble, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>1,3,5-Tyme.hyble, zU</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Vl/ yl ac</td>
<td>2.0</td>
<td>U</td>
</tr>
<tr>
<td>Vl/ yl chlorid</td>
<td>1.0</td>
<td>U</td>
</tr>
<tr>
<td>Xyl</td>
<td>2.0</td>
<td>U</td>
</tr>
<tr>
<td>Surrogab</td>
<td>%</td>
<td>c</td>
</tr>
<tr>
<td>4-B.ofofluorome, zU</td>
<td>9y</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>ibromofluorome.hab</td>
<td>90.</td>
<td>75 - 121.</td>
</tr>
<tr>
<td>Toluene - dl (Sur)pzl</td>
<td>111.</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Lub ConrouSVmp e/V

LubConrousVmp@yVp6cv eRecovery Reporu- Bv ch: 680-1841441

Mehod: 8660Bv
Prep6ru on: 8030Bv

<table>
<thead>
<tr>
<th>LCS Lab Samp) ID</th>
<th>LCS 680-184244/15B</th>
<th>alysis Balch. 680-184244U</th>
<th>Inqbume. ID</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Balch. N/F</td>
<td>Lab Fil) ID</td>
<td>oq470.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td>Unqsb ugi/LR</td>
<td>Inqial WMgh./Volume: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUt1</td>
<td>10/2M2010 1019y</td>
<td></td>
<td>Fl/ al WMgh./Volume: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1019y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD(Lab Samp) ID</th>
<th>LCSD680-184244/16.</th>
<th>alysis Balch. 680-184244U</th>
<th>Inqbume. ID</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Balch. N/F</td>
<td>Lab Fil) ID</td>
<td>oq472.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td>Unqsb ugi/LR</td>
<td>Inqial WMgh./Volume: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUt1</td>
<td>10/2M2010 1047F</td>
<td></td>
<td>Fl/ al WMgh./Volume: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1047F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS</th>
<th>LCSD</th>
<th>% c.)</th>
<th>Limi/</th>
<th>P</th>
<th>P</th>
<th>Limi/</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o</td>
<td>125B</td>
<td>12M</td>
<td>17 - 175B</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. zU</td>
<td>107F</td>
<td>105B</td>
<td>77 - 119y</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omohab.zU</td>
<td>93U</td>
<td>94U</td>
<td>0 - 1 24U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omohab.ohm</td>
<td>3U</td>
<td>4U</td>
<td>2 - 133U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ccl.losu.sulfil</td>
<td>94U</td>
<td>97F</td>
<td>55 - 131.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorohab.ohm</td>
<td>103U</td>
<td>101.</td>
<td>2 - 120.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorohab.ohm</td>
<td>151.</td>
<td>142M</td>
<td>4U - 142M</td>
<td>50. *y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorohab.ohm</td>
<td>100.</td>
<td>101.</td>
<td>2 - 123U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorohab.ohm</td>
<td>105B</td>
<td>108.</td>
<td>3 - 122M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-. iohlorohab</td>
<td>9y</td>
<td>97F</td>
<td>9 - 134U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-. iohlorohab</td>
<td>115B</td>
<td>114U</td>
<td>7F - 1 2M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromoe.obp2</td>
<td>105B</td>
<td>106.</td>
<td>49 - 140.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromoe.hab</td>
<td>109y</td>
<td>108.</td>
<td>0 - 121.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ibromome.hab</td>
<td>114U</td>
<td>111.</td>
<td>7F - 119y</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. ichloroh. zU</td>
<td>101.</td>
<td>102M</td>
<td>7F - 1 25B</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloroh. zU</td>
<td>104U</td>
<td>103U</td>
<td>79 - 124U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-. ichloroh. zU</td>
<td>104U</td>
<td>104U</td>
<td>1 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichlorohab.ohm</td>
<td>85B</td>
<td>112M</td>
<td>7F - 1 27F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichlorodilohab.ohm</td>
<td>127F</td>
<td>135B</td>
<td>34 - 154U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. ichloroh.ohm</td>
<td>97F</td>
<td>99y</td>
<td>74 - 127F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloroh.ohm</td>
<td>122M</td>
<td>117F</td>
<td>-1 32M</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. ichloroh.h.</td>
<td>113U</td>
<td>116.</td>
<td>2 - 141.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ichloroh.h.</td>
<td>9y</td>
<td>9y</td>
<td>-1 34U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ichlorop2pab</td>
<td>111.</td>
<td>111.</td>
<td>73 - 124U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-. ichlorop2pab</td>
<td>110.</td>
<td>109y</td>
<td>55 - 157F</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. ichlorop2pab</td>
<td>112M</td>
<td>111.</td>
<td>75 - 120.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quy ConrouReV

L Ub ConrouSvmp eV
LVbConrouSvmp@WVp6cv eRecovery Reporu- Bv ch: 680-1841441
M e hod: 8660Bv
Prep6ru on: 8030Bv

<table>
<thead>
<tr>
<th>LCS Lab Sampl (ID)</th>
<th>LCS 680-184244/15B</th>
<th>alysis Ballch.</th>
<th>LCS 680-184244U</th>
<th>In§hum. (ID)</th>
<th>SO2M</th>
<th>Lab Fil (ID)</th>
<th>oq470.dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Ballch. N/F</td>
<td>Un§sb ugi/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1019y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1019y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sampl (ID)</th>
<th>LCSD 680-184244/16.</th>
<th>alysis Ballch.</th>
<th>LCS 680-184244U</th>
<th>In§hum. (ID)</th>
<th>SO2M</th>
<th>Lab Fil (ID)</th>
<th>oq472.dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Ballch. N/F</td>
<td>Un§sb ugi/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1047F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1047F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>% c) LCS)</th>
<th>% c) LCSD)</th>
<th>Limi/</th>
<th>P</th>
<th>P Limi/</th>
<th>LCS Qula</th>
<th>LCSD Qula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1- ichlorop2p2</td>
<td>118.</td>
<td>118.</td>
<td>77 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.hylbe, zU</td>
<td>103U</td>
<td>105B</td>
<td>- 116.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hl xachlorobu.adl/</td>
<td>99y</td>
<td>9y</td>
<td>2 - 142M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hl xabo.</td>
<td>155U</td>
<td>14U</td>
<td>34 - 161.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isop2pylbe. zU</td>
<td>92M</td>
<td>94U</td>
<td>2 - 121.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyl) Chloridil</td>
<td>97F</td>
<td>9y</td>
<td>70 - 125B</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- hyl-2-p2 abo. (MIBK)</td>
<td>12M</td>
<td>120.</td>
<td>40 - 151.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyl . -bu.yl e.h.</td>
<td>90.</td>
<td>9y</td>
<td>77 - 121.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl) & p-Xyl)</td>
<td>102M</td>
<td>104U</td>
<td>3 - 118.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naph.hal)</td>
<td>99y</td>
<td>103U</td>
<td>4U - 135B</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylbe. zU</td>
<td>108.</td>
<td>108.</td>
<td>4 - 13U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P oplbe. zU</td>
<td>110.</td>
<td>112M</td>
<td>0 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl</td>
<td>102M</td>
<td>104U</td>
<td>3 - 119y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isop2pylglue.</td>
<td>103U</td>
<td>104U</td>
<td>3 - 139y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-Bu.ylbe. zU</td>
<td>109y</td>
<td>112M</td>
<td>77 - 12M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyS</td>
<td>5B</td>
<td>5B</td>
<td>2 - 122M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylbe. zU</td>
<td>111.</td>
<td>113U</td>
<td>0 - 124U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Ty aehloroe.hab</td>
<td>106.</td>
<td>104U</td>
<td>9 - 129y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Ty aehloroe.hab</td>
<td>9y</td>
<td>99y</td>
<td>1 - 12M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ty aehloroe.h.</td>
<td>90.</td>
<td>91.</td>
<td>7F - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu.e.</td>
<td>106.</td>
<td>104U</td>
<td>1 - 117F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,2- ichloroe.h.</td>
<td>97F</td>
<td>99y</td>
<td>72 - 131.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,3- ichlorop2p2</td>
<td>121.</td>
<td>117F</td>
<td>73 - 12M</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tychloro. zU</td>
<td>102M</td>
<td>101.</td>
<td>0 - 135B</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychloro. zU</td>
<td>112M</td>
<td>113U</td>
<td>0 - 132M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tychloro.hab</td>
<td>112M</td>
<td>111.</td>
<td>7F - 127F</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tychloro.hab</td>
<td>112M</td>
<td>107F</td>
<td>75 - 121.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychloro.h.</td>
<td>102M</td>
<td>102M</td>
<td>4 - 115B</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychlorofluorone.hab</td>
<td>117F</td>
<td>120.</td>
<td>5B - 149y</td>
<td>3U</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychlorop2pab</td>
<td>105B</td>
<td>104U</td>
<td>70 - 130.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tyme.lylbe. zU</td>
<td>115B</td>
<td>114U</td>
<td>72 - 132M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tyme.lylbe. zU</td>
<td>111.</td>
<td>113U</td>
<td>72 - 133U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vi/ y ac) ab</td>
<td>105B</td>
<td>101.</td>
<td>10 - 217F</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lub ConrouSVmp e/V
Lub ConrouSVmp & VDp6cv eV Recovery Repor- Bv ch: 880-1841441
Lub ConrouSVmp & VDp6cv eV Recovery Repor- Bv ch: 880-1841441
Lub ConrouSVmp & VDp6cv eV Recovery Repor- Bv ch: 880-1841441
Lub ConrouSVmp & VDp6cv eV Recovery Repor- Bv ch: 880-1841441
Lub ConrouSVmp & VDp6cv eV Recovery Repor- Bv ch: 880-1841441

LCS Lab Sample ID)

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-184244/15B</th>
<th>alysis Batch</th>
<th>680-184244U</th>
<th>Injubation ID</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td>Lab Fil ID</td>
<td>oq470.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td></td>
<td></td>
<td>Injial W/Mgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1019y</td>
<td></td>
<td></td>
<td>Fi al W/Mgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1019y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS Lab Sample ID)

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-184244/16.</th>
<th>alysis Batch</th>
<th>680-184244U</th>
<th>Injubation ID</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td>Lab Fil ID</td>
<td>oq472.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td></td>
<td></td>
<td>Injial W/Mgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1047F</td>
<td></td>
<td></td>
<td>Fi al W/Mgh./Volume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1047F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AlyS %, c). LCS (a) LCS (b) Limi/ P P Limi/ LCS Qual/ LCS Qual)

AlyS %, c)	LCS (a)	LCS (b)	Limi/ P P Limi/ LCS Qual/ LCS Qual		
Vl yl chloridl	103U	109y	59 - 144U	50.	
Xyl (s, To.al)	102M	104U	4 - 118.	1.	30.

Surrogab

| Surrogab | LCS %, c) | LCS (a) | LCS (b) | Limi/ P P Limi/ LCS Qual/ LCS Qual |
|----------|-----------|---------|---------|-----------------------------------|------------------|-----------------|-----------------|
| 4-B.nmoUorone. zU e | 102M | 101. | 75 - 120. |
| 1bromofluorome. hab | 92M | 95B | 75 - 121. |
| Tolue. - di (Surj) | 105B | 103U | 75 - 120. |
Method Bv nk - Bv ch: 880-184306T

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>B 680-184306/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
</tr>
<tr>
<td>ab. aly2Udl</td>
<td>10/27/2010 1143U</td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/27/2010 1143U</td>
</tr>
<tr>
<td>alyS</td>
<td>suit)</td>
</tr>
<tr>
<td>c o.</td>
<td>25 U)</td>
</tr>
<tr>
<td>B zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>B. omobe. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>B. omohorome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>B. omohorm.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>B. omohome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>2-Bu o. (MEK)l</td>
<td>10. U)</td>
</tr>
<tr>
<td>Catb. disulfid</td>
<td>2.0 U)</td>
</tr>
<tr>
<td>Carbo. achlorid</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>Chlorob. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>Chlorodibromome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>Chlorome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>Chlororme.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>Chlorome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>2-Chloro.oule.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>4-Chloro.oule.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>cis-1,2-c. ichloroe.h.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>cis-1,3-c. ichlorop2p2</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,2-c. ibromno-3-Chlorop2pab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,2-c. ibromoe.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>ibromome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,3-c. ichlorob. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,2-c. ichlorob. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,4-c. ichlorob. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>ichlorobromome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>ichlorodifluorome.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,1-c. ichloroe.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,2-c. ichloroe.hab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,1-c. ichloroe.h.</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,2-c. ichloroe.h. , To.al)</td>
<td>2.0 U)</td>
</tr>
<tr>
<td>1,2-c. ichlorop2pab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>2,2-c. ichlorop2pab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,3-c. ichlorop2pab</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>1,1-c. ichlorop2p2</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>i hyd e h.</td>
<td>10. U)</td>
</tr>
<tr>
<td>E.hybl. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>HI xachlorobu.adi/</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>2-H xa o.</td>
<td>10. U)</td>
</tr>
<tr>
<td>Isop2poylbe. zU</td>
<td>1.0 U)</td>
</tr>
<tr>
<td>hyd) Chloridil</td>
<td>5.0 U)</td>
</tr>
<tr>
<td>4-c. hyd-2-p2 abo. (MIBK)l</td>
<td>10. U)</td>
</tr>
<tr>
<td>hyd. -bu yl e.h.</td>
<td>10. U)</td>
</tr>
<tr>
<td>m-Xyl) & p-Xyl)</td>
<td>2.0 U)</td>
</tr>
</tbody>
</table>

Method: 8660Bv

<table>
<thead>
<tr>
<th>Inj sample. ID</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Fill ID</td>
<td>oqy .dl</td>
</tr>
<tr>
<td>Initial W/mgh./Volume.:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Final W/mgh./Volume.:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

TeV Americov S v nn hc
<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (μL/L)</th>
<th>Unit</th>
<th>Limit (μL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene (Naph.ha)</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
<tr>
<td>Butyl acetate (Bu.y)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>N-propylacetamide (N-P)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xylene (o-Xy)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropylphenol (p-Ip)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Sb-Cu-Bu-y (sbc-Bu-y)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Styrene (Sty)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Tetrahydroxyacetone (1,1,2,2-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1,2-Tetrahydroxyacetone (1,1,1,2-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene (Tol)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene (1,2-D)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene (1,3-D)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Trichlorobenzene (1,1,2-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene (1,2,4-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene (1,2,3-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Trichloroaniline (1,2,4-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-Trichloroaniline (1,3,5-T)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl acetate (VAc)</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chloride (VCl)</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes (Xyl)</td>
<td>2.0</td>
<td>U</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrogates:

- 4-Bromo-2-fluorobenzene (4-B) 97% 75 - 120.
- 4-Bromo-2-fluorobenzene (4-F) 90% 75 - 121.
- Toluene (Tor) 108% 75 - 120.
Quity ConrouReV

Lub Conrou Svmp eV

LubConrouSvmp & lVp6cv eRecovery Reporu- Bv ch: 880-184306T

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-184306/5B</th>
<th>alysis Balzch. 680-184306.</th>
<th>Ink&sume. ID</th>
<th>SO2M</th>
<th>Lab Fill. ID</th>
<th>qq4U4.dl</th>
<th>Ini&ial Wmgh./Volume.</th>
<th>5</th>
<th>mLR</th>
<th>F/i' al Wmgh./Volume.</th>
<th>5</th>
<th>mLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM Wab</td>
<td>P p Balzch. N/F</td>
<td>Uniqsb ugi/LR</td>
<td></td>
</tr>
<tr>
<td>clu.io.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/27/2010 1018.</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/27/2010 1018.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSDLab Sample ID</th>
<th>LCSDL680-184306/F</th>
<th>alysis Balzch. 680-184306.</th>
<th>Ink&sume. ID</th>
<th>SO2M</th>
<th>Lab Fill. ID</th>
<th>qq4U4.dl</th>
<th>Ini&ial Wmgh./Volume.</th>
<th>5</th>
<th>mLR</th>
<th>F/i' al Wmgh./Volume.</th>
<th>5</th>
<th>mLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM Wab</td>
<td>P p Balzch. N/F</td>
<td>Uniqsb ugi/LR</td>
<td></td>
</tr>
<tr>
<td>clu.io.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/27/2010 104U</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/27/2010 104U</td>
<td></td>
</tr>
</tbody>
</table>

alyS

<table>
<thead>
<tr>
<th>% c.</th>
<th>LCS</th>
<th>LCSDL</th>
<th>Limi/</th>
<th>P</th>
<th>P</th>
<th>Limi/</th>
<th>LCS Qual</th>
<th>LCSDLQual</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o.</td>
<td>110.</td>
<td>115B</td>
<td>17 - 175B</td>
<td>4U</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. zU</td>
<td>109y</td>
<td>107F</td>
<td>77 - 119y</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omobe. zU</td>
<td>95B</td>
<td>9y</td>
<td>0 - 124U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omochlorome. hab</td>
<td>106.</td>
<td>107F</td>
<td>10 - 150.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omofom.</td>
<td>77F</td>
<td>1.</td>
<td>2 - 133U</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. omome. hab</td>
<td>106.</td>
<td>119y</td>
<td>12 - 184U</td>
<td>12M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu.abo. (MEK)I</td>
<td>104U</td>
<td>105B</td>
<td>33 - 157F</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calbo. disulfid</td>
<td>103U</td>
<td>105B</td>
<td>55 - 131</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorob. zU</td>
<td>93U</td>
<td>9y</td>
<td>5 - 116.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromobrome. hab</td>
<td>9y</td>
<td>103U</td>
<td>75 - 133U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorole. hab</td>
<td>124U</td>
<td>119y</td>
<td>40 - 165B</td>
<td>4U</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorofom.</td>
<td>101.</td>
<td>100.</td>
<td>2 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorole. hab</td>
<td>151.</td>
<td>151.</td>
<td>4U - 142M</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>2-Chloro. olue.</td>
<td>102M</td>
<td>105B</td>
<td>2 - 123U</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro. olue.</td>
<td>105B</td>
<td>104U</td>
<td>3 - 122M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-. icloroe.h.</td>
<td>101.</td>
<td>9y</td>
<td>9 - 134U</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-. iclorop2p2</td>
<td>115B</td>
<td>116.</td>
<td>7F - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromo-3-Chlorop2pab</td>
<td>9y</td>
<td>105B</td>
<td>49 - 140.</td>
<td>9y</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. ibromoe.hab</td>
<td>102M</td>
<td>105B</td>
<td>0 - 121.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ibromome.hab</td>
<td>108.</td>
<td>110.</td>
<td>7F - 119y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. iclorob. zU</td>
<td>100.</td>
<td>102M</td>
<td>7F - 125B</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. iclorob. zU</td>
<td>102M</td>
<td>104U</td>
<td>79 - 124U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-. iclorob. zU</td>
<td>103U</td>
<td>104U</td>
<td>1 - 122M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iclorobromobrome. hab</td>
<td>112M</td>
<td>113U</td>
<td>7F - 127F</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iclorofluorobrome. hab</td>
<td>131.</td>
<td>13U</td>
<td>34 - 154U</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. icloroe.h.</td>
<td>101.</td>
<td>99y</td>
<td>74 - 127F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. icloroe.hab</td>
<td>116.</td>
<td>115B</td>
<td>- 132M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. icloroe.h.</td>
<td>103U</td>
<td>103U</td>
<td>2 - 141.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. icloroe.h. (To.al)</td>
<td>101.</td>
<td>9y</td>
<td>- 134U</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. iclorop2pab</td>
<td>110.</td>
<td>109y</td>
<td>73 - 124U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-. iclorop2pab</td>
<td>118.</td>
<td>114U</td>
<td>55 - 157F</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. iclorop2pab</td>
<td>106.</td>
<td>108.</td>
<td>75 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quicy ConroureV

Job Number: 680-622M6-1.

Method: 8660Bv
Prep6ru on: 8030Bv

LCS Lab Sample (ID) | LCS 680-184306/5B | alysis Batch. 680-184306. | Inj”bume. (ID) | SO2M
| Cl/ abixM | Wab | P p Batch. N/F | Lab Fil) (ID) | oq4U2.dl
| ilu.io. | 1.0. | Unj’sb ugi/LR | In/jial Wmgh./Volume.: 5 mLRR
| ab. alyzUdl | 10/27/2010 1018. | Fi al Wmgh./Volume.: 5 mLRR
| ab. pab dl | 10/27/2010 1018. |

LCSD LAB Sample (ID) | LCSD/680-184306/F | alysis Batch. 680-184306. | Inj”bume. (ID) | SO2M
| Cl/ abixM | Wab | P p Batch. N/F | Lab Fil) (ID) | oq4U4.dl
| ilu.io. | 1.0. | Unj’sb ugi/LR | In/jial Wmgh./Volume.: 5 mLRR
| ab. alyzUdl | 10/27/2010 104U | Fi al Wmgh./Volume.: 5 mLRR
| ab. pab dl | 10/27/2010 104U |

<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS</th>
<th>%</th>
<th>LCSD</th>
<th>Limi/</th>
<th>P</th>
<th>P</th>
<th>Limi/</th>
<th>LCS Qual</th>
<th>LCSD Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-hyle. ZU</td>
<td>104U</td>
<td>105B</td>
<td>- 116.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hl xabo.</td>
<td>114U</td>
<td>120.</td>
<td>34 - 161.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isop2pylbe. zU</td>
<td>918.</td>
<td>92M</td>
<td>2 - 121.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyl</td>
<td>Chloridl</td>
<td>100.</td>
<td>97F</td>
<td>70 - 125B</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- hyl-2-p2 abo. (MBK)l</td>
<td>118.</td>
<td>121.</td>
<td>40 - 151.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyl</td>
<td>-bu.yl e.h.</td>
<td>101.</td>
<td>99y</td>
<td>77 - 121.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl) & p-Xyl()</td>
<td>102M</td>
<td>102M</td>
<td>3 - 118.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naph.hal)</td>
<td>94U</td>
<td>103U</td>
<td>4U - 135B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylbe. zU</td>
<td>113U</td>
<td>112M</td>
<td>4 - 13U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P opylbe. zU</td>
<td>109y</td>
<td>111.</td>
<td>0 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl</td>
<td>102M</td>
<td>103U</td>
<td>3 - 119y</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-isop2pylblue.</td>
<td>105B</td>
<td>106.</td>
<td>3 - 139y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-Bu.ylbe. zU</td>
<td>114U</td>
<td>115B</td>
<td>77 - 12M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyS</td>
<td>5B</td>
<td>2 - 122M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylbe. ZU</td>
<td>110.</td>
<td>112M</td>
<td>0 - 124U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Ty achloroe.hab</td>
<td>100.</td>
<td>102M</td>
<td>9 - 129y</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Ty achloroe.hab</td>
<td>95B</td>
<td>9y</td>
<td>1 - 12M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ty achloroe.h.</td>
<td>90.</td>
<td>92M</td>
<td>7F - 12M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue.</td>
<td>109y</td>
<td>106.</td>
<td>1 - 117F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,2- ichloroe.h.</td>
<td>101.</td>
<td>97F</td>
<td>72 - 131.</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,3- ichlorop2p2</td>
<td>116.</td>
<td>117F</td>
<td>73 - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tychlorobe. zU</td>
<td>99y</td>
<td>102M</td>
<td>0 - 135B</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychlorobe. zU</td>
<td>106.</td>
<td>112M</td>
<td>0 - 132M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tychloroe.hab</td>
<td>115B</td>
<td>111.</td>
<td>7F - 127F</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tychloroe.hab</td>
<td>104U</td>
<td>107F</td>
<td>75 - 121.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychloroe.h.</td>
<td>9y</td>
<td>102M</td>
<td>4 - 115B</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychlorofluorome.hab</td>
<td>120.</td>
<td>121.</td>
<td>5B - 149y</td>
<td>1.</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychlorop2pab</td>
<td>97F</td>
<td>106.</td>
<td>70 - 130.</td>
<td>9y</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tyme.hylbe. zU</td>
<td>112M</td>
<td>113U</td>
<td>72 - 132M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tyme.hylbe. zU</td>
<td>113U</td>
<td>112M</td>
<td>72 - 133U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vl/ yl ac</td>
<td>ab</td>
<td>122M</td>
<td>120.</td>
<td>10 - 217F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qu Ty ConrouReV

Lab Con rouSVmp e/V
Lab\ConrouSVmp&\DVp6cv eVRecovery Reporou- Bv ch: 880-184306T

<table>
<thead>
<tr>
<th>LCS Lab Samp1) ID)</th>
<th>LCS 680-184306/5B</th>
<th>alysis Balch. 680-184306.</th>
<th>Injsume. ID)</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Balch. N/F</td>
<td>Lab Fil) ID)</td>
<td>oq4U2.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td>Unjsb ugi/LR</td>
<td>Injial WMgh./Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/27/2010 1018.</td>
<td></td>
<td>Fin al WMgh./Volume.: 5 mL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD)Lab Samp1) ID)</th>
<th>LCSD)680-184306/F</th>
<th>alysis Balch. 680-184306.</th>
<th>Injsume. ID)</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Balch. N/F</td>
<td>Lab Fil) ID)</td>
<td>oq4U4.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td>Unjsb ugi/LR</td>
<td>Injial WMgh./Volume.: 5 mL</td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/27/2010 104U</td>
<td></td>
<td>Fin al WMgh./Volume.: 5 mL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>% c. LCS)</th>
<th>% c. LCSD)</th>
<th>Limi/</th>
<th>P</th>
<th>P</th>
<th>Limi/</th>
<th>LCS Qual)</th>
<th>LCSD)Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/ yl chloridl</td>
<td>121.</td>
<td>123U</td>
<td>59 - 144U</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl) s, To.al)</td>
<td>102M</td>
<td>103U</td>
<td>4 - 118.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogab</td>
<td>LCS % . c)</td>
<td>LCSD)% . c)</td>
<td>cc)</td>
<td>pAhr)</td>
<td>Limi/stb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-B.ornofluorob. zU e</td>
<td>102M</td>
<td>104U</td>
<td>75 - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ibromofluorome.hab</td>
<td>9y</td>
<td>97F</td>
<td>75 - 121.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue. - dl (Surj)</td>
<td>107F</td>
<td>105B</td>
<td>75 - 120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-1844406

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>B 680-184440/9y</th>
<th>alysis Batch</th>
<th>680-184440.</th>
<th>MeVod: 8660Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ abixM</td>
<td>Wab</td>
<td>P p Batchh. N/F</td>
<td>Un</td>
<td>§b ug/LR</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUll</td>
<td>10/2M2010 1323U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1323U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>suit)</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>c o.</td>
<td>25</td>
<td>U)</td>
<td>25B</td>
</tr>
<tr>
<td>B zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>B. omoe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>B. omochlorome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>B. omofrm.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>B. omome. hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Bu a o. (MEK)I</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>Cbto. disulfidl</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbo. aachloridl</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloro. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorodibromome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloro. hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorome. hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>2-Chloro.oue.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>4-Chloro.oue.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-. ichloro.e.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-. ichlorop2bp2</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-. ibromo-3-Chlorop2bpab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-. ibromoe.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>ibromome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-. ichloroe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-. ichloro.e. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,4-. ichloro.e. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>ichlorodibromome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>ichlorodifluorome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-. ichloro.e. hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-. ichloro.e. hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-. ichloro.e. h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-. ichloro.e. h. , To.al</td>
<td>2.0.</td>
<td>U)</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-. ichlorop2pab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>2,2-. ichlorop2pab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-. ichlorop2pab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-. ichlorop2p2</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>i hyl e h.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>E.hylbe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Hl xachlorobu.adi/</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>2-H xa o.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>Isop2pylb.be. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>hyl) Chloridl</td>
<td>5.0</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>hyl. -bu yl e.h.</td>
<td>10.</td>
<td>U)</td>
<td>10.</td>
</tr>
<tr>
<td>m-Xyli) & p-Xyl)</td>
<td>2.0</td>
<td>U)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-1844406

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>B 680-184440/9y</th>
<th>Analysis Batch</th>
<th>680-184440.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clu. abixM</td>
<td>Wab</td>
<td>P p Batch: N/F</td>
<td>Unshub ug/LR</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUli</td>
<td>10/2M2010 1323U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1323U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>silt()</th>
<th>QualR()</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naph. hal</td>
<td>5.0</td>
<td>U)</td>
<td>5.0</td>
</tr>
<tr>
<td>-Bu.ylle. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>N-P olybe. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopbopylpine.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>sbl-Bu.ylle. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>StyS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.ylle. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2,2-Ty achloro.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1,2-Ty achloro.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Ty achloro.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tolue.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>abs-1,2-. ichloro.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>abs-1,3-. ichlorop2p2</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Tichloro. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Tichloro. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,1-Tichloro.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1,2-Tichloro.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tichloro.h.</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Tichlorofluorome.hab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Tichlorop2pab</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,4-Tyme.ylle. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3,5-Tyme.ylle. zU</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>VI/ yl ac</td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>VI/ yl chloridil</td>
<td>1.0</td>
<td>U)</td>
<td>1.0</td>
</tr>
<tr>
<td>Xyl(s, To.al)</td>
<td>2.0</td>
<td>U)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogab</th>
<th>% c)</th>
<th>cc) p2atc</th>
<th>Limi/sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorob. zU</td>
<td>99y</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>ibromofluorome.hab</td>
<td>9y</td>
<td>75 - 121.</td>
<td></td>
</tr>
<tr>
<td>Tolue. - dl (Sur)yl</td>
<td>108.</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
QUUVY CONJOUR REV

LCS Lab Sampl/ ID) LCS 680-184440/F alysis Balch. 680-184440. Inj/olume. ID) SO2M

<table>
<thead>
<tr>
<th>Cl/ . abixM</th>
<th>Wab</th>
<th>P_p Balch. N/F</th>
<th>Lab Fil) ID)</th>
<th>oo492.dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td>Unjsb ugi/LR</td>
<td>Inj/ial WMgh./Volume.: 5 mL.R</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUtl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS(D) Lab Sampl/ ID) LCS(D)680-184440/7F alysis Balch. 680-184440. Inj/olume. ID) SO2M

<table>
<thead>
<tr>
<th>Cl/ . abixM</th>
<th>Wab</th>
<th>P_p Balch. N/F</th>
<th>Lab Fil) ID)</th>
<th>oo493.dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td>Unjsb ugi/LR</td>
<td>Inj/ial WMgh./Volume.: 5 mL.R</td>
<td></td>
</tr>
<tr>
<td>ab. alyzUtl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

alyS

<table>
<thead>
<tr>
<th>% c.</th>
<th>LCS)</th>
<th>LCS(D)</th>
<th>Limi/</th>
<th>P</th>
<th>P Limi/</th>
<th>LCS Qual</th>
<th>LCS(D)Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) o.</td>
<td>103U</td>
<td>104U</td>
<td>17 - 175B</td>
<td>1.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. zU</td>
<td>106.</td>
<td>105B</td>
<td>77 - 119y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.omoh. zU</td>
<td>95B</td>
<td>95B</td>
<td>0 - 124U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.omochiorome.hab</td>
<td>102M</td>
<td>102M</td>
<td>10 - 150.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.omoform.</td>
<td>4U</td>
<td>2M</td>
<td>2 - 133U</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.oome.hab</td>
<td>108.</td>
<td>120.</td>
<td>12 - 184U</td>
<td>10.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Bu.abo. (MEK)I</td>
<td>104U</td>
<td>100.</td>
<td>33 - 157F</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caibio. disulfid</td>
<td>90.</td>
<td>9y</td>
<td>55 - 1316.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caibio. .achlorid</td>
<td>106.</td>
<td>106.</td>
<td>71 - 135B</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloro. zU</td>
<td>95B</td>
<td>94U</td>
<td>5 - 116.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorodibromone.hab</td>
<td>107F</td>
<td>102M</td>
<td>75 - 133U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorone.hab</td>
<td>107F</td>
<td>102M</td>
<td>40 - 165B</td>
<td>4U</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroneform.</td>
<td>93U</td>
<td>93U</td>
<td>2 - 120.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorone.hab</td>
<td>134U</td>
<td>139y</td>
<td>4U - 142M</td>
<td>3U</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloro.olue.</td>
<td>102M</td>
<td>102M</td>
<td>2 - 123U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro.olue.</td>
<td>104U</td>
<td>103U</td>
<td>3 - 122M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-. i chloro.2p2</td>
<td>916.</td>
<td>91.</td>
<td>9 - 134U</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-. i chloro.2p2</td>
<td>117F</td>
<td>115B</td>
<td>7F - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i bromo.-3-Chloro.2pab</td>
<td>104U</td>
<td>103U</td>
<td>49 - 140.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i bromo.e.hab</td>
<td>107F</td>
<td>102M</td>
<td>0 - 121.</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i bromo.e.hab</td>
<td>113U</td>
<td>107F</td>
<td>7F - 119y</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. i chloro.e. zU</td>
<td>101.</td>
<td>100.</td>
<td>7F - 125B</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i chloro.e. zU</td>
<td>105B</td>
<td>100.</td>
<td>79 - 124U</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-. i chloro.e. zU</td>
<td>105B</td>
<td>101.</td>
<td>1 - 122M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichlorodibromone.hab</td>
<td>113U</td>
<td>111.</td>
<td>7F - 127F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ichlorodifluorome.hab</td>
<td>113U</td>
<td>122M</td>
<td>34 - 154U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. i chloro.e.hab</td>
<td>94U</td>
<td>95B</td>
<td>74 - 127F</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i chloro.e.hab</td>
<td>117F</td>
<td>112M</td>
<td>- 1 32M</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-. i chloro.e.h.</td>
<td>906.</td>
<td>95B</td>
<td>2 - 141.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i chloro.e.h. To.al</td>
<td>91.</td>
<td>91.</td>
<td>- 1 34U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-. i chloro.2pab</td>
<td>113U</td>
<td>108.</td>
<td>73 - 124U</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-. i chloro.2pab</td>
<td>103U</td>
<td>111.</td>
<td>55 - 157F</td>
<td>7F</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-. i chloro.2pab</td>
<td>111.</td>
<td>108.</td>
<td>75 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quy ConrouReV

Lub Con rouSVmp e/V
LubConrouSVmp@WVp6cv e/V Recovery Repor- Bv ch: 680-1844406

Me hod: 8660Bv
Prep6ru on: 8030Bv

<table>
<thead>
<tr>
<th>LCS Lab SampI (ID)</th>
<th>LCS/680-184440/F</th>
<th>alysis Balch.</th>
<th>680-184440.</th>
<th>Inj)ume. (ID)</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ . latin M</td>
<td>Wab</td>
<td>p Balch. N/F</td>
<td>Unj)sb ugi/LR</td>
<td>Lab Fil) (ID)</td>
<td>oq492.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Inj)ial WMgh./Volume.: 5 mLR</td>
<td>Fi al WMgh./Volume.: 5 mLR</td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD(Lab SampI (ID)</th>
<th>LCSD/680-184440/7F</th>
<th>alysis Balch.</th>
<th>680-184440.</th>
<th>Inj)ume. (ID)</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/ . latin M</td>
<td>Wab</td>
<td>p Balch. N/F</td>
<td>Unj)sb ugi/LR</td>
<td>Lab Fil) (ID)</td>
<td>oq493.dl</td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td>Inj)ial WMgh./Volume.: 5 mLR</td>
<td>Fi al WMgh./Volume.: 5 mLR</td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alyS</th>
<th>LCS)</th>
<th>LCSD)</th>
<th>Lini/</th>
<th>P</th>
<th>P</th>
<th>Lini/</th>
<th>LCS Qual)</th>
<th>LCSDQual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1- . 1chlo 2p2</td>
<td>114U</td>
<td>111.</td>
<td>77 - 122M</td>
<td>2M</td>
<td>30.</td>
<td>1.</td>
<td>30.</td>
<td></td>
</tr>
<tr>
<td>E.lyle. zU</td>
<td>104U</td>
<td>102M</td>
<td>- 116.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI xchlororbu.adi/</td>
<td>100.</td>
<td>9y</td>
<td>2 - 142M</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HI xabo.</td>
<td>125B</td>
<td>119y</td>
<td>34 - 161.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsop2plybe. zU</td>
<td>908.</td>
<td>9y</td>
<td>2 - 121.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- . hyl-2-p2 abo.</td>
<td>12M</td>
<td>120.</td>
<td>40 - 151.</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MBK)I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyl. -buyl e.h.</td>
<td>9y</td>
<td>99y</td>
<td>77 - 121.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl) & p-Xyl)</td>
<td>101.</td>
<td>101.</td>
<td>3 - 118.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naph.3al)</td>
<td>104U</td>
<td>100.</td>
<td>4U-135B</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Bu.nle. zU</td>
<td>110.</td>
<td>108.</td>
<td>4 - 13U</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-P opylbe. zU</td>
<td>105B</td>
<td>107F</td>
<td>0 - 12M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl)</td>
<td>100.</td>
<td>100.</td>
<td>3 - 119y</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isop2plylblue.</td>
<td>104U</td>
<td>102M</td>
<td>3 - 139y</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbc-Buylbe. zU</td>
<td>112M</td>
<td>111.</td>
<td>77 - 12M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyS</td>
<td>5B</td>
<td>2 - 122M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Buylbe. zU</td>
<td>110.</td>
<td>105B</td>
<td>0 - 124U</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Ty aehloroe.hab</td>
<td>107F</td>
<td>104U</td>
<td>9 - 129y</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Ty aehloroe.hab</td>
<td>100.</td>
<td>99y</td>
<td>1 - 12M</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ty aehloroe.h.</td>
<td>92M</td>
<td>90.</td>
<td>7F-12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolue.</td>
<td>104U</td>
<td>104U</td>
<td>1 - 117F</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,2-. ichloroe.h.</td>
<td>90.</td>
<td>92M</td>
<td>72 - 131.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs-1,3-. ichlorop2p2</td>
<td>121.</td>
<td>117F</td>
<td>73 - 12M</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tychlorobe. zU</td>
<td>101.</td>
<td>9y</td>
<td>0 - 135B</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychlorobe. zU</td>
<td>114U</td>
<td>108.</td>
<td>0 - 132M</td>
<td>3M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tychloro.e.hab</td>
<td>109y</td>
<td>106.</td>
<td>7F - 127F</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tychloro.e.hab</td>
<td>111.</td>
<td>108.</td>
<td>75 - 121.</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychloro.e.h.</td>
<td>9y</td>
<td>94U</td>
<td>4 - 115B</td>
<td>4U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tychlorofluorome.hab</td>
<td>110.</td>
<td>114U</td>
<td>5B-149y</td>
<td>3U</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tychlorop2pab</td>
<td>104U</td>
<td>103U</td>
<td>70 - 130.</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tyme.hyIbe. zU</td>
<td>115B</td>
<td>109y</td>
<td>72 - 132M</td>
<td>5B</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tyme.hyIbe. zU</td>
<td>113U</td>
<td>112M</td>
<td>72 - 133U</td>
<td>1.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/ yl ac) ab</td>
<td>118.</td>
<td>121.</td>
<td>10 - 217F</td>
<td>3U</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Report

Sample: LUB ConrouSmpl eV

Method: 8660Bv

Prep Code: 8030Bv

<table>
<thead>
<tr>
<th>LCS Lab Sample ID</th>
<th>LCS 680-184440/F</th>
<th>Analysis Batch</th>
<th>LCS 680-184440</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/c. abixM</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1115B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD Lab Sample ID</th>
<th>LCSD 680-184440/7F</th>
<th>Analysis Batch</th>
<th>LCSD 680-184440</th>
<th>SO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl/c. abixM</td>
<td>Wab</td>
<td>P p Batch. N/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab P pab dl</td>
<td>10/2M2010 1137F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AlyS</th>
<th>LCS (%)</th>
<th>LCSD (%)</th>
<th>Limit/Limit</th>
<th>LCS Qual (%)</th>
<th>LCS Qual (%)</th>
<th>Limit/Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/ yl chloridl</td>
<td>107F</td>
<td>113U</td>
<td>59 - 144U</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl (s, Tolal)</td>
<td>101.</td>
<td>100.</td>
<td>4 - 118.</td>
<td>0.</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:
- **4-Bromo-fluorobenzene (ZU e)**
 - LCS: 103U, LCSD: 99y
 - Limit: 75 - 120
- **4-Bromo-fluorobenzene (hab)**
 - LCS: 908, LCSD: 9y
 - Limit: 75 - 121
- **Toluene - di (Sur)l**
 - LCS: 104U, LCSD: 102M
 - Limit: 75 - 120
Method Bv nk - Bv ch: 680-183416T

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Batch ID</th>
<th>Analyte</th>
<th>Units</th>
<th>Date</th>
<th>Result</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 680-18342M7-1</td>
<td>680-184233U</td>
<td>batch</td>
<td>UJ</td>
<td>10/2M2010 1805B</td>
<td>10.0</td>
<td>U)</td>
<td>10.0</td>
</tr>
<tr>
<td>ab P 19/2010 1618</td>
<td>680-18342M</td>
<td>ablyzed ug/LR</td>
<td>U)</td>
<td>10.0</td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Batch ID</th>
<th>Analyte</th>
<th>Units</th>
<th>Date</th>
<th>Result</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010Cu</td>
<td>E102M2010.csv</td>
<td>Copper</td>
<td>UJ</td>
<td>10/2M2010 1809Y</td>
<td>50.0</td>
<td>U)</td>
<td>50.0</td>
</tr>
<tr>
<td>ab P 19/2010 1618</td>
<td>6010Cu</td>
<td>ablyzed ug/LR</td>
<td>U)</td>
<td>10.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Batch ID</th>
<th>Analyte</th>
<th>Units</th>
<th>Date</th>
<th>Result</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010Cu</td>
<td>E102M2010.csv</td>
<td>Copper</td>
<td>UJ</td>
<td>10/2M2010 1809Y</td>
<td>50.0</td>
<td>U)</td>
<td>50.0</td>
</tr>
<tr>
<td>ab P 19/2010 1618</td>
<td>6010Cu</td>
<td>ablyzed ug/LR</td>
<td>U)</td>
<td>10.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 6010Cu

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Batch ID</th>
<th>Analyte</th>
<th>Units</th>
<th>Date</th>
<th>Result</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010Cu</td>
<td>E102M2010.csv</td>
<td>Copper</td>
<td>UJ</td>
<td>10/2M2010 1809Y</td>
<td>50.0</td>
<td>U)</td>
<td>50.0</td>
</tr>
<tr>
<td>ab P 19/2010 1618</td>
<td>6010Cu</td>
<td>ablyzed ug/LR</td>
<td>U)</td>
<td>10.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mv rimSp8e/V

Mv rimSp8e/DkVp6cv eRecovery Reporu- By ch: 680-183416T

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>abixM</th>
<th>Wab</th>
<th>P p Batch.</th>
<th>680-184233U</th>
<th>Inj/burne.</th>
<th>ID</th>
<th>Valib ICP</th>
</tr>
</thead>
</table>

SD(Lab Sample ID)

<table>
<thead>
<tr>
<th>abixM</th>
<th>Wab</th>
<th>P p Batch.</th>
<th>680-184233U</th>
<th>Inj/burne.</th>
<th>ID</th>
<th>Valib ICP</th>
</tr>
</thead>
</table>

alyS (% c.)

<table>
<thead>
<tr>
<th>S</th>
<th>SD</th>
<th>Limi/</th>
<th>P</th>
<th>P Limi/</th>
<th>S Qual</th>
<th>SD(Qual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92M</td>
<td>90</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>107F</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>103U</td>
<td>101</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>101</td>
<td>99</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>75 - 125B</td>
<td>1</td>
<td>20</td>
<td>4U</td>
<td>4U</td>
</tr>
<tr>
<td>99y</td>
<td>97</td>
<td>75 - 125B</td>
<td>3U</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>109y</td>
<td>107</td>
<td>75 - 125B</td>
<td>2M</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Mv rimSp8e/V

Mv rimSp8e/DkVp6cv eRecovery Reporu- By ch: 680-183416T

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>abixM</th>
<th>Wab</th>
<th>P p Batch.</th>
<th>680-184233U</th>
<th>Inj/burne.</th>
<th>ID</th>
<th>Valib ICP</th>
</tr>
</thead>
</table>

SD(Lab Sample ID)

<table>
<thead>
<tr>
<th>abixM</th>
<th>Wab</th>
<th>P p Batch.</th>
<th>680-184233U</th>
<th>Inj/burne.</th>
<th>ID</th>
<th>Valib ICP</th>
</tr>
</thead>
</table>

alyS (% c.)

<table>
<thead>
<tr>
<th>S</th>
<th>SD</th>
<th>Limi/</th>
<th>P</th>
<th>P Limi/</th>
<th>S Qual</th>
<th>SD(Qual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123U</td>
<td>2M</td>
<td>75 - 125B</td>
<td>1</td>
<td>20</td>
<td>4U</td>
<td>4U</td>
</tr>
</tbody>
</table>

Quy ConrouReV

Method: 8010Cu

Prep6ru on: 8030Cu
MeVod Bv nk - Bv ch: 680-184017U

<table>
<thead>
<tr>
<th>Lab Samp ID</th>
<th>Cl/ abixM</th>
<th>Cl/ ilu.io.</th>
<th>alyS ab.alyzUtil</th>
<th>ab P pab dl</th>
<th>sult)</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 680-184017/1</td>
<td>Wab</td>
<td>1.0</td>
<td>10/2M2010 1207F</td>
<td>10/25/2010 1537F</td>
<td>0.20</td>
<td>U</td>
<td>0.20</td>
</tr>
</tbody>
</table>

MeVod: B470AV

PrepSr on: B470AV

<table>
<thead>
<tr>
<th>Injbume. ID</th>
<th>LEE</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Fil ID</td>
<td>b102M0b.ch</td>
<td></td>
</tr>
<tr>
<td>Injial W Mgh./Volume:</td>
<td>50 mL</td>
<td></td>
</tr>
<tr>
<td>Fi/ al W Mgh./Volume:</td>
<td>50 mL</td>
<td></td>
</tr>
</tbody>
</table>

LUb\ConrouS\mp\& V Bv ch: 680-184017U

<table>
<thead>
<tr>
<th>Lab Samp ID</th>
<th>Cl/ abixM</th>
<th>Cl/ ilu.io.</th>
<th>alyS ab.alyzUtil</th>
<th>ab P pab dl</th>
<th>sult)</th>
<th>% c.)</th>
<th>Limi/</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS 680-184017/2</td>
<td>Wab</td>
<td>1.0</td>
<td>10/2M2010 1211</td>
<td>10/25/2010 1537F</td>
<td>2.50</td>
<td>2.72M</td>
<td>109y</td>
<td>0 - 120</td>
</tr>
</tbody>
</table>

MeVod: B470AV

PrepSr on: B470AV

<table>
<thead>
<tr>
<th>Injbume. ID</th>
<th>LEE</th>
<th>N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Fil ID</td>
<td>b102M0b.ch</td>
<td></td>
</tr>
<tr>
<td>Injial W Mgh./Volume:</td>
<td>50 mL</td>
<td></td>
</tr>
<tr>
<td>Fi/ al W Mgh./Volume:</td>
<td>50 mL</td>
<td></td>
</tr>
</tbody>
</table>
Method Bv nk - Bv ch: 880-1843341

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>B 680-184334/1</th>
<th>Analysis Batch</th>
<th>680-184334U</th>
<th>INR</th>
<th>ID</th>
<th>KONELRB1</th>
<th>Lab File</th>
<th>KONE110277101504C.xlslb</th>
<th>Initial W/V/Volume:</th>
<th>2 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cili/abixM</td>
<td>Wab</td>
<td>P p Batch: N/F</td>
<td></td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/27/2010 1903U</td>
<td>N/F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>analyte</th>
<th>sult</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfab</td>
<td>5.0</td>
<td>U</td>
<td>5.0</td>
</tr>
</tbody>
</table>

LubicunorouVmp&V Bv ch: 880-1843341

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>LCS 680-184334/2M</th>
<th>Analysis Batch</th>
<th>680-184334U</th>
<th>INR</th>
<th>ID</th>
<th>KONELRB1</th>
<th>Lab File</th>
<th>KONE110277101504C.xlslb</th>
<th>Initial W/V/Volume:</th>
<th>2 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cili/abixM</td>
<td>Wab</td>
<td>P p Batch: N/F</td>
<td></td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/27/2010 1903U</td>
<td>N/F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>analyte</th>
<th>sult</th>
<th>QualR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfab</td>
<td>20.0</td>
<td>1.5B</td>
<td>92M</td>
</tr>
</tbody>
</table>

DVpc6v eV Bv ch: 880-1843341

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>0-6.22M-5B</th>
<th>Analysis Batch</th>
<th>680-184334U</th>
<th>INR</th>
<th>ID</th>
<th>KONELRB1</th>
<th>Lab File</th>
<th>KONE110277101504C.xlslb</th>
<th>Initial W/V/Volume:</th>
<th>2 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cili/abixM</td>
<td>Wab</td>
<td>P p Batch: N/F</td>
<td></td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilu.io.</td>
<td>1.0</td>
<td>Un</td>
<td>sb mg/LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab. alyzUdl</td>
<td>10/27/2010 1911.</td>
<td>N/F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>analyte</th>
<th>sult (Qual)</th>
<th>sult</th>
<th>P</th>
<th>Limi/</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfab</td>
<td>12M</td>
<td>12.2M</td>
<td>3U</td>
<td>30.</td>
<td></td>
</tr>
</tbody>
</table>
Chain of Custody Record

Client Contact
- ARCADIS
 - 901 Corporate Center Drive, Suite 300
 - Raleigh, NC 27607
 - 919-854-1282
 - 919-854-5448
- Project Name: UNC Airport Road
- Site: Chapel Hill, NC
- P O # NC000239.0018.00006

Site Contact: Alan Pinnix

Project Manager: Alan Pinnix

Tel/Fax: 919-854-1282

Date: 10/18/10

Carrier: Fed Ex

TestAmerica Laboratories, Inc.

Analysis Turnaround Time
- Calendar (C) or Work Days (W)
- TA 1 If different from Below

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Type</th>
<th>Matrix</th>
<th># of Cont.</th>
<th>VOCs (METHOD 8260B)</th>
<th>Pb (ICP-MS)</th>
<th>Zn (ICP-MS)</th>
<th>Se (ICP-MS)</th>
<th>Sulfate (8289)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>10/18/10</td>
<td>13:15</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-2</td>
<td>10/18/10</td>
<td>12:15</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-3</td>
<td>10/18/10</td>
<td>13:56</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-38</td>
<td>10/18/10</td>
<td>11:15</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-39</td>
<td>10/18/10</td>
<td>11:35</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-14</td>
<td>10/18/10</td>
<td>10:45</td>
<td>GW</td>
<td>GW</td>
<td>5</td>
<td>N X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trip Blank

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Type</th>
<th>Matrix</th>
<th># of Cont.</th>
<th>VOCs (METHOD 8260B)</th>
<th>Pb (ICP-MS)</th>
<th>Zn (ICP-MS)</th>
<th>Se (ICP-MS)</th>
<th>Sulfate (8289)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/18/10</td>
<td></td>
<td>W</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preservation Used:
- 1= Ice
- 2= HCl
- 3= H2SO4
- 4= HNO3
- 5= NaOH
- 6= Other

Possible Hazard Identification:
- Non-Hazard
- Flammable
- Skin Irritant
- Poison B
- Unknown

Sample Disposal:
- Return To Client
- Disposal By Lab
- Archive For
- Months

Special Instructions/QC Requirements & Comments:

Relinquished by:
- [Signature]
 - ARCADIS
 - Date/Time: 10/18/10 1:00
 - Received by: [Signature]
 - Date/Time: 10/19/10 09:34
 - Company: MJSU

Relinquished by:
- [Signature]
 - Company: [Company Name]
 - Date/Time: [Date]
 - Received by: [Signature]
 - Date/Time: [Date]
 - Company: [Company Name]
 - Date/Time: [Date]

Relinquished by:
- [Signature]
<table>
<thead>
<tr>
<th>Question</th>
<th>I/F</th>
<th>N/Ac</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rath: city by either was not measured or, if measured, is 'they or bel/ w y</td>
<td></td>
<td></td>
<td>NAY</td>
</tr>
<tr>
<td>byckgro/ dc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he cooler's custody seyl, if present, is intyct.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>he cooler or stmples dcnont y ppeyr to hbev been compromised or y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>tympered wph.y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symple were received on ice.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Cooler y empertyure is yceptyble.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Cooler y empertyure is recorded.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>COC is present.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>COC is filled out in ink y d legible.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Is the Filled Symple's name present on COC?U</td>
<td></td>
<td></td>
<td>NAY</td>
</tr>
<tr>
<td>here yre no discrep cie s between the stmples IDs on the conty ers y d y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>the COC.y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symple were received with H. ldc g y me.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Symple conty ers hbev legible l/ bels.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Conty ers yre not broken or leyUg.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Symple collection dctimeymes yre proped.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Appropriite stmples conty ers yre used.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Symple bottles yre completely filled.y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>Symple PreservStion Verification</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>here y is sufficient vs. the ill requested y lyses, incl. y y requested y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>MSJMSDdT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOA stmples vsIs dcnont hbev heydsp ce or bubble is <6mm (M4") in y</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>dc meter.y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If necessTry, styff hbev been infor d of y shbrt hbd time or quick yAy yee dsT</td>
<td></td>
<td></td>
<td>ruey</td>
</tr>
<tr>
<td>MultighbsT stmples yre not present.y</td>
<td></td>
<td>NAY</td>
<td></td>
</tr>
<tr>
<td>Symple dcnont re qu're splitting or comp stmp.</td>
<td></td>
<td>NAY</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Job Number: 680-62923-1
Job Description: UNC Airport Road

For:
ARCADIS U.S., Inc.
801 Corporate Center Drive
Suite 300
Raleigh, NC 27607-5073
Attention: Mr. Alan Pinnix

Kathryn Smith
Project Manager I
kathye.smith@testamericainc.com
11/19/2010

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

GC/MS VOA M
Method(s) 8260B: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for four analytes to recover outside criteria for this method when a full list spike is utilized. The LCSD associated with batch 186027 had one analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8260B: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for four analytes to recover outside criteria for this method when a full list spike is utilized. The LCSD associated with batch 186094 had one analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8260B: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for four analytes to recover outside criteria for this method when a full list spike is utilized. The LCSD associated with batch 186055 had one analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

No other analytical or quality issues were noted.

VOA Prep M
No analytical or quality issues were noted.
METHOD SUMMARY:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Lab Location:</th>
<th>Method:</th>
<th>Preparation Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds (GC/MS)</td>
<td>TAL SAV2</td>
<td>SWJ4, 8.2B2</td>
<td></td>
</tr>
<tr>
<td>Purg2 and T2p2</td>
<td>TAL SAV2</td>
<td>SWJ4, 5030B2</td>
<td></td>
</tr>
</tbody>
</table>

Lab References:

TAL SAV = T2stAmerica Savannah.

Method References:

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Method</th>
<th>Analyst</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sy 846 8260Bb</td>
<td></td>
<td>Beyrden, Remy</td>
<td>RB</td>
</tr>
<tr>
<td>SW846 8260Bb</td>
<td></td>
<td>r, Carolyn</td>
<td>CLb</td>
</tr>
<tr>
<td>Lab Sa: ple IDe</td>
<td>Client Sa: ple IDe</td>
<td>Client: atrix2</td>
<td>Date/Time: Sa: pledb</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>680-62923-1b</td>
<td>SW-3b</td>
<td>Waterb</td>
<td>11/02/2010 1000b</td>
</tr>
<tr>
<td>680-62923-2b</td>
<td>SW-2b</td>
<td>Waterb</td>
<td>11/02/2010 1010b</td>
</tr>
<tr>
<td>680-62923-3b</td>
<td>SW-4</td>
<td>Waterb</td>
<td>11/02/2010 1100b</td>
</tr>
<tr>
<td>680-62923-4</td>
<td>SW-5c</td>
<td>Waterb</td>
<td>11/02/2010 1105c</td>
</tr>
<tr>
<td>680-62923-5c</td>
<td>SW-6b</td>
<td>Waterb</td>
<td>11/02/2010 1130b</td>
</tr>
<tr>
<td>680-62923-6l</td>
<td>MW-36l</td>
<td>Waterl</td>
<td>11/02/2010 1409b</td>
</tr>
<tr>
<td>680-62923-7l</td>
<td>MW-4l</td>
<td>Waterl</td>
<td>11/02/2010 1410l</td>
</tr>
<tr>
<td>680-62923-8l</td>
<td>MW-30l</td>
<td>Waterl</td>
<td>11/02/2010 1500l</td>
</tr>
<tr>
<td>680-62923-10l</td>
<td>MW-5l</td>
<td>Waterl</td>
<td>11/02/2010 1515l</td>
</tr>
<tr>
<td>680-62923-12l</td>
<td>MW-35l</td>
<td>Waterl</td>
<td>11/02/2010 1555l</td>
</tr>
<tr>
<td>680-62923-13l</td>
<td>MW-33l</td>
<td>Waterl</td>
<td>11/02/2010 1636l</td>
</tr>
<tr>
<td>680-62923-14l</td>
<td>MW-25l</td>
<td>Waterl</td>
<td>11/03/2010 1015l</td>
</tr>
<tr>
<td>680-62923-16l</td>
<td>MW-11l</td>
<td>Waterl</td>
<td>11/03/2010 1140l</td>
</tr>
<tr>
<td>680-62923-17l</td>
<td>MW-9l</td>
<td>Waterl</td>
<td>11/03/2010 1335l</td>
</tr>
<tr>
<td>680-62923-18l</td>
<td>MW-6l</td>
<td>Waterl</td>
<td>11/03/2010 1425l</td>
</tr>
<tr>
<td>680-62923-19l</td>
<td>MW-7l</td>
<td>Waterl</td>
<td>11/03/2010 1435l</td>
</tr>
<tr>
<td>680-62923-20l</td>
<td>SRW-1l</td>
<td>Waterl</td>
<td>11/03/2010 1600l</td>
</tr>
<tr>
<td>680-62923-21l</td>
<td>SRW-2l</td>
<td>Waterl</td>
<td>11/03/2010 1610l</td>
</tr>
<tr>
<td>680-62923-22l</td>
<td>SRW-3l</td>
<td>Waterl</td>
<td>11/03/2010 1620l</td>
</tr>
<tr>
<td>680-62923-23l</td>
<td>DRW-1l</td>
<td>Waterl</td>
<td>11/03/2010 1630l</td>
</tr>
<tr>
<td>680-62923-24l</td>
<td>DRW-2l</td>
<td>Waterl</td>
<td>11/03/2010 1640l</td>
</tr>
<tr>
<td>680-62923-25l</td>
<td>DRW-3l</td>
<td>Waterl</td>
<td>11/03/2010 1650l</td>
</tr>
<tr>
<td>680-62923-26l</td>
<td>MW-12l</td>
<td>Waterl</td>
<td>11/04/2010 0920l</td>
</tr>
<tr>
<td>680-62923-30l</td>
<td>MW-1I</td>
<td>Waterl</td>
<td>11/04/2010 1155l</td>
</tr>
<tr>
<td>680-62923-31l</td>
<td>DUP-1l</td>
<td>Waterl</td>
<td>11/04/2010 0000l</td>
</tr>
<tr>
<td>680-62923-33l</td>
<td>MW-3l</td>
<td>Waterl</td>
<td>11/04/2010 1412l</td>
</tr>
<tr>
<td>680-62923-34l</td>
<td>MW-14l</td>
<td>Waterl</td>
<td>11/05/2010 0830l</td>
</tr>
<tr>
<td>680-62923-35l</td>
<td>MW-23l</td>
<td>Waterl</td>
<td>11/05/2010 1235l</td>
</tr>
<tr>
<td>680-62923-36l</td>
<td>MW-17l</td>
<td>Waterl</td>
<td>11/05/2010 1350l</td>
</tr>
<tr>
<td>680-62923-37l</td>
<td>VER-1l</td>
<td>Waterl</td>
<td>11/05/2010 1045l</td>
</tr>
<tr>
<td>680-62923-38l</td>
<td>VER-2l</td>
<td>Waterl</td>
<td>11/05/2010 1100l</td>
</tr>
<tr>
<td>680-62923-39l</td>
<td>VER-3l</td>
<td>Waterl</td>
<td>11/05/2010 1115l</td>
</tr>
<tr>
<td>680-62923-40l</td>
<td>VER-4l</td>
<td>Waterl</td>
<td>11/05/2010 1130l</td>
</tr>
<tr>
<td>680-62923-41l</td>
<td>MW-16l</td>
<td>Waterl</td>
<td>11/05/2010 1540l</td>
</tr>
<tr>
<td>680-62923-42l</td>
<td>Trip Blankl</td>
<td>Waterl</td>
<td>11/05/2010 0000l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA rod:</th>
<th>8260Bl</th>
<th>Anl ysis Bl ch: 680-18599#b</th>
<th>Instrument ID:</th>
<th>Mso21</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl ion:</td>
<td>5030Bl</td>
<td></td>
<td>L2b File ID:</td>
<td>o1526.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td>Init I l ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di Anl yzb:</td>
<td>11/12/10 1231</td>
<td></td>
<td>Fin I l ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di PrepTrel:</td>
<td>11/12/10 1231</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Q u lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetral chloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetral chloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroproplnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-TrichloropropTnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropTnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromothnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Tol</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>1,2-DichloropropTnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,2-DichloropropTnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-phl nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5</td>
</tr>
<tr>
<td>Benztl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromofil</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromothelbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Cl rbon tetrl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethael</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-DichloropropTnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromothelbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Methyl tert-butyl ethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Methyl 2-mercaptoene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.9l</td>
<td>UI</td>
<td>0.9l</td>
</tr>
<tr>
<td>Vinyl chlorides</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>m-Xylene, Total</td>
<td>0.6l</td>
<td>UI</td>
<td>0.6l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>surrogate</th>
<th>%Recl</th>
<th>Quality</th>
<th>Acceptor Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>101l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>102l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

Methodology

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Instrument ID</th>
<th>MSO2 ID</th>
<th>L2b File ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrePrel</td>
<td>5030Bl</td>
<td></td>
<td>o1528.d,</td>
</tr>
<tr>
<td>Dilution</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil</td>
<td>An</td>
<td>ybd</td>
<td>11/12/0010 1259l</td>
</tr>
<tr>
<td>Dil PrePrel</td>
<td>11/12/0010 1259l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>An</th>
<th>yb</th>
<th>Result (ug/L)</th>
<th>Qu</th>
<th>lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethine, Totl</td>
<td>.0l</td>
<td>UI</td>
<td></td>
<td>.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>2-Butyne nonel</td>
<td>10l</td>
<td>UI</td>
<td></td>
<td>10l</td>
<td></td>
</tr>
<tr>
<td>-C-9trotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td></td>
<td>10l</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>4-MA hyd-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td></td>
<td>10l</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>5l</td>
<td>UI</td>
<td></td>
<td>5l</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Bromofom</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Cl rbn disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td></td>
<td>.0l</td>
<td></td>
</tr>
<tr>
<td>Cl rbn tetri chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Chlorofom</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td></td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td></td>
<td>10l</td>
<td></td>
</tr>
</tbody>
</table>
Analytical Data

Client: ARCADIS U.S., Inc.

Client Sample ID:M SW-2M
L2b SI mp e ID:I 680-62923-2I
Client MA rix:I ri

8260B Volatile Organic Compounds (GC/MS)

MA hod: 8260B
Anlysis Bl ch: 680-18599#b
Instrument ID:I
MOS2I

<table>
<thead>
<tr>
<th>PrepTrl ion:I</th>
<th>File ID:I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrel:</td>
<td>5030Bl</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
</tr>
<tr>
<td>Anly yzebd:i</td>
<td>1/12/0010 1259l</td>
</tr>
<tr>
<td>PrepTrel:i</td>
<td>1/12/0010 1259l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anly yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>Ul</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chloride,</td>
<td>5.0l</td>
<td>Ul</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>.0l</td>
<td>Ul</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha ene</td>
<td>5.0l</td>
<td>Ul</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-t Butylbenzene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetra chlorothlene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>Ul</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>Ul</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>Ul</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrog: %Rec
4-Bromofluorobenzene	87l
Dibromofluoromethane	7l
Toluene-d8 (Surr)l	103l

AccepT nce Limits:

- 75 - 120l
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethan</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethan</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethan</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethan</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethan</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane, Toluene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hex nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-p-toluene nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI brom disulfide</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI brom tetra chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloriform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Hek2Chlorobutyl dienel</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>MA hy t-Butyl ethyl</td>
<td>10.01</td>
<td>UI</td>
<td>10.01</td>
</tr>
<tr>
<td>MA hyene Chloride</td>
<td>5.01</td>
<td>UI</td>
<td>5.01</td>
</tr>
<tr>
<td>m-Xyene & p-Xyene enel</td>
<td>0.01</td>
<td>UI</td>
<td>0.01</td>
</tr>
<tr>
<td>Naphtha ene</td>
<td>5.01</td>
<td>UI</td>
<td>5.01</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>o-Xyene enel</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>2,3-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>2,3,5-Toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>2,3,5,6-Toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0.01</td>
<td>UI</td>
<td>0.01</td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.01</td>
<td>UI</td>
<td>1.01</td>
</tr>
<tr>
<td>Xy enes, Total</td>
<td>0.01</td>
<td>UI</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89</td>
<td>75 - 120</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>8</td>
<td>75 - 121</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>10</td>
<td>75 - 120</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:1</th>
<th>8260Bl</th>
<th>Anl ysis Bl ch: 680-18599#b</th>
<th>Instrument ID:1</th>
<th>MSO2I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTli:1 ion:1</td>
<td>5030Bl</td>
<td>L2b File ID:1</td>
<td>o154b d.</td>
<td></td>
</tr>
<tr>
<td>Dilution:1</td>
<td>1.0l</td>
<td>Initi ll</td>
<td>5 mlL2</td>
<td></td>
</tr>
<tr>
<td>Di Anl yzbd:1</td>
<td>11/12/010 16191</td>
<td>Fin ll</td>
<td>5 mlL2</td>
<td></td>
</tr>
<tr>
<td>Di PrepTreb:1</td>
<td>11/12/010 16191</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Chloro propane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromofom</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030B</td>
<td>L2b File ID:</td>
<td>o154b d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initl I I</td>
<td>ig h Volume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/12/010 1619l</td>
<td>Fin I I</td>
<td>ig h Volume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTret:</td>
<td>11/12/010 1619l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anly yb</th>
<th>Result (ug/L)</th>
<th>Qulifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hye ene Chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>N phtha ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetra chlorothèn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothèn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloro propa ne</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qulifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>84b</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>5l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrr)</td>
<td>100l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA Hod:i</th>
<th>8260Bl</th>
<th>Anlysis Bl ch: 680-186273l</th>
<th>Instrument ID:i</th>
<th>MSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:i</td>
<td>5030Bl</td>
<td>L2b File ID:i</td>
<td>o1706.d,</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dilution:i</td>
<td>1.0l</td>
<td>Initil</td>
<td></td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anly yzbd:i</td>
<td>11/16/010 13 40l</td>
<td>Finil</td>
<td></td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTrel:i</td>
<td>11/16/010 13 40l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anly yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Chloro ethene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hex nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-pent nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorormethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorormethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloro ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID: o1706.d,</td>
<td>Init l Ig</td>
<td>mL2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Ig hVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/16/0910 13 40l</td>
<td>Fin I Ig hVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreat:</td>
<td>11/16/0910 13 40l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA-hyene Chloride,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xyene & p-Xyene ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N-phthale ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>α-Xyene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rlns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rlns-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>%Recl</th>
<th>Quality</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>75 - 121l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetr chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetr chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C tetrololene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hexanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI ribon disulfide,</td>
<td>.1l</td>
<td>UI</td>
<td>.1l</td>
</tr>
<tr>
<td>CI ribon tetrol chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Heptachlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-hexyl tert-butyl ethyl</td>
<td>61l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA-hexyl Chloride, n-Hexene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xylen & p-Xylen enol</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rII-1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rII-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Vinyl chlorides</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>4b</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>MA hod:</td>
<td>8260Bl</td>
<td>Anl ysis Bl ch: 680-18599#b</td>
<td>Instrument ID:</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1538.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Ini li g haVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/12/010</td>
<td>Fin li g haVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di PrepTreat:</td>
<td>11/12/010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethyl benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo ethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,3,5,6-Tetra chloro benzene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But ynone</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C hloro toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hex ynone</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chloro toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl 2-pyridine ynone</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonol</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromo benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromo chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromo dichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoformyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromo methane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfide</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetra chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloro benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloro ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloro formyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloro methane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloro ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromo chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromo methane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichloro difluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-ter-butyl ethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-hyene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy-en & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N-phtalene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrogates
- 4-Bromofluorobenzene: 89I
- Dibromofluoromethane: 7I
- Toluene-d8 (Surr): 101I

Acceptance Limits:
- 75 - 120I
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu. lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichlorooethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethynel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloropropene, Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-C dlorothulenc</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He xane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chloroethyol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-p-tolyl nonene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfide,</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Cl rbon tetra chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10.1l</td>
<td>UI</td>
<td>10.1l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hexachlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-hexyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA-hexyl ether</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xylen & p-Xylen ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>α-Xylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-l,1,2,3,4-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-l,1,3,4-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorides</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xylenes total</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrogate

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>8l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>103l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qu</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Chloroethene, Total</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Cyclohexane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Heptane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetone</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
</tbody>
</table>
Analytical DataM

Client: ARCADIS U.S., Inc.

Client Sample ID: M - W-31

L2b SI mp e ID: 680-62923-91

Client MA rix: rl

DI Sl mp T d: 11/02/010 15011

DI Re cei vbd: 11/06/010 103 4b

8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Anlysis Bl ch: 680-186055l</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dil</th>
<th>Anlyzbd:</th>
<th>11/13/010 15131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dil</td>
<td>PrepTreb:</td>
<td>11/13/010 15131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>α-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenee</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r l ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r l ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>AccepT nce Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>87l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethene</td>
<td>0l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>3l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1573.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initial kg h Volume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil Anl y zbd:</td>
<td>11/13/l010 15 41l</td>
<td>Final kg h Volume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/13/l010 15 41l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Quifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra-chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra-chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethenel</td>
<td>1.0l</td>
<td>U *l</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Tot</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hy-l-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetri chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phthla enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetri chloroethinbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethinbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropinbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethinbel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Tolu</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Rec</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>87l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>88l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>3l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-62923-11

Client Sample ID:M W-5M

L2b Site ID: 680-62923-10I

Client MA rix: rl

Dilution: 1.0I

Dil Anl yzd: 11/13/010 15 41l

Dil PrepTreb: 11/13/010 15 41l

8260B file ID: o1573.1

Init I ig hVolume: 5 mL2

Fin I ig hVolume: 5 mL2

TestAmerica SavannahM Page 25 of 142
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl ion:</td>
<td>5030Bl</td>
<td>PrepTnl:</td>
<td>11/13/07 10 1610l</td>
<td>Dil:</td>
<td>1.0l</td>
<td>Dil:</td>
<td>1.0l</td>
<td>Dil:</td>
<td>1.0l</td>
<td>Dil:</td>
<td>1.0l</td>
<td>Dil:</td>
<td>1.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Tria chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Tria chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Tria chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro prop Tnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropane Tnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dibromo benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dibromo benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,4-Dichloro prop Tnle</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chloro toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorinated sulfides</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
<tr>
<td>Chlorinated tetra chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloro ethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTri ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1575.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initial</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/13/010 1610l</td>
<td>Final</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/13/010 1610l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rL ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rL ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>1l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>1l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>4b</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA Hod:</th>
<th>8260Bl</th>
<th>Anal ysis Bl ch: 680-186057l</th>
<th>Instrument ID:</th>
<th>MS02l</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1588.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initl l</td>
<td>ig lbVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil</td>
<td>Analyz:</td>
<td>11/13/010 1916l</td>
<td>Fin</td>
<td>ig lbVolume:</td>
</tr>
<tr>
<td>Dil</td>
<td>PrepTret:</td>
<td>11/13/010 1916l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethyl, Tolu</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethyl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But, none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x, none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hy-2-pTol none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Aceton</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl ron disulfide</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl ron tetra chlor,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzen</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bli</td>
<td>L2b File ID: o1588.d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Ini II ig hVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dl Anl y2bd:</td>
<td>11/13/010 1916l</td>
<td>Fin II ig hVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dl PrepTrel:</td>
<td>11/13/010 1916l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-4yl tert-butyl ethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-4ylyl Chloride,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-XY ene & p-XY enel</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
<tr>
<td>Phthale enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-XY enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetri chlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Total</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Bromofluorobenzene</td>
<td>86l</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>7l</td>
<td>75 - 121l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>104b</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion/l</td>
<td>5030Bl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution/l</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di Anl ysb/d:</td>
<td></td>
<td>11/13/010 1639l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil PrepTrl/l</td>
<td></td>
<td>11/13/010 1639l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anl yb</td>
<td>Result (ug/L)</td>
<td>Qu lifierl</td>
<td>RL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrl chloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrl chloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethnel</td>
<td>1.0l</td>
<td>U*I</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethnel, Totl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MA hydr-2-pro nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl rbon tetrl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

MA hod: 8260Bl
Analysis Bl: ch: 680-186055l
Instrument ID:
MSOL

PrepTrl ion:	5030Bl	L2b File ID:	o1577.d,	
Dilution:	1.0l	Init I I	hgVolume:	5 mL
Dil Anl yzbd:	11/13/0010 1639l	Fin I I	hgVolume:	5 mL
Dil PrepTreb:	11/13/0010 1639l			

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu liferl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyln</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qu liferl</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>88l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)l</td>
<td>5l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C1 hototoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-pthi nonene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rob disulfide,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rob tetra chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis, 1-3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal. yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobut action diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA-hyd tert-butyl ethanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hydene Chloride,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phthae ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isoproxy toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetra chloroethine</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-ns-1,2-Dichloroethine</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethine</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cold</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Total</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>0l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td></td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>5l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
Analytical DataM

Client: ARCADIS U.S., Inc.

Job Number: 680-62923-11

Client Sample ID: W-26M

L2b Smp e ID: 680-62923-15l

Client MA rix: rl

Date: 11/03/010 1120l

Received: 11/06/010 103 4b

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Anl ysis Bl ch: 680-186605l</th>
<th>Instrument ID:</th>
<th>MSO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1583.d.</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initi l l ig hVolume:</td>
<td></td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/13/010 180 4b</td>
<td>Fin l l ig hVolume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di PrepTreb:</td>
<td>11/13/010 180 4b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qulifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloro ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloro ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>U*I</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloro propene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloro benzen</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzen</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethy lbenzen</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropro pene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromom ethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Tot</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetra chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
˛

Analytical DataM

Client: ARCADIS U.S., Inc.
Job Number: 680-62923-11

Client Sample ID: W-26M
L2b Sl mp e ID: 680-62923-15l
Client MA rix: rl

8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1583.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initl l</td>
<td>mL2</td>
<td></td>
</tr>
<tr>
<td>DI Anl yzbd:</td>
<td>11/13/010 180 4b</td>
<td>ig hlVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>DI PrepTrel:</td>
<td>11/13/010 180 4b</td>
<td>Fi l</td>
<td>mL2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogl</th>
<th>%Recl</th>
<th>Qu lifierl</th>
<th>AccepT nce Limitsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromoffuorobenzene</td>
<td>89l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromoffuoromethene</td>
<td>1l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)l</td>
<td>5l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>

TestAmerica SavannahM
Page 35 of 142
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Quifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetral chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetral chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-TrichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloethabel</td>
<td>0.5l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloethene, Totl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzinel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MAnyl2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Benznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>0.1</td>
<td>UI</td>
<td>0.1</td>
</tr>
<tr>
<td>Cl rbon tetl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethexel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>0.0l</td>
<td>EL</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobuti dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethrl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isoproy toluenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrl chloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothbenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>3i</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethabe</td>
<td>1l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>5i</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

MA hod: 8260Bl
Anl ysis Bl ch: 680-186147l
Instrument ID: L2b File ID: o1597.d,
MSOI:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl</td>
<td>5030Bl</td>
<td>L2b File ID: o1597.d,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dilution: 5.0l
Run Typ: DL2
Fin List:

<table>
<thead>
<tr>
<th>Dil</th>
<th>Anl yzd:</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/14/l010 1 400l</td>
<td>1,1,1,2-Tetra chloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,1-Chloroethylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloro propylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2,4-trimethylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Chlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Chloroethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,3,5-trimethylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloropropylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichloropropylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>-But nonol</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
<tr>
<td>He x nonol</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
<tr>
<td>4-MA hyl-2-pTol nonol</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>130l</td>
<td>UI</td>
<td>130l</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>CI rbon disulfide</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
</tr>
<tr>
<td>CI rbon tetra chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Chloroethene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>cis,1,2-Dichloroethene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>cis,1,3-Dichloropropylene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>100l</td>
<td>UI</td>
<td>50l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTri ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1597.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>5.0l</td>
<td>InitI l</td>
<td>ig htVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/14/010 1 400l</td>
<td>Run TypTI</td>
<td>DL2</td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/14/010 1 400l</td>
<td>Fin I I</td>
<td>ig htVolume:</td>
<td>5 mL2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu ifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>MA n tert-butyl ethyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>MA n ene Chloride</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>N phtha ene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%RecI</th>
<th>Qu ifierl</th>
<th>AccepT nce Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>4b</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>86l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrg)</td>
<td>6l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Quifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethnol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Chloroethproptnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroethopropnec</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethabene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hex nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA Hyd-2-PtTf nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethylab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rbon disulfid</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rbon tetri chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethylab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>65l</td>
<td>10l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1599.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Ini Volume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>DI</td>
<td>11/14/’010 1 4b</td>
<td>Fin Volume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>DI</td>
<td>11/14/’010 1 4b</td>
<td>PrepTreat:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ana</th>
<th>Result (ug/L)</th>
<th>Qu</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phth a enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetral chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloro propane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>XY enes, Tol</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Rec</th>
<th>Qu</th>
<th>Alccept nce Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Brhomfluorobenzene</td>
<td>75 - 120 l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89l</td>
<td>75 - 121 l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>5l</td>
<td>75 - 120 l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl ion:</td>
<td>5030Bl</td>
<td>L2b File ID: o1709.d,</td>
<td>L2b File ID:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>50l</td>
<td>Intii ll</td>
<td>ig htVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/16/010 1 44b</td>
<td>Fin ll</td>
<td>ig htVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di PrepTrel:</td>
<td>11/16/010 1 44b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yzbd</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,1-Trichloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,2-Trichloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Dichloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Dichloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Chloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2,3-Trichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2,3-Trichloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloro ethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloro ethane, Totl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3,5-Trichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3-Dichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3-Dichloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,4-Dichloro benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>2-Dichloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>-Butl nonel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>4-MA hyl-2-pTol nonel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Acetone</td>
<td>1300l</td>
<td>UI</td>
<td>1300l</td>
</tr>
<tr>
<td>Benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Cl rbon tetl chlorid,</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>cis-1,3-Dichloro propyl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>400l</td>
<td>UI</td>
<td>50l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>501</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Hek2chlorobuti dienel</td>
<td>501</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>501</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyl</td>
<td>500i</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>100i</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>N Propylbenzene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>sec-Butybenzene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Toluene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethane</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloro propane</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichoroethene</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>100i</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>50i</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>100i</td>
<td>UI</td>
<td>100l</td>
</tr>
</tbody>
</table>

Surrog: 4-Bromofluorobenzene 5i 75 - 120l Dibromofluoromethane 88i 75 - 121l Toluene-d8 (Surr)
8260B Volatile Organic Compounds (GC/MS)

MA hod: 8260Bl
Anl ysb: 8260Bl ch: 680-186273l
PrepTnl ion: 5030Bl
Dilution: 50l

Result (ug/L) Qu lifier RL2

1,1,1,2-Tetr chloroethanel 50l UI 50l
1,1,1-Trichloroethanel 50l UI 50l
1,1,2,2-Tetr chloroethanel 50l UI 50l
1,1,2-Trichloroethanel 50l UI 50l
1,1-Dichloroethanel 50l UI 50l
1,1-Dichloroethneln 50l UI 50l
1,1-Dichloroproplnel 50l UI 50l
1,2,3-Trichlorobenznel 50l UI 50l
1,2,3-TrichloropropTnel 50l UI 50l
1,2,4-Trichlorobenznel 50l UI 50l
1,2,4-Trimethylbenznel 50l UI 50l
1,2-Dibromo-3-ChloropropTnel 50l UI 50l
1,2-Dibromothanel 50l UI 50l
1,2-Dichlorobenznel 50l UI 50l
1,2-Dichloroethanel 50l UI 50l
1,2-Dichloroethneln, Totl 100l UI 100l
1,2-DichloropropTnel 50l UI 50l
1,3,5-Trimethylbenznel 50l UI 50l
1,3-Dichlorobenznel 50l UI 50l
1,3-DichloropropTnel 50l UI 50l
1,4-Dichlorobenznel 50l UI 50l
2-Dic hloropropTnel 50l UI 50l
-Butl nonel 500l UI 500l
-C hlorotoluene 50l UI 50l
-He x nonel 500l UI 500l
4-Chlorotoluene 50l UI 50l
4-MA hy-2-pTnl nonel 500l UI 500l
Acetonel 1300l UI 1300l
Benzenel 50l UI 50l
Bromobenznel 50l UI 50l
Bromochloromethabel 50l UI 50l
Bromodichloromethabel 50l UI 50l
Bromoforml 50l UI 50l
Bromomethanel 50l UI 50l
Cl rbon disulfid, 100l UI 100l
Cl rbon tetl chlorid, 50l UI 50l
Chlorobenznel 50l UI 50l
Chloroethanel 50l UI 50l
Chloroforml 50l UI 50l
Chloromethanel 50l UI 50l
cis-1,2-Dichloroethanel 50l UI 50l
cis-1,3-DichloropropTnel 50l UI 50l
Dibromochloromethabel 50l UI 50l
Dibromomethabel 50l UI 50l
Dichlorodifluormethabel 50l UI 50l
Diethyl etherl 3300l 500l

TestAmerica SavannahM Page 44 of 142
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>W-7M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client MA ID:</td>
<td>rI</td>
</tr>
<tr>
<td>L2b Sl mp e ID:</td>
<td>680-62923-19l</td>
</tr>
<tr>
<td>Di Sl mpT d:</td>
<td>11/03/0101 435l</td>
</tr>
<tr>
<td>Di Recev b:</td>
<td>11/06/0101 103 4b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>8260Bl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Bl: ch: 680-186273l</td>
<td></td>
</tr>
<tr>
<td>Instrument ID:</td>
<td>MSOI</td>
</tr>
<tr>
<td>L2b File ID:</td>
<td>01714.d,</td>
</tr>
<tr>
<td>Ini</td>
<td>I</td>
</tr>
<tr>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Fin</td>
<td>I</td>
</tr>
<tr>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>2-Chlorobutadiene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>MAH</td>
<td>Chloride,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>n-Xylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Styrene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Toluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>b-naphthalene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Vinyl I</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Ree</th>
<th>Quality</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>1I</td>
<td>75 - 120I</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89I</td>
<td>75 - 121I</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surf)</td>
<td>5I</td>
<td>75 - 120I</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Dilution</th>
<th>Instrument ID</th>
<th>MSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td>L2b File ID: o1710.d</td>
<td>5 mL2</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloroacetoacetone</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroacetoacetone</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroacetoacetone</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.5l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td>5l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI Sulfide</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI Tetrachloride</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>6.5l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>1.0l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>o1710.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td></td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di: Anl yzbd:</td>
<td>11/16/010 1503l</td>
<td>Fin Il: ig hlVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Di: PrepTreb:</td>
<td>11/16/010 1503l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu ifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyt tert-butyl ethile</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy enzyme Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy enzyme & p-Xy ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy tolenenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichoroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogl</th>
<th>%Recl</th>
<th>Qu ifierl</th>
<th>AccepT nce Limitsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzenel</td>
<td>0l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td></td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>3l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Anl yb</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetr chloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetr chloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Dichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Dichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethanel</td>
<td>452l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethine, Totl</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
<td></td>
</tr>
<tr>
<td>1,2-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenznel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenznel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,3-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenznel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>2,2-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>-But nonel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>-He x nonel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>4-MA hy1-2-pro</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Acetonel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Bromobenznel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Bromomethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>CI rbon disulfid,</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
<td></td>
</tr>
<tr>
<td>Cl rbon tetri chlorid,</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Chlorobenznel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Chloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Chloromethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Dibromomethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethanel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1000l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTli ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0126.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>0l</td>
<td>Initl l</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil Anlyzd:</td>
<td>11/12</td>
<td>1915l</td>
<td>Fin l</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTreated:</td>
<td>11/12</td>
<td>1915l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>MA hyd Chloride</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
</tr>
<tr>
<td>N phtha ene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Tetryl chloroethene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>rI ns-1,2-Dichoroethene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>rI ns-1,3-Dichloroethene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>103l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>4b</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surf)</td>
<td>108l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>MA Hod:</td>
<td>8260BI</td>
<td>Anl ysb:</td>
<td>Dilution:</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>10l</td>
<td>11/12/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra-2-chloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra-2-chloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>2-Dichloropropane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-Butyl nonel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-C2H5C6H4</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-He nonel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Benzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>440l</td>
<td></td>
<td>100l</td>
</tr>
<tr>
<td>Anal. yb</td>
<td>Result (ug/L)</td>
<td>Quifierl</td>
<td>RL2</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Hek2chlorobutadiene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>MA hyd ene Chloride</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>0l</td>
<td>0l</td>
<td></td>
</tr>
<tr>
<td>N-Phthale ene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Styrene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Tetrachlorehvethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Toluene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Surrog</td>
<td>102l</td>
<td>UI</td>
<td>75 - 120l</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>6l</td>
<td>75 - 121l</td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>107l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Anl ysb:</th>
<th>Result (ug/L)</th>
<th>Qu lifiel</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl</td>
<td>ion: 5030Bl</td>
<td>ysb: 11/12/2010 2013I</td>
<td>1,1,1,2-Tetra chloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td>Dilution:</td>
<td>100l</td>
<td>PrepTnl: 11/12/2010 2013I</td>
<td>1,1,1-Chloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td>Instrument ID:</td>
<td>L2b File ID: p0132.d,</td>
<td></td>
<td>1,1,2,2-Tetra chloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td>Ig hVolume: 5 mL2</td>
<td></td>
<td>1,1,2-Chloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,1-Dichloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,1-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,1-Chloropropane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dibromoethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dichloroethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dichloroethene, Totl</td>
<td>00l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3-Dichloropropane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,2-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,2-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,3-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-Butyl nonene</td>
<td>1000l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-C4-Hexene</td>
<td>1000l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Chloro toluene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Methyl-2-pyridine nonel</td>
<td>1000l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetone</td>
<td>500l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromochloromethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromodichloromethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromoform</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromoform</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chloroform</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cis,1,2-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibromochloromethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibromomethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>100l</td>
<td>UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diethyl ether</td>
<td>3900l</td>
<td>UI</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyl</td>
<td>10000</td>
<td>UI</td>
<td>1000</td>
</tr>
<tr>
<td>MA hy ene Chlorid</td>
<td>500</td>
<td>UI</td>
<td>500</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enol</td>
<td>0</td>
<td>UI</td>
<td>0</td>
</tr>
<tr>
<td>N-Phtha enel</td>
<td>500</td>
<td>UI</td>
<td>500</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>N-Propylibenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>α-Xy enel</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Tetr chloroethene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Toluene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>rl ns-1,2-Dichoroethene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0</td>
<td>UI</td>
<td>0</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>UI</td>
<td>100</td>
</tr>
<tr>
<td>Xy enes, Total</td>
<td>0</td>
<td>UI</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recr</th>
<th>Qualifier</th>
<th>AccepT nce Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td></td>
<td></td>
<td>75 - 1200</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>6i</td>
<td></td>
<td>75 - 1211</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>104b</td>
<td></td>
<td>75 - 1200</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl</td>
<td>ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0134_d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initl I I</td>
<td>ig h Volume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>DI</td>
<td>Anl yzbd:</td>
<td>11/12/010 20 43l</td>
<td>Fin I</td>
<td>ig h Volume:</td>
</tr>
<tr>
<td>DI</td>
<td>PrepTnl:</td>
<td>11/12/010 20 43l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qty</th>
<th>Rl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetrani chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrani chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-p-tol nonel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rbon tetri chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>40</td>
<td>UI</td>
<td>1.0l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Anl ysb:</th>
<th>11/12/10 20:43</th>
<th>Dil</th>
<th>1.0l</th>
<th>Anl yzb:</th>
<th>11/12/10 20:43</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>ch: 680-186031</td>
<td>L2b File ID:</td>
<td>p0134.d,</td>
<td>Init</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td>Fin</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>QC</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hec2chlorobutl dieneel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N. phth enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetral chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tolueneu</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r1 ns-1,2-Dichloroethine</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r1 ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroetene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, TOTL</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>QC</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>100l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>100l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>103l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Substance Description</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0l</td>
<td>UI</td>
<td>0.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-Cyclohexanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hexanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>U</td>
<td>5</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
˛

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 680-62923-11

<table>
<thead>
<tr>
<th>Client Sample ID/M</th>
<th>DRW-3M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2b Si mp e ID/I</td>
<td>680-62923-25I</td>
</tr>
<tr>
<td>Client MA rix/I</td>
<td>rl</td>
</tr>
<tr>
<td>Di</td>
<td>Sl mpT d: 11/03/010 1650I</td>
</tr>
<tr>
<td>Di</td>
<td>Receivd: 11/06/010 103 4b</td>
</tr>
</tbody>
</table>

8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>MA hod/I</th>
<th>8260Bl</th>
<th>Anl ysis Bl ch: 680-186027I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion/I</td>
<td>5030Bl</td>
<td>Instrument ID/I</td>
</tr>
<tr>
<td>Dilution/I</td>
<td>1.0I</td>
<td>MSP</td>
</tr>
<tr>
<td>Di</td>
<td>Anl yzbd/I</td>
<td>11/12I010 1802I</td>
</tr>
<tr>
<td>Di</td>
<td>PrepTreb/I</td>
<td>11/12I010 1802I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>MAhyl tert-butyl ethenl</td>
<td>10I</td>
<td>UI</td>
<td>10I</td>
</tr>
<tr>
<td>MAhy ene Chlorid,</td>
<td>5.0I</td>
<td>UI</td>
<td>5.0I</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0I</td>
<td>UI</td>
<td>.0I</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0I</td>
<td>UI</td>
<td>5.0I</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>sec-Butylbenzenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Tetri chlorothenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Trichloroethenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Trichlorofluoromethenel</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0I</td>
<td>UI</td>
<td>.0I</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0I</td>
<td>UI</td>
<td>1.0I</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0I</td>
<td>UI</td>
<td>.0I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogl</th>
<th>%Recl</th>
<th>Qu lifierl</th>
<th>Acceptable LimitsI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>69I</td>
<td>UI</td>
<td>75 - 120I</td>
</tr>
<tr>
<td>Dibromofluoromethene</td>
<td>6I</td>
<td>UI</td>
<td>75 - 121I</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>7I</td>
<td>UI</td>
<td>75 - 120I</td>
</tr>
</tbody>
</table>

TestAmerica SavannahM Page 57 of 142
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl Ion:</td>
<td>5030Bl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil Anlyz bd:</td>
<td>11/12/10 1831l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil PrepTrl:</td>
<td>11/12/10 1831l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlyz ybd</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetracloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetracloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butyl nonane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-Cichlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hexane nonane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene nonane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>.5l</td>
<td>UI</td>
<td>.5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID: p0125.d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Initil l I ig SBVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/12Bl010 1831l</td>
<td>Fin l I ig SBVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di PrepTreb:</td>
<td>11/12Bl010 1831l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ethanol Chloride</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrol chlorotetrol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl l cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlordev</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Tote</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recd</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>6l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)l</td>
<td>8l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>MA/ID:</td>
<td>8260B1</td>
<td>Analysis Bl ch: 680-186027I</td>
<td>Instrument ID:</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td></td>
<td>L2b File ID:</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0I</td>
<td></td>
<td>Init I g hVolume:</td>
</tr>
<tr>
<td>Dil Anl ybd:</td>
<td>11/12/010</td>
<td>1900I</td>
<td>Fin I g hVolume:</td>
</tr>
<tr>
<td>Dil PrepTrel:</td>
<td>11/12/010</td>
<td>1900I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Quifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,1-Chloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzen</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2-Chloroethene, Totl</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>1.0I</td>
<td>Ul</td>
<td>1.0I</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>4-MA hyd-2-pTH nonel</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5I</td>
<td>Ul</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Bromoform</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Cl rbon disulfid</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Cl rbon tetri chlorid,</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>3.4b</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Chloroform</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10I</td>
<td>Ul</td>
<td>10I</td>
</tr>
</tbody>
</table>

TestAmerica SavannahM
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td></td>
<td>L2b File ID:</td>
<td>p0127.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td>Initi l</td>
<td>ig hlVolume:</td>
</tr>
<tr>
<td>DI Anl yzb:</td>
<td>11/12/010 1900l</td>
<td>Fin I</td>
<td>ig hlVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>DI PrepTrel:</td>
<td>11/12/010 1900l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetri chloethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rI ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rI ns-1,3-Dichlorobpro</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethene</td>
<td>1.0l</td>
<td>U *1</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, TolI</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qu lifier</th>
<th>Accept nce Limitsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td></td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>8I</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>8I</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Method</th>
<th>Analysis Bl ch: 680-186027I</th>
<th>Instrument ID:</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep Trl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0129.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>001</td>
<td>Ini I</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anly zbd:</td>
<td>11/12/10 1930I</td>
<td>Ig hVolume:</td>
<td></td>
</tr>
<tr>
<td>Dil PrepTret:</td>
<td>11/12/10 1930I</td>
<td>Fin I</td>
<td>5 mL2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anly yb</th>
<th>Result (ug/L)</th>
<th>Qu Quifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra-chloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1,2,2-Tetra-chloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2-Bromo-3-Chloropropene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2-Bromoethene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>701</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>4001</td>
<td>UI</td>
<td>4001</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>-Butyl nonane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>-Chlorotoluene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>-Hexane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Acetone</td>
<td>50001</td>
<td>UI</td>
<td>50001</td>
</tr>
<tr>
<td>Benzene</td>
<td>59001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Bromoform</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Cl-rib disulfide</td>
<td>4001</td>
<td>UI</td>
<td>4001</td>
</tr>
<tr>
<td>Cl-rib tetra chlorid</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>01</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Chloroform</td>
<td>8001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>130001</td>
<td>UI</td>
<td>001</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MSM)

| Analyte | Result (μg/L) | Qu ilifier | RL2 |%
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>340l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Isooctylbenzene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>MA hyl tert-butyl ethl</td>
<td>000l</td>
<td>UI</td>
<td>000l</td>
<td></td>
</tr>
<tr>
<td>MA hyl Chloride,</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
<td></td>
</tr>
<tr>
<td>m-Xy none & p-Xy enel</td>
<td>400l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N phena enel</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>α-Xy enel</td>
<td>520l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Styrenel</td>
<td>00l</td>
<td></td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Tetrel chloroethylene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>400l</td>
<td></td>
<td>400l</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
<td></td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surogl</th>
<th>%Recl</th>
<th>Qu ilifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>4b</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td></td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTnl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0131.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>100l</td>
<td>Init I</td>
<td>ig hVol:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anlys ybd:</td>
<td>11/12/10 1959l</td>
<td>Fin I</td>
<td>ig hVol:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTnl:</td>
<td>11/12/10 1959l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlys ybd</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-Butyl nonane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-C1 chlorotoluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-Hex2nonel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Acetone</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromofoml</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>C1 Rben disulfide</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>C1 Rben tetral chloride</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chloroethene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chlorofoml</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Cis-1,3-Dichloropropene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>3000l</td>
<td>UI</td>
<td>100l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td></td>
<td>L2b File ID:</td>
<td>p0131.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>100l</td>
<td>Initial ig htVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/12/2010 1959l</td>
<td>Final ig htVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/12/2010 1959l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Hek2chlorobutnil dienel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>N-Propyilbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>p-Isopropyl toluenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>sec-Butyilbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rt-Butyilbenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Tetr chloroethenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Toluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Trichloroethenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Trichlorofluoromethanel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>Xy enes, Tol</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>Surrog</td>
<td>%Recl</td>
<td>Qu lifier</td>
<td>Acceptable Limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>5l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod.</th>
<th>8260Bl</th>
<th>Anl ysis Bl ch: 680-186385l</th>
<th>Instrument ID:</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTli ion:</td>
<td>5030Bl</td>
<td>L2b File ID: p0037.d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>100l</td>
<td>Init I l ig htVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/16/010 1313l</td>
<td>Fin I l ig htVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/16/010 1313l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,2,2,2-Tetra chloroethane</td>
<td>390l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,3-Trichloro benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,3-Trichloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,4-Trichloro benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2,4-Trimethyl benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dibromo ethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloro benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloro ethane</td>
<td>360l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloro ethene, Toluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,2-Dichloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3-Dichloro benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,3-Dichloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>1,4-Dichloro benzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>2-Dichloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-Butyl nonel</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>-C chloro toluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>-Helix nonel</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>4-Chloro toluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>4-Methyl-2-Pi nene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Acetone</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1000l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromofom</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Cl ron disulfide</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Cl ron tetra chlorid</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>3400l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>cis-1,2-Dichloro ethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>cis-1,3-Dichloro propylene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Diethyl ethane</td>
<td>5200l</td>
<td>UI</td>
<td>1000l</td>
</tr>
</tbody>
</table>
˛

8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierrl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Hek2chlorobutyl nienel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>MA hy l tert-buty l ethyl</td>
<td>1000I</td>
<td>UI</td>
<td>1000I</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>500I</td>
<td>UI</td>
<td>500I</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>00I</td>
<td>UI</td>
<td>00I</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>500I</td>
<td>UI</td>
<td>500I</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Styrenel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>r-tButylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Tetr chloroethnle</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Toluenel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethnle</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropnel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Trichloroethnle</td>
<td>140I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Trichlorofluoromethanel</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>00I</td>
<td>UI</td>
<td>00I</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>00I</td>
<td>UI</td>
<td>00I</td>
</tr>
</tbody>
</table>

Surrogl

<table>
<thead>
<tr>
<th>Surrogl</th>
<th>%Recl</th>
<th>Qu lifierrl</th>
<th>AccepT nce Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromoffluorobenzene</td>
<td>89I</td>
<td>75 - 120I</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>88I</td>
<td>75 - 121I</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>6I</td>
<td>75 - 120I</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

| MA hod:
| 8260Bl |
| PrepTrel ion:
| 5030Bl |
| Dilution:
| 100I |
| Dil Anl yzbd:
| 11/13/010 131 4b |
| Dil PrepTrel:
| 11/13/010 131 4b |

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Quifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetracloroethyl</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,1,1-Trichloroethyl</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,1,2,2-Tetracloroethyl</td>
<td>380I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,1,2-Trichloroethyl</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,1-Dichloroethyl</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluene</td>
<td>00I</td>
<td>UI</td>
<td>00I</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>-Butyl nonene</td>
<td>1000I</td>
<td>UI</td>
<td>1000I</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>-Hex2nonene</td>
<td>1000I</td>
<td>UI</td>
<td>1000I</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>4-Methyl-2-p-toluene</td>
<td>1000I</td>
<td>UI</td>
<td>1000I</td>
</tr>
<tr>
<td>Acetonel</td>
<td>500I</td>
<td>UI</td>
<td>500I</td>
</tr>
<tr>
<td>Benzenel</td>
<td>01</td>
<td></td>
<td>100I</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Bromoflourine</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>C10 rubid sulfide</td>
<td>001</td>
<td>UI</td>
<td>001</td>
</tr>
<tr>
<td>C10 rubid tetra chlorid,</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>3500I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>4900I</td>
<td>UI</td>
<td>1000I</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:l</td>
<td>5030Bl</td>
<td></td>
<td>L2b File ID:l</td>
<td>p0141.d,</td>
</tr>
<tr>
<td>Dilution:l</td>
<td>100l</td>
<td></td>
<td>Init</td>
<td>l</td>
</tr>
<tr>
<td>Di Anl yzbd:l</td>
<td>11/13/0l0 131 4b</td>
<td></td>
<td>Fin</td>
<td>l</td>
</tr>
<tr>
<td>Di PrepTreb:l</td>
<td>11/13/0l0 131 4b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compnent</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>He2chlorobutli dienel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Isopropylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>MA hyl tert-butyli ethl</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>MA hye ene Chlorid,</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>n-Butylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>N-Propylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>sec-Butylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rt-Butylbenztnel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Tetrl chloroethnbel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Toluene</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethnbel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropnbel</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Trichloroethnbel</td>
<td>140l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofuoromethabel</td>
<td>100l</td>
<td>U *l</td>
<td>100l</td>
</tr>
<tr>
<td>Vinyl I</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>100l</td>
<td>UI</td>
<td>100l</td>
</tr>
<tr>
<td>Xy enes, Tolt</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogl</th>
<th>%Recl</th>
<th>Qu lifier</th>
<th>Accepl nce Limitsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofuorobenztnel</td>
<td>88l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofuoromethabel</td>
<td>8l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surr)l</td>
<td>7l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

MA hod: 8260Bl
Anl ysis Bl ch: 680-18609#b
Instrument ID:
MSP

<table>
<thead>
<tr>
<th>PrepTnl ion</th>
<th>Result (ug/L)</th>
<th>Qu ifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethened</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethened</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethened</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2,2-Dis hloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Hex none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-pTl none</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Aceton</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromofrom</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rbon disulfid</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rbon tetri chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorofrom</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis,1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (μg/L)</th>
<th>Qu</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hye ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>U *1</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Surrogue</td>
<td>%Recl</td>
<td>Qu</td>
<td>Acce
nce Limits
</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>75 - 120l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>75 - 121l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surrl)</td>
<td>5l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dic hloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hy-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetri chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethale</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>n-He xane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>1,1,1-Perfluoroethane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetoneglic</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Methylene glycol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Phenol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>n-He xane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hy-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetri chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroformi</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethale</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>n-He xane</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0145.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Ini l l</td>
<td>ghVolume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/13/0010 1 413l</td>
<td>Fin l l</td>
<td>ghVolume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>Di PreTrbl:</td>
<td>11/13/0010 1 413l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu ifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutil diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MAhyl tert-butil ethile</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MAhye ene Chloride,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetrl chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>U *1</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Tol</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Surrogl</td>
<td>%Recl</td>
<td>Qu ifierl</td>
<td>Accepte limits</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>8l</td>
<td>75 - 121l</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Gurr)</td>
<td>100l</td>
<td>75 - 120l</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0147, d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>0l</td>
<td>Initi l</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/13/010 1 44b</td>
<td>ig htlVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Di PrepTrel:</td>
<td>11/13/010 1 44b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1-Dichloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1-Dichloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,1-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2,3-TrichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2-Dibromometho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,2-Dichloroetho</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,3-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>2-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>-Chlorotoluene</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>-Hex nonel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>4-MA hyl-2-propTnel nonel</td>
<td>00l</td>
<td>UI</td>
<td>00l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Benzenel</td>
<td>36l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Bromobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Bromochlorometha</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Bromochlorometha</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Bromomethan</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>CI rbon disulfid,</td>
<td>40l</td>
<td>UI</td>
<td>40l</td>
</tr>
<tr>
<td>CI rbon tetri chlorid,</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Chlorobenz</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>cis-1,3-DichloropropTnel</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Dibromochlorometha</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Dichlorodifluorometha</td>
<td>l</td>
<td>UI</td>
<td>0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>650l</td>
<td>UI</td>
<td>00l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Analysis Bl</th>
<th>Instrument ID</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>680-18609#b</td>
<td>L2b File ID: p0147.d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Initial Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>0I</td>
<td>5 mL2</td>
<td>5 mL2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Hek2chlorbutyl diene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyl</td>
<td>00I</td>
<td>UI</td>
<td>00I</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>m-Xylene & p-Xylene ene</td>
<td>40I</td>
<td>UI</td>
<td>40I</td>
</tr>
<tr>
<td>NCB enene</td>
<td>100I</td>
<td>UI</td>
<td>100I</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Styrene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Tetr chlorothene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Toluene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0I</td>
<td>U*l</td>
<td>0I</td>
</tr>
<tr>
<td>Vinyl E</td>
<td>40I</td>
<td>UI</td>
<td>40I</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0I</td>
<td>UI</td>
<td>0I</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>40I</td>
<td>UI</td>
<td>40I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Qualifere</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89I</td>
<td>75 - 120I</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>3I</td>
<td>75 - 121I</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>10I</td>
<td>75 - 120I</td>
<td></td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p014b d,</td>
<td>5 mL</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Inti l</td>
<td>ig htVolume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>DI Anl yzbd:</td>
<td>11/13/010 1511l</td>
<td>Fin l</td>
<td>ig htVolume:</td>
<td>5 mL</td>
</tr>
<tr>
<td>DI PrepTrel:</td>
<td>11/13/010 1511l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethylene, Total</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Cyclohexanone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Chloroacetone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Acetone</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-2,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bl</th>
<th>Analysis Bl ch:</th>
<th>680-18609#b</th>
<th>Instrument ID:</th>
<th>MSP</th>
<th>L2b File ID:</th>
<th>p014b d,</th>
<th>init I</th>
<th>ig h Volume:</th>
<th>5 mL2</th>
<th>Fin I</th>
<th>ig h Volume:</th>
<th>5 mL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Hek2chlorobutyl diene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td>MA hyd tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td>MA hyd tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td>m-Xy ene & p-Xy ene</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N phtha ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td>N phtha ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>o-Xy ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-chloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>tert-chloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rli 1,2-Dichloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>rli 1,2-Dichloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rli 1,3-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>rli 1,3-Dichloroethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Trichloroethyn</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Trichlorofluoromethyl</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td>Vinyl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td>Vinyl chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td>Xy enes, Totl</td>
<td>0l</td>
<td>UI</td>
<td>0l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%Recl</th>
<th>Quality</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>68%</td>
<td>75 - 120l</td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>5%</td>
<td>75 - 121l</td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>8%</td>
<td>75 - 121l</td>
<td>75 - 121l</td>
</tr>
</tbody>
</table>
Analytical DataM

Client: ARCADIS U.S., Inc.

8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTil</td>
<td>ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0151.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td></td>
<td>Init l l</td>
<td>ig hVolume:</td>
</tr>
<tr>
<td>Dil Anl yzbd:</td>
<td>11/13/010 15:41</td>
<td></td>
<td>Fin l l</td>
<td>ig hVolume:</td>
</tr>
<tr>
<td>Dil PrepTil:</td>
<td>11/13/010 15:41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu lifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethabnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethabnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethabnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Chloropropanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloro propylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Totl</td>
<td>6.7l</td>
<td>.0I</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>3.3l</td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>2-Chlorobromopropylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MAhyd-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td>UI</td>
<td>5I</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.5l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromo methab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rbon disulfid,</td>
<td>0.1</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rbon tetr chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>.2l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>6.4b</td>
<td>1.0l</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropylene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethab</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>46</td>
<td></td>
<td>1.0l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Heptachlorodibenzo-p-dioxin</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>MA hydrocarbon</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>MA hydronate Chloride</td>
<td>5.01</td>
<td>UI</td>
<td>5.0</td>
</tr>
<tr>
<td>m-Xylenol & p-Xylenol</td>
<td>.01</td>
<td>UI</td>
<td>.01</td>
</tr>
<tr>
<td>N-Phenol</td>
<td>5.01</td>
<td>UI</td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xylenol</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>r-Butylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>rIsobutylbenzene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>rIsotoluene Chloroethene</td>
<td>1.01</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>1.31</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.01</td>
<td>U*1</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>.01</td>
<td>UI</td>
<td>.01</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>6.61</td>
<td>UI</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>.01</td>
<td>UI</td>
<td>.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>0.1</td>
<td></td>
<td>75 - 1201</td>
</tr>
<tr>
<td>Dibromofluorobenzene</td>
<td>7.1</td>
<td></td>
<td>75 - 1211</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>7.1</td>
<td></td>
<td>75 - 1201</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Quifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra-chloroethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra-chloroethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>150l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,2-Dichloroethane, Toluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>2-Bromo-2-propene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Acetone</td>
<td>630l</td>
<td>UI</td>
<td>630l</td>
</tr>
<tr>
<td>Benzene</td>
<td>460l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Bromochloromethene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Bromodichloromethene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Dibromochloromethene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>400l</td>
<td>UI</td>
<td>50l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qu ifierl</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>351</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Hek2chlorobutl dienel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethrhl</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>130l</td>
<td>UI</td>
<td>130l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>130l</td>
<td>UI</td>
<td>130l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>p-Isopropy toluenel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Tetr chloroethnbel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Toluene</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethnbel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropylanl</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Trichloroethnbel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Trichlorofluoromethbel</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>5l</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Xy enes, Tolu</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogI</th>
<th>%Recl</th>
<th>Qu ifierl</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>89l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethbel</td>
<td>87l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>101l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID: p0041.d,</td>
<td>Init I</td>
<td>ig hVolume: 5 mL2</td>
</tr>
<tr>
<td>Dilution:</td>
<td>1000l</td>
<td>Fin I</td>
<td>ig hVolume: 5 mL2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Quality</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetracloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>1700l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Tol</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,2-Dichloroacetone</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>2,4-Dichloroacetic acid</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>4-Methyl-2-pentene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>5000l</td>
<td>UI</td>
<td>5000l</td>
</tr>
<tr>
<td>Benzene</td>
<td>14000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Clment Disulfide</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>43000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1000l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil Anlysb:</td>
<td>11/16/010 1412l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dil PrepTreb:</td>
<td>11/16/010 1412l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>MA hy tert-butyl ethyl</td>
<td>10000l</td>
<td>UI</td>
<td>10000l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>12000l</td>
<td></td>
<td>5000l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy ene</td>
<td>000l</td>
<td>UI</td>
<td>000l</td>
</tr>
<tr>
<td>N Phtha ene</td>
<td>5000l</td>
<td>UI</td>
<td>5000l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>o-Xy ene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>r-Butylybenzene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Tetra chloroethene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>rns-1,2-Dichloroethene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>rns-1,3-Dichloropropene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1000l</td>
<td></td>
<td>1000l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>000l</td>
<td>UI</td>
<td>000l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1000l</td>
<td>UI</td>
<td>1000l</td>
</tr>
<tr>
<td>Xy enes, Total</td>
<td>000l</td>
<td>UI</td>
<td>000l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogat</th>
<th>%Recal</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>88l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>89l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>10l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>Analysis Bl ch: 680-18609#b</th>
<th>Instrument ID:</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0157.d,</td>
</tr>
<tr>
<td>Dilution:</td>
<td>50l</td>
<td>Ill g vhVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil Anl yzb:</td>
<td>11/13/010 1709l</td>
<td>Fin Ill g vhVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Dil PrepTrel:</td>
<td>11/13/010 1709l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,1-Dichloroethylene, Tetr</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3,5-Trichloroethene, Tetr</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,3-Dichloroethylene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>1,4-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>2,2-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>-But</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>-Chloroформене</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>-Hex</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>4-MA</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Acetone</td>
<td>6300l</td>
<td>UI</td>
<td>6300l</td>
</tr>
<tr>
<td>Benzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromoform</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Cl brom disulf</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Cl brom tetra chlor</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloroethylene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>cis,1,2-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>cis,1,3-Dichloropropene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10000l</td>
<td></td>
<td>500l</td>
</tr>
</tbody>
</table>
˛

8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (µg/L)</th>
<th>Qu</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Hek2chlorobutyl diene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>MA hesyl tert-butyl ethyl</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>MA hydene Chloride,</td>
<td>1300l</td>
<td>UI</td>
<td>1300l</td>
</tr>
<tr>
<td>m- and p-Xylene enlene</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>N phthale enene</td>
<td>1300l</td>
<td>UI</td>
<td>1300l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>o-Xylene enene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Styrene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Tetral chloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Toluene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichloroethene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>50l</td>
<td>UI</td>
<td>50l</td>
</tr>
<tr>
<td>XY enene, Toluene</td>
<td>500l</td>
<td>UI</td>
<td>500l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qu</th>
<th>Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo fluorobenzene</td>
<td>85l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>4b</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Surrogate)</td>
<td>100l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTri ion:</td>
<td>5030Bl</td>
<td>L2b File ID:</td>
<td>p0159.d,</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>II ig hVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dl Anl yzbd:</td>
<td>11/13/010 1738l</td>
<td>II ig hVolume:</td>
<td>5 mL2</td>
<td></td>
</tr>
<tr>
<td>Dl PrepTreb:</td>
<td>11/13/010 1738l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetra chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethene, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>2-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C clorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyl-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Aceton</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromof orml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>CI rbon disulfid</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>CI rbon tetri chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzen</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloriform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th>Anal yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Heptachlorobutyl dioxane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hyd tert-butyl ethyl</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xyene & p-Xyene ene</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N-Phthale ene</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xyene ene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetra chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rI ns-1,2-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rI ns-1,3-Dichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>U*1</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzen</td>
<td>89l</td>
<td></td>
<td>75 - 120l</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>8l</td>
<td></td>
<td>75 - 121l</td>
</tr>
<tr>
<td>Toluene-d8 (Sur)</td>
<td>7l</td>
<td></td>
<td>75 - 120l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

MA hod: 8260Bl
Anl ysis Bl ch: 680-18609#b
Instrument ID: L2b File ID: p0161.d.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result (ug/L)</th>
<th>Qu ilifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetr chloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetr chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-TrichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-ChloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromothanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethene, Toluol</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>1,2-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C halotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyd-2-pTol nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromothanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfide</td>
<td>0.1l</td>
<td>UI</td>
<td>0.1l</td>
</tr>
<tr>
<td>Cl rbon tetl chlorid</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>cis-1,3-DichloropropTnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethanol</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

MA hod: 8260Bl
PrepTrl ion: 5030Bl
Dilution: 1.0l

Anly ybsd: 11/13/010 1807l
PrepTreb: 11/13/010 1807l

<table>
<thead>
<tr>
<th>Anly yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobut dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N pthca enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>r-t-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetr chlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.0l</td>
<td>U 't</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl l cel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

Surrog: 4-Bromofluorobenzene | 1l | 75 - 120l |
Dibromo Fluoromethane | 7l | 75 - 120l |
Toluene-d8 (Surj) | 7l | 75 - 120l |

TestAmerica SavannahM
8260B Volatile Organic Compounds (GC/MS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bl</td>
<td>L2b File ID: p0137.d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Init I ll g hVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI Anl yzbd:</td>
<td>11/13/010 1216l</td>
<td>Fin I ll g hVolume: 5 mL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI PrepTreb:</td>
<td>11/13/010 1216l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qu lifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetr chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,1-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2,2-Tetr chloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1,2-Trichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloroethnuel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,1-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,3-Trichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dibromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloroethine, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,3-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,4-Dichlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>1,2-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-But nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>-C hlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>-He x nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>4-MA hyll-2-pTtl nonel</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>Acetonel</td>
<td>5</td>
<td>UI</td>
<td>5l</td>
</tr>
<tr>
<td>Benznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromodichloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromoforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Bromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Cl rbon disulfid,</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Cl rbon tetl chlorid,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chlorobenznel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroethanel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloroforml</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Chloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>ciss-1,2-Dichloroethnuel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>ciss-1,3-Dichloropropnel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromochloromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dibromomethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Dichlorodifluoromethabel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Diethyl etherl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
</tbody>
</table>
8260B Volatile Organic Compounds (GC/MS)M

<table>
<thead>
<tr>
<th>MA hod:</th>
<th>8260Bi</th>
<th>Anlys Bi ch: 680-18609#b</th>
<th>Instrument ID:</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepTrl ion:</td>
<td>5030Bi</td>
<td>L2b File ID:</td>
<td>p0137.d.</td>
<td></td>
</tr>
<tr>
<td>Dilution:</td>
<td>1.0l</td>
<td>Init l I</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di Anl yzbd:</td>
<td>11/13/010 1216l</td>
<td>Fin I I</td>
<td>ig hVolume:</td>
<td>5 mL2</td>
</tr>
<tr>
<td>Di PrepTreb:</td>
<td>11/13/010 1216l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anl yb</th>
<th>Result (ug/L)</th>
<th>Qualifier</th>
<th>RL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Hek2chlorobutyl dienel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>MA hyl tert-butyl ethyl</td>
<td>10l</td>
<td>UI</td>
<td>10l</td>
</tr>
<tr>
<td>MA hy ene Chlorid,</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>m-Xy ene & p-Xy enel</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>N phtha enel</td>
<td>5.0l</td>
<td>UI</td>
<td>5.0l</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>N-Propylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>o-Xy enel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>p-Isopropyl toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Styrenel</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rt-Butylbenzene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Tetri chlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,2-Dichlorothene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>rl ns-1,3-Dichloropropane</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Trichlorofluoromethene</td>
<td>1.0l</td>
<td>U *1</td>
<td>1.0l</td>
</tr>
<tr>
<td>Vinyl I cell</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
<tr>
<td>Vinyl chloride,</td>
<td>1.0l</td>
<td>UI</td>
<td>1.0l</td>
</tr>
<tr>
<td>Xy enes, Totl</td>
<td>.0l</td>
<td>UI</td>
<td>.0l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrog</th>
<th>%Recl</th>
<th>Qualifier</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>0l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethene</td>
<td>75 - 121l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8 (Surr)</td>
<td>8l</td>
<td>75 - 120l</td>
<td></td>
</tr>
<tr>
<td>Lab Section</td>
<td>u alifierM</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>GC/MS VOAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>indicates the analyte was analyzed for but not detected.</td>
<td></td>
</tr>
<tr>
<td>*L</td>
<td></td>
<td>CS or LCSD exceeds the control limits.</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td></td>
<td>Result exceeded calibration range.</td>
<td></td>
</tr>
<tr>
<td>*L</td>
<td></td>
<td>RPD of the LCS and LCSD exceeds the control limits.</td>
<td></td>
</tr>
</tbody>
</table>

Testmerica SavannahU
Method Bank - Batch: 880-1859941

<table>
<thead>
<tr>
<th>An</th>
<th>lyt5</th>
<th>R</th>
<th>suit5</th>
<th>Qu</th>
<th>l5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropan5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloroproop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Timethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tot5l5</td>
<td>2.0</td>
<td>UL</td>
<td></td>
<td></td>
<td>2.0</td>
<td>10.</td>
</tr>
<tr>
<td>1,2-Dichloroproop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Timethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroproop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroproop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2-But5n5</td>
<td>10</td>
<td>UL</td>
<td></td>
<td></td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2-H x non5</td>
<td>10</td>
<td>UL</td>
<td></td>
<td></td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4-MLthy-2-pent5non5</td>
<td>10</td>
<td>UL</td>
<td></td>
<td></td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td></td>
<td></td>
<td>25b</td>
<td></td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Btmobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Btmomidichloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Btmomform.</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Btmomethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>2.0</td>
<td>UL</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>C5 bon t5l5 chlorid,</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Chloroform,</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropan5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260BI
Preparation: 5030BI

Instrument IDL: MS02M
L5b . ii5 IDL: os210.d,
InitiL WJigt/Volume: 5 mL5
inSI WJigt/Volume: 5 mL5
Quality Control Results

Method Blank - Batch: 680-185994I

<table>
<thead>
<tr>
<th>AnSly5</th>
<th>RLSult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>DiLthyl ethb</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>HLx5chlorobut5diLn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid, mLthyl5n5 & p-Xyl5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>N-Fl6pybenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>sC-Butylbenz5n5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>TL55 chloroethbn5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Toluen5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TUCHloroethbn5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TUCHlorofluoromethab5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Vinyl . cLisl5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chlorid, Xyl5n5s, Tosl5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SurrogFl5

<table>
<thead>
<tr>
<th>% RLC</th>
<th>Accd t5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bbmofluorobenz5n5</td>
<td>92M</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>109L</td>
</tr>
<tr>
<td>Toluen5 d, (Sur)</td>
<td>105b</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Instument IDL</th>
<th>MSO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b . i5 IDL</td>
<td>oq210.d,</td>
</tr>
<tr>
<td>IniLu WJight/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>inSI WJight/Volume:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-185994L

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260BI</td>
<td>5030BI</td>
</tr>
</tbody>
</table>

LCS L5b SLmP5 IDL LCS 680-1L5994L10. An5lysis Batchb 680-1L5994L

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution</th>
<th>Volume</th>
<th>IDL</th>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL15 chloroethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,1,1-Tlchloroethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,1,2,2-TL15 chloroethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,1,2-Tlchloroethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,1-Dichlorooethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,3,5-Tlchlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>2-ButSn5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>2-Chlorotolu5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>2-MLthi-2-pent5non5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>Aclton5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>Bbn25n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>Brmolbenz5n5</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>Brmocholorometh5b</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
<tr>
<td>Brmodichlorometh5b</td>
<td>9l</td>
<td>9l/5 1L</td>
<td>100</td>
<td>680-1L5994L</td>
<td>8260BI</td>
</tr>
</tbody>
</table>

TestAmerica Savannah Page 95 of 142
<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>% RLc.L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPDLimit5</th>
<th>LCSQu.15</th>
<th>LCSDQu.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btromethab5</td>
<td>9L</td>
<td>9L</td>
<td>12 - 1L4L</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>91L</td>
<td>90.</td>
<td>55 - 131L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon tI5 chlorid,</td>
<td>9L</td>
<td>9L</td>
<td>71 - 135b</td>
<td>0</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>102M</td>
<td>100.</td>
<td>5 - 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroeth5b</td>
<td>9L</td>
<td>97L</td>
<td>40 - 1L5b</td>
<td>1L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>99L</td>
<td>104L</td>
<td>2 - 120.</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>101L</td>
<td>7L</td>
<td>4L - 142M</td>
<td>15b</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethn5</td>
<td>9L</td>
<td>104L</td>
<td>9 - 134L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropan5</td>
<td>99L</td>
<td>99L</td>
<td>7L - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>106.</td>
<td>102M</td>
<td>75 - 133T</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>92M</td>
<td>91L</td>
<td>7L - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>101L</td>
<td>103T</td>
<td>34 - 154L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>104L</td>
<td>102M</td>
<td>- 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLx5chlorobut5diL5n5</td>
<td>122M</td>
<td>117L</td>
<td>2 - 142M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>9L</td>
<td>9L</td>
<td>2 - 121L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>97L</td>
<td>97L</td>
<td>77 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid,</td>
<td>95b</td>
<td>95b</td>
<td>70 - 125b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>103T</td>
<td>101L</td>
<td>3 - 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>104L</td>
<td>102M</td>
<td>4L - 135b</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>102M</td>
<td>102M</td>
<td>4 - 13T</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-PPhylbenz5n5</td>
<td>109L</td>
<td>109L</td>
<td>0 - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>100.</td>
<td>99L</td>
<td>3 - 119L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropylltoluen5</td>
<td>104L</td>
<td>103T</td>
<td>3 - 139L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>107L</td>
<td>105b</td>
<td>77 - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>102M</td>
<td>100.</td>
<td>2 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>104L</td>
<td>101L</td>
<td>0 - 124L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL55 chloroethb5n5</td>
<td>108.</td>
<td>105b</td>
<td>7L - 12M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluen5</td>
<td>94L</td>
<td>92M</td>
<td>1 - 117L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethb5n5</td>
<td>101L</td>
<td>101L</td>
<td>72 - 131L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropan5</td>
<td>102M</td>
<td>9L</td>
<td>73 - 12M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchloroethb5n5</td>
<td>101L</td>
<td>100.</td>
<td>4 - 115b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>9L</td>
<td>93T</td>
<td>5b - 149L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl : cLt5t5</td>
<td>7L</td>
<td>10 - 217L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/i

Lab Control Sample Duplicate Recovery Report - Batch: 680-185994I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L5994L10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CII Lnt MLT ix5</td>
<td>WJt5</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11L2W010 1007L</td>
</tr>
<tr>
<td>DLt5 PFp. d,</td>
<td>11L2W010 1007L</td>
</tr>
</tbody>
</table>

AnSlysis Batchb 680-1L5994L

<table>
<thead>
<tr>
<th>PFp Batch: N/A5</th>
<th>UnitsF ugFL5</th>
</tr>
</thead>
</table>

Inst5ument IDL

<table>
<thead>
<tr>
<th>MSO2M</th>
</tr>
</thead>
</table>

L5b . ii5 IDL

| oq202.d, ini5l WJlight/Volume.: 5 mL5 |

Preparation: 5030Bl

| 5 mL5 |

Table of Results

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>% RLcL</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chlorid,</td>
<td>101L</td>
<td>97L</td>
<td>59 - 144L</td>
<td>4L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl5n5s, Tot5i5</td>
<td>102M</td>
<td>101L</td>
<td>4 - 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SurrogFl5

<table>
<thead>
<tr>
<th>Acclp 15ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bbromofluorobenz5n5</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
</tr>
<tr>
<td>Toluen5 d, (Surr)</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-1860271

<table>
<thead>
<tr>
<th>Sample</th>
<th>Result</th>
<th>Unit</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b SLmpt5 IDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 680-1L0 27L24L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CII LnT ML5t5x5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJt5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLT5 AnSty5d, DF</td>
<td>1112M010 1210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLT5 PFp. d</td>
<td>1112M010 1210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260BI
Preparation: 5030BI

<table>
<thead>
<tr>
<th>Sample</th>
<th>Result</th>
<th>Unit</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument IDL MSPF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5b ii5 IDL pq373.d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial WJ Light Volume</td>
<td>5 mL5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InSI WJ Light Volume</td>
<td>5 mL5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An Iyt5

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
<th>Unit</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL5t5 chloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL5t5 chloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethb5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,4-T4methylbenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroetha5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethb5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethb5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethb5, Tot5t5</td>
<td>2.0</td>
<td>UL</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3,5-T4methylbenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2-But5n5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>2-Chlorotolu5en5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>4-Chlorotolu5en5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>4-MLithy-2-pent5non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bp5m5benz25n5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bp5methylchlorometha5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bp5methylchlorometha5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bp5methylform.</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Bp5methyl5b</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>C5 bon disulfid.</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 bon Is5t5 chlorid</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroetha5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlorometha5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethb5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Dibromochlorometha5</td>
<td>1.0</td>
<td>U</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186027I

<table>
<thead>
<tr>
<th>Substance</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Diethyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>HLx5chlorobut5dLn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid,</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>m-Xy5n5 & p-Xy5n5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>N. Phthal5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>N-Phenylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>o-Xy5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>s-CButylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Sty5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>TL5 chloroethobn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Tüchloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Vinyl . cL5t5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Xyl5n5s, Tot5L5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrog5t5 % RLcL Accdf t5ncL Limits

<table>
<thead>
<tr>
<th>Substance</th>
<th>% RLcL</th>
<th>Accdf t5ncL Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Butanofluorobenz5n5</td>
<td>92M</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>9L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5 d, (Sur)</td>
<td>B7</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186027I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 27L21L</th>
<th>An5lysis Batchb 680-1L0 27L</th>
<th>Instrument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt MLT5x5</td>
<td>WJ15</td>
<td>PFp BatbhbN.A5</td>
<td>L5b . iL5 IDL</td>
<td>pq3T5.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ug/L5</td>
<td>InitLI W/ght/Volume.:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d, d</td>
<td>11L2W010 1015b</td>
<td></td>
<td>in5/ W/ght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PF.</td>
<td>11L2W010 1015b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS 680-1L0 27L22M</th>
<th>LCSD L5b SLmpl5 IDL</th>
<th>An5lysis Batchb 680-1L0 27L</th>
<th>Instrument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt MLT5x5</td>
<td>WJ15</td>
<td>PFp BatbhbN.A5</td>
<td>L5b . iL5 IDL</td>
<td>pq3T7.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ug/L5</td>
<td>InitLI W/ght/Volume.:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d, d</td>
<td>11L2W010 1045b</td>
<td></td>
<td>in5/ W/ght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PF.</td>
<td>11L2W010 1045b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% RLc.L

<table>
<thead>
<tr>
<th>AnSyt5</th>
<th>LCS L</th>
<th>LCS DL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCS SD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL15 chloroethab5</td>
<td>101L</td>
<td>105b</td>
<td>1 - 12M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tuchloroethab5</td>
<td>105b</td>
<td>110.</td>
<td>7L - 127L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL15 chloroethab5</td>
<td>9L</td>
<td>93T</td>
<td>9 - 129L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tuchloroethab5</td>
<td>91L</td>
<td>92M</td>
<td>75 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>101L</td>
<td>105b</td>
<td>74 - 127L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethin5</td>
<td>109L</td>
<td>112M</td>
<td>2 - 141L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropan5</td>
<td>104L</td>
<td>107L</td>
<td>77 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-TUCHLOROBENZ5N5</td>
<td>1L</td>
<td>5b</td>
<td>0 - 132M</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-TUCHLOROBENZ5N5</td>
<td>9L</td>
<td>135b</td>
<td>0 - 132L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-TLUMETHYLBENZ5N5</td>
<td>95b</td>
<td>99L</td>
<td>72 - 132M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DIBR - 3-CHLOROBENZ5N5</td>
<td>90.</td>
<td>92M</td>
<td>49 - 140.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DIBROMOETHAB5</td>
<td>91L</td>
<td>94L</td>
<td>0 - 121L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROBENZ5N5</td>
<td>9L</td>
<td>100.</td>
<td>79 - 124L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROBENZIN5</td>
<td>91L</td>
<td>95b</td>
<td>- 132M</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROBENZIN5</td>
<td>102M</td>
<td>107L</td>
<td>- 134L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROBENZIN5</td>
<td>95b</td>
<td>97L</td>
<td>73 - 124L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-TLUMETHYLBENZ5N5</td>
<td>95b</td>
<td>100.</td>
<td>72 - 133T</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-DICHLOROBENZ5N5</td>
<td>9L</td>
<td>99L</td>
<td>7L - 125b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-DICHLOROBENZ5N5</td>
<td>90.</td>
<td>95b</td>
<td>75 - 120.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-DICHLOROBENZ5N5</td>
<td>9L</td>
<td>100.</td>
<td>1 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-DICHLOROBENZ5N5</td>
<td>110.</td>
<td>112M</td>
<td>55 - 157L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-BUTSNON5</td>
<td>90.</td>
<td>9L</td>
<td>33 - 157L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CHLOROTOLUEN5</td>
<td>9L</td>
<td>100.</td>
<td>2 - 123T</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CHLOROTOLUEN5</td>
<td>91L</td>
<td>94L</td>
<td>34 - 1L1</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-CHLOROTOLUEN5</td>
<td>17L</td>
<td>107L</td>
<td>17 - 175b</td>
<td>13T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MLTHYL-2-PENT5NON5</td>
<td>9L</td>
<td>94L</td>
<td>40 - 151L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTON</td>
<td>94L</td>
<td>107L</td>
<td>17 - 175b</td>
<td>13T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBNON5</td>
<td>97L</td>
<td>101L</td>
<td>7L - 127L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMOCN</td>
<td>9.</td>
<td>97L</td>
<td>0 - 1508.</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMODICHLOROBENZ5N5</td>
<td>97L</td>
<td>101L</td>
<td>7L - 127L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMO</td>
<td>101L</td>
<td>104L</td>
<td>2 - 133T</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-186027I

<table>
<thead>
<tr>
<th>LCS L5b SLmp/5 IDL</th>
<th>LCS 680-1L0 27/21L</th>
<th>An5lysis Batchb 680-1L0 27L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiliBnt M/L5x5</td>
<td>WJ15</td>
<td>PFP BatbhbN.A5 UnitsF ug/L5</td>
</tr>
<tr>
<td>Dilution</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>DL5 An5lyz5a, d.</td>
<td>1/12W1010 1015b</td>
<td></td>
</tr>
<tr>
<td>DL5 PFP. d</td>
<td>1/12W1010 1015b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmp/5 IDL</th>
<th>LCSD 680-1L0 27/22M</th>
<th>An5lysis Batchb 680-1L0 27L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiliBnt M/L5x5</td>
<td>WJ15</td>
<td>PFP BatbhbN.A5 UnitsF ug/L5</td>
</tr>
<tr>
<td>Dilution</td>
<td>1.0.</td>
<td></td>
</tr>
<tr>
<td>DL5 An5lyz5a, d.</td>
<td>1/12W1010 1045b</td>
<td></td>
</tr>
<tr>
<td>DL5 PFP. d</td>
<td>1/12W1010 1045b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% RLc.L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btaomethab5</td>
<td>7L</td>
<td>5b</td>
<td>12-1L4L</td>
<td>12M</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon dulfid</td>
<td>106.</td>
<td>111L</td>
<td>55-131L</td>
<td>5b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon t55 Chlorid</td>
<td>115b</td>
<td>115b</td>
<td>71-135b</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>9L</td>
<td>100.</td>
<td>5-11L</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>99L</td>
<td>108.</td>
<td>40-1L5b</td>
<td>9L</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>99L</td>
<td>103T</td>
<td>2-120.</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>99L</td>
<td>101L</td>
<td>4L-142M</td>
<td>1L</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethn5</td>
<td>99L</td>
<td>103T</td>
<td>9-134L</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>9L</td>
<td>102M</td>
<td>7L-12M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>100.</td>
<td>104L</td>
<td>75-133T</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>91L</td>
<td>97L</td>
<td>7L-119L</td>
<td>7L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>103T</td>
<td>109L</td>
<td>34-154L</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>11L</td>
<td>112M</td>
<td>70-130.</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>9L</td>
<td>100.</td>
<td>-11L</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLx5chboroL5diL5n5</td>
<td>101L</td>
<td>106.</td>
<td>2-142M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproplbenz5n5</td>
<td>102M</td>
<td>105b</td>
<td>2-121L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>9L</td>
<td>103T</td>
<td>77-121L</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid</td>
<td>97L</td>
<td>103T</td>
<td>70-125b</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>99L</td>
<td>103T</td>
<td>3-11L</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phthaBn5n5</td>
<td>75b</td>
<td>79L</td>
<td>4L-135b</td>
<td>5b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>95b</td>
<td>9L</td>
<td>4-13T</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-PFpplbenz5n5</td>
<td>102M</td>
<td>104L</td>
<td>0-12M</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Xyl5n5</td>
<td>97L</td>
<td>101L</td>
<td>3-119L</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-n-Propltoluen5</td>
<td>9L</td>
<td>99L</td>
<td>3-139L</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>97L</td>
<td>101L</td>
<td>77-12M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>9L</td>
<td>101L</td>
<td>2-122M</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 Butylbenz5n5</td>
<td>101L</td>
<td>104L</td>
<td>0-124L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL5 chloroethn5</td>
<td>106.</td>
<td>110.</td>
<td>7L-12M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu5n5</td>
<td>99L</td>
<td>102M</td>
<td>1-117L</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethn5</td>
<td>105b</td>
<td>110.</td>
<td>72-131L</td>
<td>5b</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>9L</td>
<td>102M</td>
<td>73-12M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchloroethn5</td>
<td>101L</td>
<td>105b</td>
<td>4-115b</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>155b</td>
<td>1L1L</td>
<td>5b-149L</td>
<td>3T</td>
<td>50</td>
<td>*L</td>
<td>*L</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/I
Lab Control Sample Duplicate Recovery Report - Batch: 680-186027I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 27I21L</th>
<th>An5lysis Batchb 680-1L0 27L</th>
<th>Instrument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClLnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . iL5 IDL</td>
<td>pq3T5.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugL5</td>
<td>InitL WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DlL5 An5lyz5d,</td>
<td>11LJ20100 1015b</td>
<td></td>
<td>in5L WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL5 PFp. d</td>
<td>11LJ20100 1015b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L0 27I22M</th>
<th>An5lysis Batchb 680-1L0 27L</th>
<th>Instrument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClLnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . iL5 IDL</td>
<td>pq3T7.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugL5</td>
<td>InitL WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DlL5 An5lyz5d,</td>
<td>11LJ20100 1045b</td>
<td></td>
<td>in5L WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL5 PFp. d</td>
<td>11LJ20100 1045b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>% RLc.L</th>
<th>LCS L</th>
<th>LCSD L</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl . cL5t5</td>
<td>106.</td>
<td>111L</td>
<td>10 - 217L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid.</td>
<td>109L</td>
<td>115b</td>
<td>59 - 144L</td>
<td>5b</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl5n5s, Tot5t5</td>
<td>9L</td>
<td>102M</td>
<td>4 - 11L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogFit5</th>
<th>LCS % RLc.L</th>
<th>LCSD % RLc.L</th>
<th>Acclp t5cL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo fluorobenz5n5</td>
<td>91L</td>
<td>94L</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>9L</td>
<td>106.</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene d, (Surr)L</td>
<td>9L</td>
<td>103T</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186031L

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
<th>Instrument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnSlys5 Batchb 680-1L0 31L</td>
<td>PFp BatchbN.A5</td>
<td>L5b . iIDL pq374.d,</td>
<td>5 mL5</td>
</tr>
<tr>
<td>L5b SLmpl5 IDL</td>
<td>MB 680-1L0 31L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CliLt5 ML5x6</td>
<td>WJt5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLT5 AnSly5d, d</td>
<td>11U2M010 1255b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLT5 PFp. d</td>
<td>11U2M010 1255b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL5 chloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1,1-Trichloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1,2,2-TL5 chloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1,2-Trichloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,1-Dichloropen5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2,3-Trichlorprop. n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2,4-Tolymethylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dibromothab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tol5I5</td>
<td>2.0.</td>
<td>UL</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,3,5-Tolymethylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>2-But5non5</td>
<td>10.</td>
<td>UL</td>
<td>10.</td>
</tr>
<tr>
<td>2-Chlorotoulue5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>1.0.</td>
<td>UL</td>
<td>10.</td>
</tr>
<tr>
<td>4-Chlorotoulue5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>4-MLthyl-2-pent5non5</td>
<td>10.</td>
<td>UL</td>
<td>10.</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>U</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Btmobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Btmonobenz</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>C5 bon disulfid</td>
<td>2.0.</td>
<td>UL</td>
<td>2.0.</td>
</tr>
<tr>
<td>C5 bon TB5 chlorid,</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Chloroform,</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>cis-1,3-Dichloropen5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>1.0.</td>
<td>U</td>
<td>2.0.</td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-186031I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result</th>
<th>Unit</th>
<th>i5</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Diethyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td>10</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Hexachlorobutadiilen5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Methyl t-butyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td>10</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Methyl 5n5 Chloride, m-Xyl5n5 & p-Xyl5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>N. phtha5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>N-Propylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>sC-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Stylin5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>t5 1-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>TL5 chloroethn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Tolu5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloroprophen5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Tuchloroethn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Tuchlorofluoromethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Vinyl - cL55</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>(Blank)</td>
</tr>
<tr>
<td>Xyl5n5s, Tol55</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td>(Blank)</td>
</tr>
</tbody>
</table>

Method: 8260BI

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Batch</th>
<th>IDL</th>
<th>MSP2M</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>5030BI</td>
<td>680-186031I</td>
<td>3120.</td>
<td>L5b SLmp5 IL 3120</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>% RLoL</th>
<th>Acq tp5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Brmofluorobenz5n5</td>
<td>1.02</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>1.01</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Tolu5 d, (Sur)IL</td>
<td>1.05</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-186031L

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 31L7L</th>
<th>Anlsys Bahlhb 680-1L0 31L</th>
<th>Instument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>FPf BahlhbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pq3T .d,</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11L2M010 1030.</td>
<td>UnitsF ugL5</td>
<td>Initili WVolume.:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 PFp. d,</td>
<td>11L2M010 1030.</td>
<td></td>
<td>in5i WVolume.:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L0 31L1L</th>
<th>Anlsys Bahlhb 680-1L0 31L</th>
<th>Instument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>FPf BahlhbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pq3T .d,</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11L2M010 1127L</td>
<td>UnitsF ugL5</td>
<td>Initili WVolume.:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 PFp. d,</td>
<td>11L2M010 1127L</td>
<td></td>
<td>in5i WVolume.:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSlyt</th>
<th>% RLC</th>
<th>LCLS</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPDLimit5</th>
<th>LSCQu.</th>
<th>LCSDQu.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1,1,2-TLIT5 chloroethab5</td>
<td>103T</td>
<td>9L</td>
<td>1 - 12M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,1-Tchloroethab5</td>
<td>11L</td>
<td>108.</td>
<td>7L - 127L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,2,2-TLIT5 chloroethab5</td>
<td>111L</td>
<td>102M</td>
<td>9 - 129L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,2-Tchloroethab5</td>
<td>109L</td>
<td>101L</td>
<td>75 - 121L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1-Dichloroethn5</td>
<td>114L</td>
<td>102M</td>
<td>2 - 141L</td>
<td>10.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>114L</td>
<td>108.</td>
<td>77 - 122M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2,3-Tchlorobenz5n5</td>
<td>110.</td>
<td>100.</td>
<td>0 - 132M</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2,3-Tchloroprop. n5</td>
<td>111L</td>
<td>102M</td>
<td>70 - 130.</td>
<td>9L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2,4-Tchlorobenz5n5</td>
<td>109L</td>
<td>100.</td>
<td>0 - 135b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2,4-Tmethylbenz5n5</td>
<td>112M</td>
<td>104L</td>
<td>72 - 132M</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>114L</td>
<td>100.</td>
<td>49 - 140.</td>
<td>13T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>110.</td>
<td>102M</td>
<td>0 - 121L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>110.</td>
<td>103T</td>
<td>79 - 124L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>103T</td>
<td>9L</td>
<td>- 132M</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethn5, Tol5I5</td>
<td>110.</td>
<td>104L</td>
<td>- 134L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>105b</td>
<td>99L</td>
<td>73 - 124L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3,5-Tmethylbenz5n5</td>
<td>114L</td>
<td>105b</td>
<td>72 - 133T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>110.</td>
<td>104L</td>
<td>7L - 125b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>107L</td>
<td>100.</td>
<td>75 - 120.</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>111L</td>
<td>104L</td>
<td>1 - 122M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>120.</td>
<td>109L</td>
<td>55 - 157L</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-But5n5n5</td>
<td>109L</td>
<td>100.</td>
<td>33 - 157L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluen5</td>
<td>108.</td>
<td>103T</td>
<td>2 - 123T</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HLx5n5n5</td>
<td>107L</td>
<td>99L</td>
<td>34 - 11L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluen5</td>
<td>1108.</td>
<td>101L</td>
<td>3 - 122M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MLxyl-2-pent5non5</td>
<td>105b</td>
<td>99L</td>
<td>40 - 151L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AClton</td>
<td>108.</td>
<td>9L</td>
<td>17 - 175b</td>
<td>9L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bnzn5n5</td>
<td>108.</td>
<td>101L</td>
<td>77 - 119L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btmp benz5n5</td>
<td>109L</td>
<td>101L</td>
<td>0 - 124L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btmp chioromethab5</td>
<td>11L</td>
<td>95b</td>
<td>10 - 150.</td>
<td>20.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btmp dichloromethab5</td>
<td>110.</td>
<td>102M</td>
<td>7L - 127L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btmp form.</td>
<td>113T</td>
<td>105b</td>
<td>2 - 133T</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample I
Lab Control Sample Duplicate Recovery Report - Batch: 680-186031

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 31L7L</th>
<th>AnSlysis Batchb</th>
<th>680-1L0 31L</th>
<th>Instument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIIln5 MLT5x5</td>
<td>WJ15</td>
<td>PFp BatbhbN.A5</td>
<td></td>
<td>L5b . i5 IDL</td>
<td>dq3T .d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td></td>
<td>InitIL WJght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11L21010 1030.</td>
<td></td>
<td></td>
<td>in5I WJght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFp. d,</td>
<td>11L21010 1030.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCSD L5b SLmpl5 IDL | LCSD 680-1L0 31L1L | AnSlysis Batchb | 680-1L0 31L | Instument IDL | MSP2M |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIIln5 MLT5x5</td>
<td>WJ15</td>
<td>PFp BatbhbN.A5</td>
<td></td>
<td>L5b . i5 IDL</td>
<td>dq3T .d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td></td>
<td>InitIL WJght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11L21010 1127L</td>
<td></td>
<td></td>
<td>in5I WJght/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFp. d,</td>
<td>11L21010 1127L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>% RLc.L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. 15</th>
<th>LCSD Qu. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btemomethab5</td>
<td>49L</td>
<td>1L</td>
<td>12 - 1L4L</td>
<td>22M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>113T</td>
<td>103T</td>
<td>55 - 131L</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon t5i5 chlorid,</td>
<td>107L</td>
<td>9L</td>
<td>71 - 135b</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>108.</td>
<td>103T</td>
<td>5 - 11L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>9L</td>
<td>7L</td>
<td>40 - 1L5b</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>108.</td>
<td>101L</td>
<td>2 - 120.</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>5b</td>
<td>4L</td>
<td>142M</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>109L</td>
<td>103T</td>
<td>9 - 134L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroproprop5</td>
<td>112M</td>
<td>105b</td>
<td>7L - 12M</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>114L</td>
<td>106.</td>
<td>75 - 133T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>104L</td>
<td>9L</td>
<td>7L - 119L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>107L</td>
<td>99L</td>
<td>34 - 154L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>100.</td>
<td>97L</td>
<td>70 - 130.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>110.</td>
<td>101L</td>
<td>- 11L</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlx5chlorobut5diLn5</td>
<td>122M</td>
<td>113T</td>
<td>2 - 142M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>114L</td>
<td>106.</td>
<td>2 - 121L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLLthyl t5 -butyl ethb</td>
<td>113T</td>
<td>107L</td>
<td>77 - 121L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLLthyl5n5 Chlorid,</td>
<td>99L</td>
<td>93T</td>
<td>70 - 125b</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>111L</td>
<td>104L</td>
<td>3 - 11L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phtha5n5</td>
<td>112M</td>
<td>102M</td>
<td>4L - 135b</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>122M</td>
<td>112M</td>
<td>4 - 13T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-PPhyiphenol5n5</td>
<td>113T</td>
<td>107L</td>
<td>0 - 12M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>109L</td>
<td>104L</td>
<td>3 - 119L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>112M</td>
<td>104L</td>
<td>3 - 139L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFC-Butylbenz5n5</td>
<td>114L</td>
<td>105b</td>
<td>77 - 12M</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sty5n5</td>
<td>111L</td>
<td>104L</td>
<td>2 - 122M</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>11L</td>
<td>107L</td>
<td>0 - 124L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL515 chloethabn5</td>
<td>122M</td>
<td>112M</td>
<td>7L - 12M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu5n5</td>
<td>104L</td>
<td>97L</td>
<td>1 - 117L</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>111L</td>
<td>106.</td>
<td>72 - 131L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloroproprop5</td>
<td>101L</td>
<td>93T</td>
<td>73 - 12M</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tëchloroethbn5</td>
<td>114L</td>
<td>105b</td>
<td>4 - 115b</td>
<td>9L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tëchlorofluoromethab5</td>
<td>113T</td>
<td>99L</td>
<td>5b - 149L</td>
<td>13T</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/I

Lab Control Sample Duplicate Recovery Report - Batch: 680-186031I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 31L</th>
<th>An5ysis Batchb 680-1L0 31L</th>
<th>Instrument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b , ii5 IDL</td>
<td>pq3T .d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugL5</td>
<td>InitI W/ght/Vol:..</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DLt5 An5lyz5d, d</td>
<td>1112010010 1030</td>
<td></td>
<td>in5I W/ght/Vol:..</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L0 31L</th>
<th>An5ysis Batchb 680-1L0 31L</th>
<th>Instrument IDL</th>
<th>MSP2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b , ii5 IDL</td>
<td>pq3T .d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugL5</td>
<td>InitI W/ght/Vol:..</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DLt5 An5lyz5d, d</td>
<td>1112010010 1127L</td>
<td></td>
<td>in5I W/ght/Vol:..</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An5lyt5</th>
<th>% RLc.L</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Accp t5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl . cLi5t5</td>
<td>130.</td>
<td>117L</td>
<td>10 - 217L</td>
<td>10. 30.</td>
</tr>
<tr>
<td>Vinyl chlorid.</td>
<td>110.</td>
<td>104L</td>
<td>59 - 144L</td>
<td>5b 50.</td>
</tr>
<tr>
<td>Xyl5n5s, Toot5t5</td>
<td>111L</td>
<td>104L</td>
<td>4 - 11L</td>
<td>7L 30.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogFit5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenz5n5</td>
<td>104L</td>
<td>9L</td>
<td></td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethyl5</td>
<td>109L</td>
<td>100.</td>
<td></td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5 d, (Surr)L</td>
<td>104L</td>
<td>9L</td>
<td></td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186055l

<table>
<thead>
<tr>
<th>Compound</th>
<th>Results</th>
<th>Units</th>
<th>IDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b Slmp5 IDL</td>
<td>MB 680-1L0</td>
<td>55#23M</td>
<td></td>
</tr>
<tr>
<td>ClLnt MLit5x5</td>
<td>WJt5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dlt5 AnSty25d, d</td>
<td>11U3#2010 1154L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dlt5 PFp. d</td>
<td>11U3#2010 1154L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260BI

<table>
<thead>
<tr>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b . ii5 IDL</td>
<td>oq223.d,</td>
</tr>
<tr>
<td>inSI WJight/Volume:</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Results</th>
<th>Units</th>
<th>IDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Iyt5</td>
<td>R sult5</td>
<td>Qu I5</td>
<td>RL5</td>
</tr>
<tr>
<td>1,1,1,2-TLl5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,1-Tlchlooroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,2,2-TLl5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,2-Tlchlooroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,3-Tlchloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,4-Tlmethylbenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tot5l5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3,5-Tmethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2-But5nol5</td>
<td>10</td>
<td>UL</td>
<td>10</td>
</tr>
<tr>
<td>2-Chlorotouluen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>10</td>
<td>UL</td>
<td>10</td>
</tr>
<tr>
<td>4-Chlorotouluen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>4-MLthyl-2-pent5non5</td>
<td>10</td>
<td>UL</td>
<td>10</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Btambenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Btamochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Btmodichloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Btmoform.</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Btmoethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>C5 bon disulfid.</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 bon t5l5 chlorid,</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
</tbody>
</table>

TestAmerica Savannah
Quality Control Results

Method Blank - Batch: 680-186055i

<table>
<thead>
<tr>
<th>AnSly5</th>
<th>RLsult5</th>
<th>Qu.</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>HLx5chlorobut5dL5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>N-Phenylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>sCt-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Sty5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>TLL5 chloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Tolu5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloro5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>TCloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>TClorofluoromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Vinyl . cLlt5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Xyl5n5s, Tot5l5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrog5t5 | % RLCL | Acclp t5nCL LimitsF |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Butylfluorobenz5n5</td>
<td>91L</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>94L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Tolu5n5 d, (Surr)5</td>
<td>92M</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample / Lab Control Sample Duplicate Recovery Report - Batch: 680-186051

<table>
<thead>
<tr>
<th>LCS L5b SLmp5 IDL</th>
<th>LCS 680-1L0 55b9L</th>
<th>An5lysis Batbhb</th>
<th>680-1L0 55b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLt5 MLt5x5</td>
<td>WJt5</td>
<td>PFP BatbhbN.A5</td>
<td></td>
<td>L5b . i5 IDL</td>
<td>(q_{21.5}d,)</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugL5</td>
<td></td>
<td>InitLI WJght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11/13 010 0959L</td>
<td></td>
<td></td>
<td>in5I WJght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 PFP. d</td>
<td>11/13 010 0959L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS SD L5b SLmp5 IDL</th>
<th>LCS 680-1L0 55b20</th>
<th>An5lysis Batbhb</th>
<th>680-1L0 55b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLt5 MLt5x5</td>
<td>WJt5</td>
<td>PFP BatbhbN.A5</td>
<td></td>
<td>L5b . i5 IDL</td>
<td>(q_{21.7}d,)</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugL5</td>
<td></td>
<td>InitLI WJght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11/13 010 102M</td>
<td></td>
<td></td>
<td>in5I WJght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL5 PFP. d</td>
<td>11/13 010 102M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. i5</th>
<th>LCS Qu. i5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL5t chloroethaban5</td>
<td>104L</td>
<td>105b</td>
<td>1 - 12M</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tuchloroethaban5</td>
<td>9L</td>
<td>100</td>
<td>7L - 127L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL5t chloroethaban5</td>
<td>97L</td>
<td>9L</td>
<td>9 - 129L</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tuchloroethaban5</td>
<td>93T</td>
<td>9L</td>
<td>75 - 121L</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethaban5</td>
<td>100.</td>
<td>100</td>
<td>74 - 127L</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethaban5</td>
<td>906.</td>
<td>144L</td>
<td>2 - 141L</td>
<td>47L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethaban5</td>
<td>100.</td>
<td>99L</td>
<td>77 - 122M</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tichlorobenz5n5</td>
<td>111L</td>
<td>113T</td>
<td>0 - 132M</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tichlorobenz5n5</td>
<td>106.</td>
<td>106.</td>
<td>70 - 130.</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tichlorobenz5n5</td>
<td>92M</td>
<td>91L</td>
<td>0 - 135b</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tümethylbenz5n5</td>
<td>108.</td>
<td>105b</td>
<td>72 - 132M</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>99L</td>
<td>108.</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoe than5</td>
<td>9L</td>
<td>9L</td>
<td>0 - 121L</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>9L</td>
<td>93T</td>
<td>79 - 124L</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethaban5</td>
<td>9L</td>
<td>9L</td>
<td>- 132M</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethaban5, Tot5i5</td>
<td>100.</td>
<td>99L</td>
<td>134L</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethaban5</td>
<td>9L</td>
<td>9L</td>
<td>73 - 124L</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tümethylbenz5n5</td>
<td>109L</td>
<td>106.</td>
<td>72 - 133T</td>
<td>3T</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>104L</td>
<td>103T</td>
<td>7L - 125b</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroethaban5</td>
<td>93T</td>
<td>94L</td>
<td>75 - 120.</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>106.</td>
<td>101L</td>
<td>1 - 122M</td>
<td>4L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>108.</td>
<td>106.</td>
<td>55 - 157L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-ButSnion5</td>
<td>91L</td>
<td>91L</td>
<td>33 - 157L</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotolu en5</td>
<td>106.</td>
<td>104L</td>
<td>2 - 123T</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CHLXSnion5</td>
<td>101L</td>
<td>102M</td>
<td>34 - 1L1</td>
<td>(\beta)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotolu en5</td>
<td>104L</td>
<td>103T</td>
<td>3 - 122M</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-ML thyli-2-pent5non5</td>
<td>94L</td>
<td>9L</td>
<td>40 - 151L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcLton5</td>
<td>1L</td>
<td>91L</td>
<td>17 - 175b</td>
<td>1L</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnzn5</td>
<td>97L</td>
<td>9L</td>
<td>77 - 119L</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbmmobenz5non5</td>
<td>107L</td>
<td>108.</td>
<td>0 - 124L</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbmmochlorothaban5</td>
<td>9L</td>
<td>95b</td>
<td>10 - 150.</td>
<td>1L</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbmodichlorothaban5</td>
<td>9L</td>
<td>100.</td>
<td>7L - 127L</td>
<td>2M</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbmodiform.</td>
<td>11L</td>
<td>11L</td>
<td>2 - 133T</td>
<td>0.</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186055l

<table>
<thead>
<tr>
<th>LCS L5b SLmp5 IDL</th>
<th>LCS 680-1L0 55b9L</th>
<th>An5lysis Batchb 680-1L0 55b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiliNT5 ARCADIS U.S., Inc.L</td>
<td>L5b i5 IDL</td>
<td>ppF BatchbN.A5</td>
<td>UnitsF ug/L5</td>
<td>L5b, i5 IDL</td>
</tr>
<tr>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>1.0.</td>
<td>1.0.</td>
<td>1.0.</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
</tr>
<tr>
<td>DL5 PPf. d,</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
<td>11J32010 0959L</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

LCS L5b SLmp5 IDL LCS 680-1L0 55b20.

<table>
<thead>
<tr>
<th>LCS L5b SLmp5 IDL</th>
<th>LCS 680-1L0 55b20</th>
<th>An5lysis Batchb 680-1L0 55b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiliNT5 ARCADIS U.S., Inc.L</td>
<td>L5b i5 IDL</td>
<td>ppF BatchbN.A5</td>
<td>UnitsF ug/L5</td>
<td>L5b, i5 IDL</td>
</tr>
<tr>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
<td>WJt5</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>1.0.</td>
<td>1.0.</td>
<td>1.0.</td>
</tr>
<tr>
<td>DL5 An5lyz5d,</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
</tr>
<tr>
<td>DL5 PPf. d,</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
<td>11J32010 102M</td>
</tr>
</tbody>
</table>

% RLc.L

<table>
<thead>
<tr>
<th>An5lyt</th>
<th>LCS L5b SLmp5 IDL</th>
<th>LCS 680-1L0 55b20</th>
<th>An5lysis Batchb 680-1L0 55b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromomethab5</td>
<td>14L</td>
<td>1L1L</td>
<td>12 - 1L4L</td>
<td>9L</td>
<td>50.</td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>4L</td>
<td>7L</td>
<td>55 - 131L</td>
<td>10.</td>
<td>30.</td>
</tr>
<tr>
<td>C5 bon t55i chlorid,</td>
<td>102M</td>
<td>103T</td>
<td>71 - 135b</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>102M</td>
<td>100.</td>
<td>5 - 11L</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>13T</td>
<td>13T</td>
<td>40 - 1L5b</td>
<td>1L</td>
<td>50.</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>104L</td>
<td>104L</td>
<td>2 - 120.</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>100.</td>
<td>9L</td>
<td>4L - 142M</td>
<td>1L</td>
<td>50.</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethenb5</td>
<td>101L</td>
<td>103T</td>
<td>9 - 134L</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropenb5</td>
<td>101L</td>
<td>102M</td>
<td>7L - 12M</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>105b</td>
<td>106.</td>
<td>75 - 133T</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>94L</td>
<td>94L</td>
<td>7L - 119L</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>105b</td>
<td>108.</td>
<td>34 - 154L</td>
<td>1L</td>
<td>50.</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>106.</td>
<td>103T</td>
<td>- 11L</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>HLx5chlorobut5diL5n5</td>
<td>1106.</td>
<td>112M</td>
<td>2 - 142M</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>111L</td>
<td>109L</td>
<td>2 - 121L</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>100.</td>
<td>94L</td>
<td>77 - 121L</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid.</td>
<td>93T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>105b</td>
<td>101L</td>
<td>3 - 11L</td>
<td>3T</td>
<td>30.</td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>102M</td>
<td>104L</td>
<td>4L - 135b</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>111L</td>
<td>107L</td>
<td>4 - 13T</td>
<td>3T</td>
<td>30.</td>
</tr>
<tr>
<td>N-Propylbenz5n5</td>
<td>108.</td>
<td>105b</td>
<td>0 - 12M</td>
<td>4L</td>
<td>30.</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>109L</td>
<td>108.</td>
<td>3 - 119L</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1106.</td>
<td>108.</td>
<td>3 - 139L</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>sF-CButylbenz5n5</td>
<td>108.</td>
<td>106.</td>
<td>77 - 12M</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>Sty5n5</td>
<td>104L</td>
<td>101L</td>
<td>2 - 122M</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>114L</td>
<td>109L</td>
<td>0 - 124L</td>
<td>4L</td>
<td>30.</td>
</tr>
<tr>
<td>TL5 chloroethnb5</td>
<td>104L</td>
<td>106.</td>
<td>7L - 12M</td>
<td>2M</td>
<td>30.</td>
</tr>
<tr>
<td>Toluen5</td>
<td>99L</td>
<td>9L</td>
<td>1 - 117L</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethenb5</td>
<td>99L</td>
<td>95b</td>
<td>72 - 131L</td>
<td>5b</td>
<td>30.</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropenb5</td>
<td>104L</td>
<td>104L</td>
<td>73 - 12M</td>
<td>1L</td>
<td>30.</td>
</tr>
<tr>
<td>Tüchloroethenb5</td>
<td>9L</td>
<td>9L</td>
<td>4 - 115b</td>
<td>0.</td>
<td>30.</td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>90.</td>
<td>94L</td>
<td>5b - 149L</td>
<td>4L</td>
<td>50.</td>
</tr>
<tr>
<td>Vinyl . cL5t5</td>
<td>103T</td>
<td>100.</td>
<td>10 - 217L</td>
<td>3T</td>
<td>30.</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample II

Lab Control Sample Duplicate Recovery Report - Batch: 680-186055I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 55b9L</th>
<th>An5lysis Batchb 680-1L0 55b</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLnt MLt5x5</td>
<td>WJ5</td>
<td>PFp BatchbN.A5</td>
<td>L5b . il5 IDL</td>
<td>oq215.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugFL5</td>
<td>InitLI WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11J32010 0959L</td>
<td></td>
<td>in5I WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11J32010 0959L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 55b20.</th>
<th>An5lysis Batchb 680-1L0 55b</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLnt MLt5x5</td>
<td>WJ5</td>
<td>PFp BatchbN.A5</td>
<td>L5b . il5 IDL</td>
<td>oq217.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugFL5</td>
<td>InitLI WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11J32010 102M</td>
<td></td>
<td>in5I WJlight/Volume:: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11J32010 102M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AnSlyt5

<table>
<thead>
<tr>
<th>Vinyl chlorid.</th>
<th>103T</th>
<th>106.</th>
<th>59 - 144L</th>
<th>3T</th>
<th>50.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyl5n5s, Tot5l5</td>
<td>106.</td>
<td>103T</td>
<td>4 - 11L</td>
<td>2M</td>
<td>30.</td>
</tr>
</tbody>
</table>

SurrogFl5

<table>
<thead>
<tr>
<th>4-Brbromofluorobenz5n5</th>
<th>9L</th>
<th>94L</th>
<th>Acclp 15ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromofluoromethab5</td>
<td>94L</td>
<td>9L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluenu5 d, (Sur)</td>
<td>B4</td>
<td>94</td>
<td>75 - 120. L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS % RLcL</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Acclp 15ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>9L</td>
<td>94L</td>
<td>75 - 120. L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>94L</td>
<td>9L</td>
<td>75 - 120. L</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results!

Method Blank - Batch: 680-186057I

<table>
<thead>
<tr>
<th>AnSly5</th>
<th>RLSult5</th>
<th>Qu.</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL15 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL15 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tot515</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2-But5n5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>2-Chlorotolu5en</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2-H x non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>4-Chlorotolu5en</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>4-MLThy-2-pent5n5non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Btmbobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Btmbchloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Btmbdichloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Btmbform</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Btmbmethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 bon t515 chlorid</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroproopn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Instrument IDL</th>
<th>MSO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b ili IDL</td>
<td>0q224.d,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IniLi WJight/Volume:</th>
<th>5 mL5</th>
</tr>
</thead>
</table>

TestAmerica Savannah
Quality Control Results

Method Blank - Batch: 680-1860571

<table>
<thead>
<tr>
<th>Substance</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethane</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ethylbenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Isopropylbenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>MLthyl t-butyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Methyl5en5 Chlorid, m-Xyl5en5 & p-Xyl5en5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>Naphthalene5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>N-Fluorobenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>o-Xyl5en5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>s-Cyclohexylbenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Styrene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>t5 1-Butylbenzene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Toluene5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethane</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropene</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachloroethane5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Tetrachlorofluoromethane</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
</tr>
<tr>
<td>Xylenes5, Toluene5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Substance</th>
<th>% RLcL</th>
<th>Accdp t5ncl LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene5</td>
<td></td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>99L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5, (Surrogate)</td>
<td>103T</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Substance</th>
<th>UnitsF</th>
<th>ug/l5</th>
</tr>
</thead>
<tbody>
<tr>
<td>An5lysis Batchb</td>
<td>680-1L0</td>
<td>57L</td>
</tr>
<tr>
<td>PFP Batchb63 A5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument IDL MSO2M

<table>
<thead>
<tr>
<th>Substance</th>
<th>UnitsF</th>
<th>ug/l5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b II IDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5b . ii IS IDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitiWJightVolume:</td>
<td>5</td>
<td>mL5</td>
</tr>
<tr>
<td>inSI WJightVolume:</td>
<td>5</td>
<td>mL5</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186057I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 iDL</th>
<th>LCS 680-1L0 57L1L</th>
<th>An5lysis Batchb</th>
<th>680-1L0 57L</th>
<th>Instrument IDL</th>
<th>MSO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliLnt ML10x5</td>
<td>WJ15</td>
<td>PFP BatchbN.A5</td>
<td>UnitsF ugl5</td>
<td>L5b . iL5 iDL</td>
<td>0q21L.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>InitIL WLight/Volume:: 5 mL5</td>
<td>in5L WLight/Volume:: 5 mL5</td>
</tr>
<tr>
<td>DLT5 An5lyz25d,</td>
<td>11JJ3Z010 1014L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLT5 PFP. d</td>
<td>11JJ3Z010 1014L</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 iDL</th>
<th>LCSD 680-1L0 57L19L</th>
<th>An5lysis Batchb</th>
<th>680-1L0 57L</th>
<th>Instrument IDL</th>
<th>MSO2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliLnt ML10x5</td>
<td>WJ15</td>
<td>PFP BatchbN.A5</td>
<td>UnitsF ugl5</td>
<td>L5b . iL5 iDL</td>
<td>0q21L.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>InitIL WLight/Volume:: 5 mL5</td>
<td>in5L WLight/Volume:: 5 mL5</td>
</tr>
<tr>
<td>DLT5 An5lyz25d,</td>
<td>11JJ3Z010 1042M</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>DLT5 PFP. d</td>
<td>11JJ3Z010 1042M</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

% RLC.L

<table>
<thead>
<tr>
<th>AnSlyt5</th>
<th>LCS L</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. L</th>
<th>LCSD Qu. L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1.1-TL15 chloroethab5</td>
<td>102M</td>
<td>101L</td>
<td>1 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1-TLChloroethab5</td>
<td>99L</td>
<td>99L</td>
<td>7L - 127L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2.1-TL15 chloroethab5</td>
<td>102M</td>
<td>9L</td>
<td>9 - 129L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.1-TLChloroethab5</td>
<td>9L</td>
<td>97L</td>
<td>74 - 127L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1-TLChloroethab5</td>
<td>93T</td>
<td>92L</td>
<td>2 - 141L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.4-TLChloroethab5</td>
<td>100.</td>
<td>109L</td>
<td>0 - 135b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.7-TLChloroethab5</td>
<td>114L</td>
<td>108.</td>
<td>0 - 132M</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.8-TLChloroethab5</td>
<td>106.</td>
<td>100.</td>
<td>70 - 1306.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.9-TLChloroethab5</td>
<td>112M</td>
<td>109L</td>
<td>0 - 135b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.10-TLChloroethab5</td>
<td>110.</td>
<td>109L</td>
<td>72 - 132M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.11-TLChloroethab5</td>
<td>103T</td>
<td>104L</td>
<td>49 - 140.</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.12-TLChloroethab5</td>
<td>102M</td>
<td>101L</td>
<td>0 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.13-TLChloroethab5</td>
<td>107L</td>
<td>106.</td>
<td>79 - 124L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.14-TLChloroethab5</td>
<td>9L</td>
<td>97L</td>
<td>- 132M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.15-TLChloroethab5</td>
<td>100.</td>
<td>9L</td>
<td>- 134L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.16-TLChloroethab5</td>
<td>95b</td>
<td>95b</td>
<td>73 - 124L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.17-TLChloroethab5</td>
<td>105b</td>
<td>104L</td>
<td>72 - 133T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.18-TLChloroethab5</td>
<td>108.</td>
<td>104L</td>
<td>7L - 125b</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.19-TLChloroethab5</td>
<td>101L</td>
<td>100.</td>
<td>75 - 120.</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.1-TLChloroethab5</td>
<td>108.</td>
<td>105b</td>
<td>1 - 122M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.2-TLChloroethab5</td>
<td>108.</td>
<td>104L</td>
<td>55 - 157L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.3-TLChloroethab5</td>
<td>9L</td>
<td>93T</td>
<td>33 - 157L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.4-TLChloroethab5</td>
<td>108.</td>
<td>106.</td>
<td>2 - 123T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.5-TLChloroethab5</td>
<td>107L</td>
<td>103T</td>
<td>34 - 1L</td>
<td>8L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.6-TLChloroethab5</td>
<td>105b</td>
<td>108.</td>
<td>3 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.7-TLChloroethab5</td>
<td>99L</td>
<td>9L</td>
<td>40 - 151L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.8-TLChloroethab5</td>
<td>9L</td>
<td>90.</td>
<td>17 - 175b</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.9-TLChloroethab5</td>
<td>95b</td>
<td>9L</td>
<td>77 - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1-Pent5non5</td>
<td>109L</td>
<td>108.</td>
<td>0 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2-Pent5non5</td>
<td>101L</td>
<td>97L</td>
<td>10 - 150.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3-Pent5non5</td>
<td>101L</td>
<td>99L</td>
<td>7L - 127L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.4-Pent5non5</td>
<td>104L</td>
<td>104L</td>
<td>2 - 133T</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/ID

Lab Control Sample Duplicate Recovery Report - Batch: 680-186057L

<table>
<thead>
<tr>
<th>Method: 8260BI</th>
<th>Preparation: 5030BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b. iI5 IDL</td>
<td>MSO2M</td>
</tr>
<tr>
<td>L5b. iI5 IDL</td>
<td>oq21L.d,</td>
</tr>
<tr>
<td>L5b. iI5 IDL</td>
<td>in5I WJ/light/Volume: 5 mL5</td>
</tr>
<tr>
<td>L5b. iI5 IDL</td>
<td>in5I WJ/light/Volume: 5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 57L1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
</tr>
</tbody>
</table>

| DL5 An5lyz25d, | 11L1 132010 1014L |
| DL5 PFp. d | 11L1 132010 1014L |

<table>
<thead>
<tr>
<th>LCS D5b SLmpl5 IDL</th>
<th>LCS 680-1L0 57L19L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
</tr>
</tbody>
</table>

| DL5 An5lyz25d, | 11L1 132010 1042M |
| DL5 PFp. d | 11L1 132010 1042M |

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 57L1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
</tr>
</tbody>
</table>

| DL5 An5lyz25d, | 11L1 132010 1014L |
| DL5 PFp. d | 11L1 132010 1014L |

An5lysis Batch: 680-1L0 57L

<table>
<thead>
<tr>
<th>An5lysis Batch: 680-1L0 57L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFP BatbhbN.A5</td>
</tr>
<tr>
<td>UnitsF ugfL5</td>
</tr>
<tr>
<td>Instrument IDL</td>
</tr>
<tr>
<td>MSO2M</td>
</tr>
</tbody>
</table>

| L5b. iI5 IDL |
| oq21L.d, |
| in5I WJ/light/Volume: 5 mL5 |
| in5I WJ/light/Volume: 5 mL5 |

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 57L1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
</tr>
</tbody>
</table>

| DL5 An5lyz25d, | 11L1 132010 1014L |
| DL5 PFp. d | 11L1 132010 1014L |

% RLC-L

<table>
<thead>
<tr>
<th>An5lyt</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdmometab5</td>
<td>7L</td>
<td>9L</td>
<td>12 - 1L4L</td>
<td>20.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid.</td>
<td>7L</td>
<td>5b</td>
<td>55 - 131L</td>
<td>5L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon i5i5 chlorid,</td>
<td>99L</td>
<td>100.</td>
<td>71 - 135b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>103T</td>
<td>103T</td>
<td>5 - 11L</td>
<td>30.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroeth5b</td>
<td>105b</td>
<td>108.</td>
<td>40 - 1L5b</td>
<td>3T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>104L</td>
<td>100.</td>
<td>2 - 120.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorometh5b</td>
<td>102M</td>
<td>95b</td>
<td>4L - 142M</td>
<td>30.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>102M</td>
<td>100.</td>
<td>9 - 134L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroproven5</td>
<td>105b</td>
<td>102M</td>
<td>7L - 12M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochlorometh5b</td>
<td>110.</td>
<td>107L</td>
<td>75 - 133T</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromometh5b</td>
<td>97L</td>
<td>93T</td>
<td>7L - 119L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluorometh5b</td>
<td>101L</td>
<td>99L</td>
<td>34 - 154L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>106.</td>
<td>104L</td>
<td>11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlx5chlorobut5diLn5</td>
<td>123T</td>
<td>11L</td>
<td>2 - 142M</td>
<td>3b</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>92M</td>
<td>92M</td>
<td>2 - 121L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl t i5t butyl ethb</td>
<td>95b</td>
<td>94L</td>
<td>7 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl5n5 Chlorid.</td>
<td>91L</td>
<td>90.</td>
<td>70 - 125b</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>107L</td>
<td>103T</td>
<td>3 - 11L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>107L</td>
<td>102M</td>
<td>4L - 135b</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>106.</td>
<td>104L</td>
<td>4 - 13T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-PF6pybenz5n5</td>
<td>112M</td>
<td>112M</td>
<td>0 - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>103T</td>
<td>102M</td>
<td>3 - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-isopropyltoluen5</td>
<td>108.</td>
<td>105b</td>
<td>3 - 139L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>111L</td>
<td>108.</td>
<td>77 - 12M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>104L</td>
<td>102M</td>
<td>2 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>106.</td>
<td>104L</td>
<td>0 - 124L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL55 chloroeth5b</td>
<td>108.</td>
<td>107L</td>
<td>7L - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluen5</td>
<td>9L</td>
<td>97L</td>
<td>1 - 117L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroeth5n5</td>
<td>97L</td>
<td>95b</td>
<td>72 - 131L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloroproven5</td>
<td>106.</td>
<td>105b</td>
<td>73 - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5chloroeth5n5</td>
<td>103T</td>
<td>103T</td>
<td>4 - 115b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5chlorofluorometh5b</td>
<td>101L</td>
<td>100.</td>
<td>5b - 149L</td>
<td>1L</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl. cL5i5</td>
<td>90.</td>
<td>10 - 217L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample II
Lab Control Sample Duplicate Recovery Report - Batch: 680-186057I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>WJt5</th>
<th>UnitsF ugFL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>DLt5 AnSlyz5d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L0</th>
<th>57L19L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>DLt5 AnSlyz5d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS 680-1L0</th>
<th>57L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnSlysis Batch</td>
<td>680-1L0</td>
</tr>
</tbody>
</table>

| Method: 8260BI |
| Preparation: 5030BI |

<table>
<thead>
<tr>
<th>% RLcL</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vinyl chloride, Xyl5n5s, Tol5i5</th>
<th>9L</th>
<th>99L</th>
<th>59 - 144L</th>
<th>1L</th>
<th>50.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SurrogFL5</td>
<td>LCS % RLcL</td>
<td>LCSD % RLcL</td>
<td>Acclp 15ncL LimitsF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenz5n5</td>
<td>92M</td>
<td>92M</td>
<td>75 - 120.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>103T</td>
<td>101L</td>
<td>75 - 121L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene5 d, (Sur)</td>
<td>99</td>
<td>100</td>
<td>L</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Method Blank - Batch: 680-186094I

<table>
<thead>
<tr>
<th>An lty5</th>
<th>R suLt5</th>
<th>Qu l5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1,2,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2,3-Trichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2,4-Tiimethylbenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropl. n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2-Dibromobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Ton5l5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,3,5-Tiimethylbenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>2-But5non5</td>
<td>10.0</td>
<td>U</td>
<td>10.0</td>
</tr>
<tr>
<td>2-Chlorotoluene5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>1.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>4-Chlorotoluene5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>4-MLthyl-2-pent5non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ac thon5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Btmobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Btmochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>C5 ben disulfid</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 ben l5l5 chlorid</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Chlorobenz25n5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Method: 8260BI
Preparation: 5030BI

Instrument IDL MSPF
L5b . i5 IDL pq37T7.d, L5b . ii5 IDL
Init. WJght/Vol: 5 mL5
inSl WJght/Vol: 5 mL5
Quality Control Results

Method Blank - Batch: 680-186094L

<table>
<thead>
<tr>
<th>Substance</th>
<th>Dilution</th>
<th>Result rL</th>
<th>Qu.</th>
<th>Result rL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Diethyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Hlx5chlorbut5diLn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>MLThyl t5 butyl ethyl</td>
<td>10.0</td>
<td>UL</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>MLThyl5n5 Chlorid.</td>
<td>5.0</td>
<td>UL</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>2.0</td>
<td>UL</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>5.0</td>
<td>UL</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>N-Ft6pbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>sFt-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>StyMn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>TL5 chloroeth5n5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Tüchloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Tüchlorofluormethab5</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Vinyl . cLl5</td>
<td>2.0</td>
<td>UL</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0</td>
<td>U</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Xyl5n5s, Tot5l5</td>
<td>2.0</td>
<td>UL</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

SurrogFt5

<table>
<thead>
<tr>
<th>Substance</th>
<th>% rLcL</th>
<th>Accdp t5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bbnofluorobenz5n5</td>
<td>91L</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>9L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene 5d, (Sur)5L</td>
<td>95b</td>
<td>75 - 120.</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Substance</th>
<th>IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b iil IDL</td>
<td>pqT7.d,</td>
<td></td>
</tr>
<tr>
<td>L5b . ii5 IDL</td>
<td>5 mL5</td>
<td></td>
</tr>
<tr>
<td>Initi Wight/Volume:</td>
<td>5 mL5</td>
<td></td>
</tr>
</tbody>
</table>

Units ug/L

Page 119 of 142
<table>
<thead>
<tr>
<th>AnSyt5</th>
<th>% RLC.L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. i5</th>
<th>LCSD Qu. i5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1,1.2-TL5 chloroethab5</td>
<td>101L</td>
<td>100.</td>
<td>1 - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,1-Tlicloroethab5</td>
<td>105b</td>
<td>102M</td>
<td>7L - 127L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,2,2-TL5 chloroethab5</td>
<td>9L</td>
<td>9 - 129L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1,2-Tlicloroethab5</td>
<td>90.</td>
<td>75 - 121L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>101L</td>
<td>9L</td>
<td>74 - 127L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethin5</td>
<td>109L</td>
<td>103T</td>
<td>2 - 141L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>102M</td>
<td>99L</td>
<td>77 - 122M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tliclorobenz5n5</td>
<td>0.</td>
<td>1L</td>
<td>0 - 132M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>7L</td>
<td>70 - 130.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>7L</td>
<td>90.</td>
<td>34 - 1L1L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tliclorobenz5n5</td>
<td>95b</td>
<td>92M</td>
<td>72 - 133T</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>97L</td>
<td>97L</td>
<td>7L - 125b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>9.</td>
<td>90.</td>
<td>75 - 120.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>9L</td>
<td>9L</td>
<td>1 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>111L</td>
<td>106.</td>
<td>55 - 157L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-But5nol5</td>
<td>94L</td>
<td>9L</td>
<td>33 - 157L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotolu5n5</td>
<td>9L</td>
<td>95b</td>
<td>2 - 123T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotolu5n5</td>
<td>97L</td>
<td>95b</td>
<td>3 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MLthyl-2-pent5non5</td>
<td>5b</td>
<td>7L</td>
<td>40 - 1L5L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcLton5</td>
<td>97L</td>
<td>101L</td>
<td>17 - 175b</td>
<td>4L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbn5n5</td>
<td>97L</td>
<td>9L</td>
<td>77 - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnobenz5n5</td>
<td>9L</td>
<td>9L</td>
<td>0 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmochloromethab5</td>
<td>93T</td>
<td>9L</td>
<td>10 - 150.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmodichloromethab5</td>
<td>97L</td>
<td>9L</td>
<td>7L - 127L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbn of rform.</td>
<td>101L</td>
<td>100.</td>
<td>2 - 133T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186094

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 94L</th>
<th>An5lysis Batchb 680-1L0 94L</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLlnt MLT5x5</td>
<td>WJ5</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pq379.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitL Wjght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d</td>
<td>111132010 0949L</td>
<td></td>
<td>In5i Wjght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFP</td>
<td>d,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L0 94Lb</th>
<th>An5lysis Batchb 680-1L0 94L</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLlnt MLT5x5</td>
<td>WJ5</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pq3T1.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitL Wjght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d</td>
<td>111132010 1019L</td>
<td></td>
<td>In5i Wjght/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFP</td>
<td>d,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An5ly5</th>
<th>% RLC,L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCS Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btromomethab5</td>
<td>0</td>
<td>45b</td>
<td>12 - 1L4L</td>
<td>29L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid</td>
<td>106.</td>
<td>100.</td>
<td>55 - 131L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon tis5 chlorid</td>
<td>112M</td>
<td>106.</td>
<td>71 - 135b</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>95b</td>
<td>95b</td>
<td>5 - 11L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>99L</td>
<td>9L</td>
<td>40 - 1L5b</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorormfon.</td>
<td>100.</td>
<td>9L</td>
<td>2 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>92M</td>
<td>7L</td>
<td>4L - 142M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroeth5n5</td>
<td>99L</td>
<td>97L</td>
<td>9 - 134L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroprop5n5</td>
<td>9L</td>
<td>9L</td>
<td>7L - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>100.</td>
<td>9L</td>
<td>75 - 133T</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>91L</td>
<td>91L</td>
<td>7L - 119L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>99L</td>
<td>9L</td>
<td>34 - 154L</td>
<td>12M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>110.</td>
<td>112M</td>
<td>70 - 130.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>97L</td>
<td>93T</td>
<td>- 11L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLx5chlorobut5n5diLn5</td>
<td>101L</td>
<td>97L</td>
<td>2 - 142M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>102M</td>
<td>99L</td>
<td>2 - 121L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLLthyl t5 t-butyl ethb</td>
<td>99L</td>
<td>9L</td>
<td>77 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLLthyl5n5 Chlorid.</td>
<td>9L</td>
<td>9L</td>
<td>70 - 125b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>9L</td>
<td>9L</td>
<td>3 - 11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phtha5n5</td>
<td>71L</td>
<td>74L</td>
<td>4L - 135b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>93T</td>
<td>91L</td>
<td>4 - 13T</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-PPhylbenz5n5</td>
<td>101L</td>
<td>99L</td>
<td>0 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>97L</td>
<td>9L</td>
<td>3 - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>9L</td>
<td>93T</td>
<td>3 - 139L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>9L</td>
<td>94L</td>
<td>77 - 12M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>9L</td>
<td>9L</td>
<td>2 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5-Butylbenz5n5</td>
<td>101L</td>
<td>9L</td>
<td>0 - 124L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL5 Chloroethabn5</td>
<td>106.</td>
<td>102M</td>
<td>7L - 12M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene5</td>
<td>9L</td>
<td>9L</td>
<td>1 - 117L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethabn5</td>
<td>105b</td>
<td>103T</td>
<td>72 - 131L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloroprop5n5</td>
<td>97L</td>
<td>9L</td>
<td>73 - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUCloroethabn5</td>
<td>101L</td>
<td>97L</td>
<td>4 - 115b</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUClorofluoromethab5</td>
<td>151L</td>
<td>14L</td>
<td>5b - 149L</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*°L
Quality Control Resultsl

Lab Control Sample/I
Lab Control Sample Duplicate Recovery Report - Batch: 680-186094I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 94L</th>
<th>An5lysis Batchb 680-1L0 94L</th>
<th>Inst5ment IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLnt MLt ix5</td>
<td>WJ5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . i5 IDL</td>
<td>pq379.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ug/L5</td>
<td>InitI WLight/Volume:. 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11J32010 0949L</td>
<td></td>
<td>in5I WLight/Volume:. 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11J32010 0949L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L0 94Lb</th>
<th>An5lysis Batchb 680-1L0 94L</th>
<th>Inst5ment IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLnt MLt ix5</td>
<td>WJ5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . i5 IDL</td>
<td>pq3T1.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ug/L5</td>
<td>InitI WLight/Volume:. 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11J32010 1019L</td>
<td></td>
<td>in5I WLight/Volume:. 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11J32010 1019L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlyt5</th>
<th>% RLc. L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. 15</th>
<th>LCSD Qu. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl . cLi5t5</td>
<td>105b</td>
<td>105b</td>
<td>10 - 217L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid.</td>
<td>107L</td>
<td>101L</td>
<td>59 - 144L</td>
<td>5b</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl5n5s, Tots5t5</td>
<td>9L</td>
<td>97L</td>
<td>4 - 11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogFit5</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Acclp t5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenz5n5</td>
<td>90.</td>
<td>90.</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>100.</td>
<td>99L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene d, (Surr)</td>
<td>97</td>
<td>95b</td>
<td>L</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-1861471

<table>
<thead>
<tr>
<th>Component</th>
<th>Result</th>
<th>Units</th>
<th>Method: 8260BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU Slpml5 IDL</td>
<td>MB 680-1L 147L</td>
<td>1.0.</td>
<td>Instrument IDL MSOL</td>
</tr>
<tr>
<td>Clrnt ML5x5</td>
<td>WJ15</td>
<td></td>
<td>L5b ii5 IDL oo237.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td></td>
<td>IniLi WJight Volume: 5 mL</td>
</tr>
<tr>
<td>DL5 AnSy25d</td>
<td>11L14L2010 1235b</td>
<td></td>
<td>inSI WJight Volume: 5 mL</td>
</tr>
<tr>
<td>DL5 PFp. d</td>
<td>11L14L2010 1235b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AnSy5 | RLsult5 | Qu. | RL5 |
1.1,1,2-TL5 chloroethab5 | 1.0. | U | 0.0. |
1.1,1-Tlchloroethab5 | 1.0. | U | 0.0. |
1.1,2,2-TL5 chloroethab5 | 1.0. | U | 0.0. |
1.1,2-Tlchloroethab5 | 1.0. | U | 0.0. |
1.1-Dichloroethab5 | 1.0. | U | 0.0. |
1.1-Dichloroethbn5 | 1.0. | U | 0.0. |
1.1-Dichloropropen5 | 1.0. | U | 0.0. |
1.2,3-Tlchlorobenz5n5 | 1.0. | U | 0.0. |
1.2,3-Tlchlorobprop. n5 | 1.0. | U | 0.0. |
1.2,4-Tlchlorobenz5n5 | 1.0. | U | 0.0. |
1.2,4-Tlmenylbenz5n5 | 1.0. | U | 0.0. |
1.2-Dibromo-3-Chloroprop. n5 | 1.0. | U | 0.0. |
1.2-Dibromoethab5 | 1.0. | U | 0.0. |
1.2-Dibromobenz5n5 | 1.0. | U | 0.0. |
1.2-Dichloroethab5 | 1.0. | U | 0.0. |
1.2-Dichloroethbn5, Tot515 | 1.0. | U | 0.0. |
1.2-Dichloroprop. n5 | 1.0. | U | 0.0. |
1.3,5-Tlmenylbenz5n5 | 1.0. | U | 0.0. |
1.3-Dichlorobenz5n5 | 1.0. | U | 0.0. |
1.3-Dichloroprop. n5 | 1.0. | U | 0.0. |
1.4-Dichlorobenz5n5 | 1.0. | U | 0.0. |
2.2-Dichloroprop. n5 | 1.0. | U | 0.0. |
2-But5n5 | 1.0. | U | 0.0. |
2-Chlorotoluene5 | 1.0. | U | 0.0. |
2-H x non5 | 1.0. | U | 0.0. |
4-Chlorotoluene5 | 1.0. | U | 0.0. |
4-MLHyl-2-pent5non5 | 1.0. | U | 0.0. |
Ac ton5 | 1.0. | U | 0.0. |
B nz n5 | 1.0. | U | 0.0. |
Btmobenz5n5 | 1.0. | U | 0.0. |
Btmochloromethab5 | 1.0. | U | 0.0. |
Btmochloromethab5 | 1.0. | U | 0.0. |
Btmofom. | 1.0. | U | 0.0. |
Btmomethab5 | 1.0. | U | 0.0. |
C5 bon disulfid | 1.0. | U | 0.0. |
C5 bon f5l5 chlorid | 1.0. | U | 0.0. |
Chlorobenz5n5 | 1.0. | U | 0.0. |
Chloroethab5 | 1.0. | U | 0.0. |
Chlorofom. | 1.0. | U | 0.0. |
Chloromethab5 | 1.0. | U | 0.0. |
cis-1,2-Dichloroethbn5 | 1.0. | U | 0.0. |
cis-1,3-Dichloropropen5 | 1.0. | U | 0.0. |
Dibromochloromethab5 | 1.0. | U | 0.0. |
Quality Control Results

Method Blank - Batch: 680-186147L

<table>
<thead>
<tr>
<th>Substance</th>
<th>AnSly5</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>HLx5chlorbut5diLn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>MLthyl t5 t-butyl ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>MLThyl5n5 Chlorid, m-Xyl5n5 & p-Xyl5n5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>5.0</td>
<td>UL</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>N-Firthylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>p-Isopropytoluen5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>sFe-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 1-Butylbenz5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TL5 chloroethbn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tolu5n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tüchloethbn5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tüchlofluoromethab5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Vinyl . clt5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Xyl5n5s, Tot5l5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>SurrogF5</td>
<td></td>
<td>% RLcL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bbmo fluorobenz5n5</td>
<td>91L</td>
<td></td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>90.</td>
<td></td>
<td>75 - 121L</td>
<td></td>
</tr>
<tr>
<td>Tolu5n5 d, (Surrl)</td>
<td>91</td>
<td></td>
<td>75 - 120.</td>
<td>L</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b . i5 IDL</td>
<td>q237.d,</td>
</tr>
<tr>
<td>Instil WJight/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>inSi WJight/Volume:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

Page 124 of 142
Quality Control Results

Lab Control Sample/I
Lab Control Sample Duplicate Recovery Report - Batch: 680-186147I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 147L</th>
<th>AnSlysis Batchb 680-1L 147L</th>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt ML5x5</td>
<td>WJ15</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>oq229.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ug/L5</td>
<td>InitILI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11/14/2010 1041L</td>
<td></td>
<td>in5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11/14/2010 1041L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 147L</th>
<th>AnSlysis Batchb 680-1L 147L</th>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiILnt ML5x5</td>
<td>WJ15</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>oq231.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ug/L5</td>
<td>InitILI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11/14/2010 1109L</td>
<td></td>
<td>in5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11/14/2010 1109L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% RLcL</th>
<th>AnSlyt5</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL15 chloroethab5</td>
<td>104L</td>
<td>106</td>
<td>1 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tlicloroethab5</td>
<td>9L</td>
<td>100</td>
<td>7L - 127L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL15 chloroethab5</td>
<td>9L</td>
<td>94L</td>
<td>9 - 129L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tlicloroethab5</td>
<td>97L</td>
<td>94L</td>
<td>75 - 121L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>97L</td>
<td>97L</td>
<td>74 - 127L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethin5</td>
<td>906.</td>
<td>3T</td>
<td>2 - 141L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichlororopen5</td>
<td>99L</td>
<td>9L</td>
<td>77 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tliclorobenz5n5</td>
<td>112M</td>
<td>111L</td>
<td>0 - 132M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tlicloroprop. n5</td>
<td>106.</td>
<td>100</td>
<td>70 - 1306.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tliclorobenz5n5</td>
<td>95b</td>
<td>93T</td>
<td>0 - 135b</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tliclorbenz5n5</td>
<td>104L</td>
<td>106.</td>
<td>72 - 132M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>108.</td>
<td>103T</td>
<td>49 - 140.</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromethab5</td>
<td>99L</td>
<td>95b</td>
<td>0 - 121L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>95b</td>
<td>94L</td>
<td>79 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>99L</td>
<td>99L</td>
<td>- 132M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethin5, Tol5</td>
<td>95b</td>
<td>9L</td>
<td>- 134L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>94L</td>
<td>94L</td>
<td>73 - 124L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tliclorobenz5n5</td>
<td>105b</td>
<td>109L</td>
<td>72 - 133T</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>102M</td>
<td>103T</td>
<td>7L - 125b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>95b</td>
<td>93T</td>
<td>75 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>102M</td>
<td>105b</td>
<td>1 - 122M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>106.</td>
<td>105b</td>
<td>55 - 157L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-But5non5</td>
<td>9L</td>
<td>91L</td>
<td>33 - 157L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluen5</td>
<td>104L</td>
<td>105b</td>
<td>2 - 123T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hlx5non5</td>
<td>106.</td>
<td>101L</td>
<td>34 - 1L1L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluen5</td>
<td>104L</td>
<td>105b</td>
<td>3 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MLthy-2-pent5non5</td>
<td>9L</td>
<td>94L</td>
<td>40 - 151L</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcLton5</td>
<td>2M</td>
<td>77L</td>
<td>17 - 175b</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnz5n5</td>
<td>9L</td>
<td>95b</td>
<td>77 - 119L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bttmobenz5n5</td>
<td>106.</td>
<td>109L</td>
<td>0 - 124L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bttmochloromethab5</td>
<td>95b</td>
<td>95b</td>
<td>10 - 150.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bttmodichloromethab5</td>
<td>100.</td>
<td>97L</td>
<td>7L - 127L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bttmoeform</td>
<td>1106.</td>
<td>109L</td>
<td>2 - 133T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186147I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 147L</th>
<th>An5lysis Batchb 680-1L 147L</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLnt MLtx5x5</td>
<td>WJ15</td>
<td>PFp BatchhN.A5</td>
<td>L5b . ii5 IDL</td>
<td>oq229.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitLI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d</td>
<td>1111412010 1041L</td>
<td></td>
<td>in5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFp. d</td>
<td>1111412010 1041L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 147L</th>
<th>An5lysis Batchb 680-1L 147L</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiiLnt MLtx5x5</td>
<td>WJ15</td>
<td>PFp BatchhN.A5</td>
<td>L5b . ii5 IDL</td>
<td>oq231.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitLI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d</td>
<td>1111412010 1109L</td>
<td></td>
<td>in5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFp. d</td>
<td>1111412010 1109L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An5lyt5

<table>
<thead>
<tr>
<th>An5lyt5</th>
<th>% RLC.L</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCSL</td>
<td>LCSDL</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Btmomethab5</td>
<td>113T</td>
</tr>
<tr>
<td>C5 bon disulfid</td>
<td>0.</td>
</tr>
<tr>
<td>C5 bon t5I5 chlorid</td>
<td>103T</td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>9L</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>111L</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>102M</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>92M</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethab5</td>
<td>9L</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>103T</td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>108</td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>9L</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>102M</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>103T</td>
</tr>
<tr>
<td>HLx5chlorobut5dI5n5</td>
<td>115b</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>108</td>
</tr>
<tr>
<td>MLathy1 t5 butyl ethb</td>
<td>99L</td>
</tr>
<tr>
<td>MLathy15n5 Chlorid.</td>
<td>94L</td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>102M</td>
</tr>
<tr>
<td>M. phtha5n5</td>
<td>105b</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>107L</td>
</tr>
<tr>
<td>N-Phpybenz5n5</td>
<td>104L</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>107L</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>107L</td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>106</td>
</tr>
<tr>
<td>StyMn5</td>
<td>102M</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>108</td>
</tr>
<tr>
<td>TL15 chloroethab5</td>
<td>105b</td>
</tr>
<tr>
<td>Toluen5</td>
<td>97L</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethab5</td>
<td>93T</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>105b</td>
</tr>
<tr>
<td>Tüchloroethab5</td>
<td>9L</td>
</tr>
<tr>
<td>Tüchloorofluoromethab5</td>
<td>93T</td>
</tr>
<tr>
<td>Vinyl . cLi5I5</td>
<td>104L</td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/II
Lab Control Sample Duplicate Recovery Report - Batch: 680-186147I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 147L</th>
<th>An5lysis Batchb 680-1L 147L</th>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLn5 MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . i5 IDL</td>
<td>oq229.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugFL5</td>
<td>InitLI WLight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11LDI2010 1041L</td>
<td></td>
<td>in5L WLight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11LDI2010 1041L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 147L9</th>
<th>An5lysis Batchb 680-1L 147L</th>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLn5 MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . i5 IDL</td>
<td>oq231.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugFL5</td>
<td>InitLI WLight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 An5lyz5d,</td>
<td>11LDI2010 1109L</td>
<td></td>
<td>in5L WLight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp. d</td>
<td>11LDI2010 1109L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AnSyt5</th>
<th>% RLcL</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl chlorid,</td>
<td>9L</td>
<td>99L</td>
<td>59 - 144L</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyl5n5s, Tot515</td>
<td>103T</td>
<td>104L</td>
<td>4 - 11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogFL5</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Acclp 15ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-fluorobenz5n5</td>
<td>94L</td>
<td>95b</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>93T</td>
<td>91L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5 d, (Sur)JL</td>
<td>93T</td>
<td>93T</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>An lyt5</td>
<td>R sult5</td>
<td>Qu I5</td>
<td>RL5</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>1,1,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,1-Tlchloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,2,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1,2-Tlchloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,3-Tlchloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tol5I5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3,5-Tlchlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2-But5n5</td>
<td>10</td>
<td>UL</td>
<td>10</td>
</tr>
<tr>
<td>2-Chlorotolu5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>4-Chlorotolu5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>4-MLhyl-2-pent5non5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Brm5benz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Brm5chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Brm5dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Brm5form.</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Brm5ethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>C5 bon disulfid.</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 bon l5I5 chlorid.</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
<tr>
<td>Dibromochloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186273I

<table>
<thead>
<tr>
<th>Substance</th>
<th>Dl</th>
<th>Qu.</th>
<th>RLs</th>
<th>RLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b SLmp5 IDL</td>
<td>MB 680-1L 273°L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CliLnt MLt5x5</td>
<td>WJt5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLt5 AnSlyz5d, d</td>
<td>111L 2010 1259L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLt5 PFp.</td>
<td>111L 2010 1259L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AnSly5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: 8260BI

<table>
<thead>
<tr>
<th>Preparation: 5030BI</th>
<th>Instrument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b . i5 IDL</td>
<td>oq2M.d,</td>
<td></td>
</tr>
<tr>
<td>Initi WJigt/Volume: 5 mL5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Dl</th>
<th>Qu.</th>
<th>RLs</th>
<th>RLs</th>
<th>% RLcL</th>
<th>Accq t5nC LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>91.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>DiEthyl ethb</td>
<td>10.</td>
<td>UL</td>
<td></td>
<td></td>
<td>92.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>HLx5chlorobut5diLn5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>92.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>91.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>MLthyl t5 1-butyl ethb</td>
<td>10.</td>
<td>UL</td>
<td></td>
<td></td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>MLthyl5n5 Chlorid,</td>
<td>5.0.</td>
<td>UL</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>2.0.</td>
<td>UL</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>N. phtal5n5</td>
<td>5.0.</td>
<td>UL</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>N-FIPipybenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>92.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>α-Xyl5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>91.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>91.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>sCt-Butylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>t5 1-Butylbenz5n5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>TL5 chloridebn5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Tolu5en</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>92.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>90.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>90.0</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Tüchloethbn5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>92.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Vinyl . cL5t5</td>
<td>2.0.</td>
<td>UL</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Vinyl chlorid,</td>
<td>1.0.</td>
<td>U</td>
<td></td>
<td></td>
<td>93.0</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Xyl5n5s, Tot5t5</td>
<td>2.0.</td>
<td>UL</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Results

Lab Control Sample Duplicate Recovery Report - Batch: 680-186273I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 273T'L</th>
<th>An5ysis Batch b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliLnt ML5x5</td>
<td>WJl5</td>
<td>PPf Ba/bNhN.A5</td>
<td>L5b . i5l IDL</td>
<td>oq273.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ug/l5</td>
<td>InitIL Wj/h/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d, d</td>
<td>111L 2010 0952M</td>
<td></td>
<td>in5l Wj/h/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFp. d</td>
<td>111L 2010 0952M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 273T'L</th>
<th>An5ysis Batch b</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CliLnt ML5x5</td>
<td>WJl5</td>
<td>PPf Ba/bNhN.A5</td>
<td>L5b . i5l IDL</td>
<td>oq275.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ug/l5</td>
<td>InitIL Wj/h/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d, d</td>
<td>111L 2010 1021L</td>
<td></td>
<td>in5l Wj/h/Volume:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFp. d</td>
<td>111L 2010 1021L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An5yt5

1,1,1,2-TLI5 chloroethab5	100. 105b 1 - 12M 5b 30.
1,1-Tlchloroethab5	93T 9L 7L - 127L 4L 30.
1,1,2,2-TLI5 chloroethab5	94L 9L 9 - 129L 4L 30.
1,1,2-Tlchloroethab5	92M 95b 75 - 121L 3T 30.
1,1-Dichloroethab5	9L 9L 74 - 127L 0. 30.
1,1-Dichloroethab5	9L 9L 2 - 141L 2M 30.
1,1-Dichloroethab5	9L 9L 77 - 122M 3T 30.
1,2,3-Tlchlorobenz5n5	111L 11L 0 - 132M 4L 30.
1,2,3-Tlchloroprop. n5	103T 106. 70 - 130. 3T 30.
1,2,4-Tlchlorobenz5n5	91L 9L 0 - 135b 7L 30.
1,2,4-Tlthymethaben5n5	103T 104L 72 - 132M 1L 30.
1,2-Dibromo-3-Chloroprop. n5	102M 106. 49 - 140. 3T 30.
1,2-Dibromoethab5	93T 99L 0 - 121L 30.
1,2-Dichlorobenz5n5	93T 95b 79 - 124L 3T 30.
1,2-Dichloroethab5	93T 97L - 132M 5b 30.
1,2-Dichloroethab5	9L 9L - 134L 1L 30.
1,2-Dichloroprop. n5	91L 92M 73 - 124L 2M 30.
1,3,5-Tlthymethaben5n5	104L 106. 72 - 133T 1L 30.
1,3-Dichlorobenz5n5	101L 103T 7L - 125b 2M 30.
1,3-Dichloroprop. n5	94L 75 - 1206. 30.
1,4-Dichlorobenz5n5	101L 102M 1 - 122M 1L 30.
2,2-Dichloroprop. n5	104L 102M 55 - 157L 2M 30.
2-But5non5	9L 91L 33 - 157L 2M 30.
2-Chlorotolu5n5	103T 104L 2 - 123T 1L 30.
2-HLX5non5	97L 102M 34 - 1L1L 30.
4-Chlorotolu5n5	99L 104L 3 - 122M 4L 30.
4-Methyl-2-pent5non5	90. 95b 40 - 151L 30.
AcLt5n5	74L 4L 17 - 175b 12M 50.
Bbn5n5	92M 9L 77 - 119L 4L 30.
Btmobenz5n5	105b 110. 0 - 124L 4L 30.
Btmochloromethab5	92M 94L 10 - 150. 3T 30.
Btmodchloromethab5	92M 9L 7L - 127L 30.
Btmoform5	106. 109L 2 - 133T 2M 30.
Quality Control Results

Lab Control Sample
Lab Control Sample Duplicate Recovery Report - Batch: 680-186273L

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 273T</th>
<th>An5lysis Batchb 680-1L 273T</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClLnt MLT5x5</td>
<td>WJt5</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>oq273.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitILI WJlight/Volume:.</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11JL 2010 0952M</td>
<td></td>
<td>in5I WJlight/Volume:.</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11JL 2010 0952M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 273T</th>
<th>An5lysis Batchb 680-1L 273T</th>
<th>Instument IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClLnt MLT5x5</td>
<td>WJt5</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>oq275.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitILI WJlight/Volume:.</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11JL 2010 1021L</td>
<td></td>
<td>in5I WJlight/Volume:.</td>
<td>5 mL5</td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11JL 2010 1021L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An5lyt5</th>
<th>% RLC.L</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. i5</th>
<th>LCSD Qu. i5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromomethanb5</td>
<td>3T</td>
<td>5b</td>
<td>12 - 1L4L</td>
<td>3T</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>7L</td>
<td>5b</td>
<td>55 - 131L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon t5i5 chlorid,</td>
<td>94L</td>
<td>99L</td>
<td>71 - 135b</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>97L</td>
<td>100.</td>
<td>5 - 11L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>7L</td>
<td>1L</td>
<td>40 - 1L5b</td>
<td>19L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>101L</td>
<td>103T</td>
<td>2 - 120.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>4L</td>
<td>142M</td>
<td>0.</td>
<td></td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethn5</td>
<td>100.</td>
<td>100.</td>
<td>9 - 134L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropan5</td>
<td>9L</td>
<td>102M</td>
<td>7L - 12M</td>
<td>30.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethab5</td>
<td>104L</td>
<td>108.</td>
<td>75 - 133T</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethab5</td>
<td>90.</td>
<td>95b</td>
<td>7L - 119L</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>101L</td>
<td>9L</td>
<td>34 - 154L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>100.</td>
<td>103T</td>
<td>-11L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLx5chlorobut5dlLn5</td>
<td>113T</td>
<td>11L</td>
<td>2 - 142M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>106.</td>
<td>109L</td>
<td>2 - 121L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl t5 t-butyl ethb</td>
<td>99L</td>
<td>102M</td>
<td>77 - 121L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl5n5 Chlorid.</td>
<td>9L</td>
<td>95b</td>
<td>70 - 125b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xyl55n5 & p-Xyl55n5</td>
<td>101L</td>
<td>102M</td>
<td>3 - 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phthal5n5</td>
<td>102M</td>
<td>110.</td>
<td>4L - 135b</td>
<td>7L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>104L</td>
<td>105b</td>
<td>4 - 13T</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Pentylbenz5n5</td>
<td>102M</td>
<td>105b</td>
<td>0 - 12M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Xyl5n5</td>
<td>103T</td>
<td>107L</td>
<td>3 - 119L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>105b</td>
<td>105b</td>
<td>3 - 139L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFe-Butilbenz5n5</td>
<td>103T</td>
<td>103T</td>
<td>77 - 12M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sty5n</td>
<td>102M</td>
<td>103T</td>
<td>2 - 122M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>109L</td>
<td>109L</td>
<td>0 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLI5 chloroethn5</td>
<td>101L</td>
<td>106.</td>
<td>7L - 12M</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene5</td>
<td>94L</td>
<td>9L</td>
<td>1 - 117L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichlorothn5</td>
<td>97L</td>
<td>95b</td>
<td>72 - 131L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>97L</td>
<td>101L</td>
<td>73 - 12M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchlorothn5</td>
<td>91L</td>
<td>9L</td>
<td>4 - 115b</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchloorofluoromethab5</td>
<td>77L</td>
<td>0.</td>
<td>5b - 149L</td>
<td>5b</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl . cL5T5</td>
<td>101L</td>
<td>102M</td>
<td>10 - 217L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample(s)

Lab Control Sample Duplicate Recovery Report - Batch: 680-186273L

<table>
<thead>
<tr>
<th>RCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 273T</th>
<th>An5lysis Batch 680-1L 273T</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cllnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . il5 IDL</td>
<td>oq273.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitLi WLight/Volume:: 5 mL5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 273T</th>
<th>An5lysis Batch 680-1L 273T</th>
<th>Inst5ment IDL</th>
<th>MSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cllnt MLt ix5</td>
<td>WJt5</td>
<td>PFp Batch: N/A5</td>
<td>L5b . il5 IDL</td>
<td>oq275.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0</td>
<td>UnitsF ugFL5</td>
<td>InitLi WLight/Volume:: 5 mL5</td>
<td></td>
</tr>
</tbody>
</table>

AnSyt5

<table>
<thead>
<tr>
<th>Vinyl chlorid,</th>
<th>% RLcL</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyl5n5s, Tot5l5</td>
<td></td>
<td>5b</td>
<td>59 - 144L</td>
<td>1L</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104L</td>
<td>4 - 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SurrogF5

<table>
<thead>
<tr>
<th>SurrogF5</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Acclp 15nCL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromoöstrofluorbenz5n5</td>
<td>94L</td>
<td>9L</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromostrofluoroethab5</td>
<td>93T</td>
<td>97L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5 d, (Surr)</td>
<td>B1</td>
<td>92M</td>
<td>L</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186385I

<table>
<thead>
<tr>
<th>Compound</th>
<th>AnSlyt5</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,1-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,2,2-TL5 chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,1-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2,3-Trichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dibromoethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,2-Dichloroethbn5, Tot5I5</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,3-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2,2-Dichloroprop. n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2-But5non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2-Chlorotoluene5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2-H x non5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4-Chlorotoluene5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>4-Methyl-2-pent5non5</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Ac ton5</td>
<td>25b</td>
<td>UL</td>
<td>25b</td>
<td>25b</td>
</tr>
<tr>
<td>B nz n5</td>
<td>1.0</td>
<td>UL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Btombenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Btomchloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Btomdichloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Btomoform.</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Btomethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>C5 bon disulfid,</td>
<td>2.0</td>
<td>UL</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>C5 bon t5I5 chlorid,</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Chloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Chloroform.</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropen5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Dibromochloroethab5</td>
<td>1.0</td>
<td>U</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Method: 8260BI

Preparation: 5030BI

<table>
<thead>
<tr>
<th>Instrument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5b. ii5 IDL</td>
<td>pq543.d,</td>
</tr>
<tr>
<td>Initi WJight/Vo:</td>
<td>5 mL5</td>
</tr>
<tr>
<td>inSi WJight/Vo:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>
Quality Control Results

Method Blank - Batch: 680-186385L

<table>
<thead>
<tr>
<th>AnSly5</th>
<th>RLsult5</th>
<th>Qu. I5</th>
<th>RL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromomethab5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Diethyl ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>HLx5chlorobut5diLn5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Isopropybenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>MLThyl t-buty1 ethb</td>
<td>10.0</td>
<td>UL</td>
<td>10.0</td>
</tr>
<tr>
<td>MLThyl5n5 Chlorid</td>
<td>5.0.</td>
<td>UL</td>
<td>5.0.</td>
</tr>
<tr>
<td>m-Xyl5n5 & p-Xyl5n5</td>
<td>2.0.</td>
<td>UL</td>
<td>2.0.</td>
</tr>
<tr>
<td>N. phtha5n5</td>
<td>5.0.</td>
<td>UL</td>
<td>5.0.</td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>N-Febpybenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>o-Xyl5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>p-Isopropytoluen5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>sFc-Butylbenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>StyMn5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>t5 t-Butylbenz5n5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>TL5 chloroethbn5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tolu5n</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloropropen5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tüchloroethbn5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Vinyl : CL5t5</td>
<td>2.0.</td>
<td>UL</td>
<td>2.0.</td>
</tr>
<tr>
<td>Vinyl chlorid</td>
<td>1.0.</td>
<td>UL</td>
<td>1.0.</td>
</tr>
<tr>
<td>Xyl5n5s, Tot5t5</td>
<td>2.0.</td>
<td>UL</td>
<td>2.0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogF5</th>
<th>% RLcL</th>
<th>Accdp t5ncL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-B bromofluorobenz5n5</td>
<td>75 - 120.</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>75 - 121L</td>
<td></td>
</tr>
<tr>
<td>Tolu5n d, (Sur)5L</td>
<td>75 - 120.</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample

Lab Control Sample Duplicate Recovery Report - Batch: 680-186385I

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 3T5b9L</th>
<th>An5ysis Battlb</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLnt MLTx5</td>
<td>WJt5</td>
<td>PFP BatbhbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pg535.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugF/L5</td>
<td>InitILI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11JUL 2010 1013T</td>
<td></td>
<td>Inc5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11JUL 2010 1013T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCSD 680-1L 3T5b20.</th>
<th>An5ysis Battlb</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CilLnt MLTx5</td>
<td>WJt5</td>
<td>PFP BatbhbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pg537.d,</td>
</tr>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>UnitsF ugF/L5</td>
<td>InitILI WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 An5lyz5d,</td>
<td>11JUL 2010 1043T</td>
<td></td>
<td>Inc5I WJlight/Volume.: 5 mL5</td>
<td></td>
</tr>
<tr>
<td>DL15 PFP. d</td>
<td>11JUL 2010 1043T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An5lyt5</th>
<th>% RLcL</th>
<th>LCS L</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. 5</th>
<th>LCSD Qu. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-TL15 chloroethab5</td>
<td>9L</td>
<td>95b</td>
<td>1 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Tlchloroethab5</td>
<td>95b</td>
<td>95b</td>
<td>7L - 127L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-TL15 chloroethab5</td>
<td>9L</td>
<td>9L</td>
<td>9 - 129L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tlchloroethab5</td>
<td>102M</td>
<td>101L</td>
<td>75 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dlchloroethab5</td>
<td>104L</td>
<td>102M</td>
<td>74 - 127L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dlchloroethabn5</td>
<td>100.</td>
<td>100.</td>
<td>2 - 141L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dlchloropropen5</td>
<td>100.</td>
<td>9L</td>
<td>77 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tlchlorobenz5n5</td>
<td>75b</td>
<td>75b</td>
<td>0 - 132M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Tlchloroprop. n5</td>
<td>7L</td>
<td>9L</td>
<td>70 - 130.</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>7L</td>
<td>77L</td>
<td>0 - 135b</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Tlchlorobenz5n5</td>
<td>9L</td>
<td>97L</td>
<td>72 - 132M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloroprop. n5</td>
<td>3T</td>
<td>5b</td>
<td>49 - 140.</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromooethab5</td>
<td>99L</td>
<td>9L</td>
<td>0 - 121L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dlchlorobenz5n5</td>
<td>90.</td>
<td>91L</td>
<td>79 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dlchloroethab5</td>
<td>101L</td>
<td>9L</td>
<td>- 132M</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dlchloroethabn5, TolSl5</td>
<td>112M</td>
<td>111L</td>
<td>73 - 124L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dlchloroprop. n5</td>
<td>95b</td>
<td>9L</td>
<td>72 - 133T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Tlchlorobenz5n5</td>
<td>9L</td>
<td>91L</td>
<td>7L - 125b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dlchlorobenz5n5</td>
<td>105b</td>
<td>105b</td>
<td>75 - 120.</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dlchlorobenz5n5</td>
<td>92M</td>
<td>92M</td>
<td>1 - 122M</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dlchloroprop. n5</td>
<td>106.</td>
<td>106.</td>
<td>55 - 157L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-DlbutSn5n5</td>
<td>106.</td>
<td>108.</td>
<td>33 - 157L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluen5</td>
<td>94L</td>
<td>93T</td>
<td>2 - 123T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-HLxSn5n5</td>
<td>114L</td>
<td>114L</td>
<td>34 - 1L1</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluen5</td>
<td>92M</td>
<td>94L</td>
<td>3 - 122M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-MLthyl-2-pent5non5</td>
<td>120.</td>
<td>117L</td>
<td>40 - 151L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcLton5</td>
<td>108.</td>
<td>106.</td>
<td>17 - 175b</td>
<td>2M</td>
<td>50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnz5n5</td>
<td>103T</td>
<td>101L</td>
<td>77 - 119L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmz5n5</td>
<td>9L</td>
<td>0 - 124L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmcloromethab5</td>
<td>103T</td>
<td>102M</td>
<td>10 - 150.</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmodichloromethab5</td>
<td>110.</td>
<td>110.</td>
<td>7L - 127L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbnmform.</td>
<td>906.</td>
<td>90.</td>
<td>2 - 133T</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 680-186385I

<table>
<thead>
<tr>
<th>Method</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260BI</td>
<td>5030BI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS L5b SLmpl5 IDL</th>
<th>LCS 680-1L 3T5bf9L</th>
<th>An5lysis Batchb 680-1L 3T5b</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pg535.d,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UnitsF ugFL5</td>
<td>i5I W/weight/Volume:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCSD L5b SLmpl5 IDL</th>
<th>LCS 680-1L 3T5b20.</th>
<th>An5lysis Batchb 680-1L 3T5b</th>
<th>Instument IDL</th>
<th>MSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution5</td>
<td>1.0.</td>
<td>PFP BatchbN.A5</td>
<td>L5b . i5 IDL</td>
<td>pg537.d,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UnitsF ugFL5</td>
<td>i5I W/weight/Volume:</td>
<td>5 mL5</td>
</tr>
</tbody>
</table>

AnSlyt5 (% RLC.L)

<table>
<thead>
<tr>
<th>Compound</th>
<th>LCSL</th>
<th>LCSDL</th>
<th>Limit5</th>
<th>RPDL</th>
<th>RPD Limit5</th>
<th>LCS Qu. I5</th>
<th>LCSD Qu. I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butromethab5</td>
<td>7L</td>
<td>0.</td>
<td>12 - 1L4L</td>
<td>3T</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon disulfid.</td>
<td>101L</td>
<td>100.</td>
<td>55 - 131L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 bon t5t5 chlorid</td>
<td>103T</td>
<td>104L</td>
<td>71 - 135b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenz5n5</td>
<td>91L</td>
<td>92M</td>
<td>5 - 11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethab6</td>
<td>75b</td>
<td>70.</td>
<td>40 - 1L5b</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform.</td>
<td>9L</td>
<td>97L</td>
<td>2 - 120.</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethab5</td>
<td>9L</td>
<td>9L</td>
<td>4L - 142M</td>
<td>0.</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethbn5</td>
<td>94L</td>
<td>97L</td>
<td>9 - 134L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloroethbn5</td>
<td>114L</td>
<td>109L</td>
<td>7L - 12M</td>
<td>4L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiBromochloromethab5</td>
<td>94L</td>
<td>94L</td>
<td>75 - 133T</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiBromomethab5</td>
<td>103T</td>
<td>100.</td>
<td>7L - 119L</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethab5</td>
<td>101L</td>
<td>101L</td>
<td>34 - 154L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiTethyl ethb</td>
<td>120.</td>
<td>122M</td>
<td>70 - 130.</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenz5n5</td>
<td>95b</td>
<td>93T</td>
<td>- 11L</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlx5chlorobut5diLn5</td>
<td>5b</td>
<td>2 - 142M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylbenz5n5</td>
<td>97L</td>
<td>97L</td>
<td>2 - 121L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLThyl t5 t-butyl ethb</td>
<td>9L</td>
<td>9L</td>
<td>77 - 121L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLThyln5n5 Chlorid.</td>
<td>9L</td>
<td>93T</td>
<td>70 - 125b</td>
<td>3T</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Xylf5n5 & p-Xylf5n5</td>
<td>94L</td>
<td>93T</td>
<td>3 - 11L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. phtha8n5</td>
<td>2M</td>
<td>4L - 135b</td>
<td>5b</td>
<td>30.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenz5n5</td>
<td>93T</td>
<td>94L</td>
<td>4 - 13T</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Propylbenz5n5</td>
<td>95b</td>
<td>97L</td>
<td>0 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xylf5n5</td>
<td>9L</td>
<td>9L</td>
<td>3 - 119L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluen5</td>
<td>906.</td>
<td>90.</td>
<td>3 - 139L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sFC-Butylbenz5n5</td>
<td>90.</td>
<td>92M</td>
<td>77 - 12M</td>
<td>2M</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyMn5</td>
<td>97L</td>
<td>9L</td>
<td>2 - 122M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5-Butylbenz5n5</td>
<td>9L</td>
<td>95b</td>
<td>0 - 124L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC5 chloroethbn5</td>
<td>90.</td>
<td>9L</td>
<td>7L - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene5</td>
<td>103T</td>
<td>102M</td>
<td>1 - 117L</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,2-Dichloroethbn5</td>
<td>97L</td>
<td>97L</td>
<td>72 - 131L</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5 ns-1,3-Dichloroprofen5</td>
<td>110.</td>
<td>109L</td>
<td>73 - 12M</td>
<td>1L</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchloroethbn5</td>
<td>100.</td>
<td>100.</td>
<td>4 - 115b</td>
<td>0.</td>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tüchlorofluoromethab5</td>
<td>91L</td>
<td>90.</td>
<td>5b- 149L</td>
<td>1L</td>
<td>50.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Control Results

Lab Control Sample II
Lab Control Sample Duplicate Recovery Report - Batch: 680-186385I

<table>
<thead>
<tr>
<th>Sample</th>
<th>LCS 680-1L 3T5</th>
<th>Dilution</th>
<th>Date</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnSlyt5</td>
<td>LCS L5b SLmpl5 iDL</td>
<td>W</td>
<td>1.0</td>
<td>11/11 2010</td>
</tr>
<tr>
<td>PFp BactbN.A5</td>
<td>LCS 680-1L 3T5b</td>
<td>UnitsF</td>
<td>ug/L</td>
<td>6L</td>
</tr>
<tr>
<td>InstMent IDL</td>
<td>MSPF</td>
<td>L5b . i5 IDL</td>
<td>pg/L</td>
<td>5 mL</td>
</tr>
<tr>
<td>InitLi WLight/Volum.:</td>
<td>5 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in5i WLight/Volum.:</td>
<td>5 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>LCS 680-1L 3T5</th>
<th>Dilution</th>
<th>Date</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnSlyt5</td>
<td>LCS L5b SLmpl5 IDL</td>
<td>W</td>
<td>1.0</td>
<td>11/11 2010</td>
</tr>
<tr>
<td>PFp BactbN.A5</td>
<td>LCS 680-1L 3T5b</td>
<td>UnitsF</td>
<td>ug/L</td>
<td>6L</td>
</tr>
<tr>
<td>InstMent IDL</td>
<td>MSPF</td>
<td>L5b . i5 IDL</td>
<td>pg/L</td>
<td>5 mL</td>
</tr>
<tr>
<td>InitLi WLight/Volum.:</td>
<td>5 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in5i WLight/Volum.:</td>
<td>5 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SurrogF5</th>
<th>LCS % RLcL</th>
<th>LCSD % RLcL</th>
<th>Acclp t5mCL LimitsF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BromoMethoxybenz5n5</td>
<td>93T</td>
<td>92M</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>Dibromofluoromethab5</td>
<td>95b</td>
<td>94L</td>
<td>75 - 121L</td>
</tr>
<tr>
<td>Toluene5 d, (Surro)</td>
<td>103T</td>
<td>101L</td>
<td>75 - 120.</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>DATE</td>
<td>TIME</td>
<td>SAMPLE IDENTIFICATION</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SW-1</td>
<td>12-2</td>
<td>1000</td>
<td>SW-3</td>
</tr>
<tr>
<td>SW-2</td>
<td>12-2</td>
<td>1010</td>
<td>SW-4</td>
</tr>
<tr>
<td>SW-3</td>
<td>12-2</td>
<td>1100</td>
<td>SW-5</td>
</tr>
<tr>
<td>SW-4</td>
<td>12-2</td>
<td>1105</td>
<td>SW-5</td>
</tr>
<tr>
<td>SW-5</td>
<td>12-2</td>
<td>1130</td>
<td>SW-6</td>
</tr>
<tr>
<td>SW-6</td>
<td>12-2</td>
<td>1140</td>
<td>MW-36</td>
</tr>
<tr>
<td>MW-36</td>
<td>12-2</td>
<td>1150</td>
<td>MW-4</td>
</tr>
<tr>
<td>MW-4</td>
<td>12-2</td>
<td>1200</td>
<td>MW-30</td>
</tr>
<tr>
<td>MW-30</td>
<td>12-2</td>
<td>1501</td>
<td>MW-31</td>
</tr>
<tr>
<td>MW-31</td>
<td>12-2</td>
<td>1515</td>
<td>MW-32</td>
</tr>
<tr>
<td>MW-32</td>
<td>12-2</td>
<td>1550</td>
<td>MW-35</td>
</tr>
<tr>
<td>MW-35</td>
<td>12-2</td>
<td>1555</td>
<td></td>
</tr>
</tbody>
</table>

REQUESHER BY: Signatures

DATE: 11-5-10 TIME: 1700

RECEIVED BY: Signatures

DATE: 11-5-10 TIME: 1034

LABORATORY USE ONLY

DATE: 11-5-10 TIME: 1034

CUSTOM INTACT: YES NO

CUSTOM SEAL NO: 1034

SAVANNAH LOG NO: 240-6293

LABORATORY REMARKS: Temp 0.2
<table>
<thead>
<tr>
<th>SAMPLE DATE</th>
<th>SAMPLE TIME</th>
<th>SAMPLE IDENTIFICATION</th>
<th>COMPOSTIVE (S) OR GRAB (G) INDICATE</th>
<th>SOLID OR SEASOLID (S)</th>
<th>NONCOUS[O] LIQUID OIL SOLVENT (L)</th>
<th>AIR</th>
<th>REQUIRED ANALYSIS</th>
<th>NUMBER OF CONTAINERS SUBMITTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-5-2010</td>
<td>0830</td>
<td>MW-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-5-2010</td>
<td>1235</td>
<td>MW-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-5-2010</td>
<td>1350</td>
<td>MW-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>0920</td>
<td>MW-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>1000</td>
<td>MW-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>1055</td>
<td>MW-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>0911</td>
<td>MW-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>1155</td>
<td>MW-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>1403</td>
<td>MW-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11-4-2010</td>
<td>1412</td>
<td>MW-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

RECEIVED BY:
Signature: [Signature]
Date: 11-5-10
Time: 1700

RECEIVED FOR LABORATORY BY:
Signature: [Signature]
Date: 11-10-10
Time: 1034
CUSTODY INTACT: Yes
NO: 0
CUSTODY SEAL NO:
SAVANNAH LOG NO: 1080-
LABORATORY REMARKS: Temp 0.2
Analysis Request and Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

<table>
<thead>
<tr>
<th>Project Reference</th>
<th>Project No.</th>
<th>Project Location (State)</th>
<th>Matrix Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNC-Airport Rd.</td>
<td>NC000239.0018.00002</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tal (Lab) Project Manager</th>
<th>PO. Number</th>
<th>Contract No.</th>
<th>Required Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katay Smith</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Client (Site) Name

<table>
<thead>
<tr>
<th>Alan Finnix</th>
<th>Client Phone</th>
<th>Client Fax</th>
<th>Client E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCADIS</td>
<td>919-854-1282</td>
<td></td>
<td>a.pinnix@arcadis-us.com</td>
</tr>
</tbody>
</table>

Client Address

901 Corporate Center Dr., Ste. 800, Raleigh, NC 27607

Company Contracting this Work (if applicable)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Identification</th>
<th>Composite (s) of Grab (g) Indicate</th>
<th>Aqueous (Water)</th>
<th>Solid or Semisolid</th>
<th>Nonaqueous Liquid or Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5-2010</td>
<td>VER-1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VER-2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VER-3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VER-4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW-16</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>Trip Blank</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Containers Submitted

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
</table>

Relinquished By:

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11-5-10</td>
<td>1700</td>
</tr>
</tbody>
</table>

Received By:

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/0110</td>
<td>1034</td>
</tr>
</tbody>
</table>

Laboratory Use Only

<table>
<thead>
<tr>
<th>Received for Laboratory By</th>
<th>Custody Intact</th>
<th>Custody Seal No.</th>
<th>Savannah Log No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth A. Daughtry</td>
<td>YES</td>
<td></td>
<td>680</td>
</tr>
</tbody>
</table>

Laboratory Remarks

Temp 0.2
Login Sample ReMeM CheM Listc

Client: ARCADIS U.S., Inc.L
Job Number: 680-62923-1L

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes/No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity either Lab not measured or, if measured, IL at or below L background</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>The cooler/UCLody Leal, if preLent, IL intact.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>The cooler or Lample, do not appear to have been compromised or L tampered L oath.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample L ere rceived on ice.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is L acceptable.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is L recorded.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>COC is preLent.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>the Field Sampler/Unname preLent on COC?U</td>
<td>FailL</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the Lample IDL on the container L and the COC.L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample L are received within Holding Time L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample container L have legible labels L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Container L are not broken or leaking L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/time L are provided L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Appropriate Lample container L are used L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample bottle L are completely filled L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all require Led analyses L, incl. aby require Led L MS/MSDL</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>VOC L ample vial L do not have headspace or bubble L <6mm (1/4") in L diameter L</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>In case L ary, all Laff have informed of aby th or hold time or quick T L ee dc</td>
<td>TrueL</td>
<td></td>
</tr>
<tr>
<td>Multiphasic Lample L are not preLent L</td>
<td>N/T</td>
<td></td>
</tr>
<tr>
<td>Sample L do not require lsplitting or compoLiting L</td>
<td>N/T</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

Laboratory Analytical Data Reports for Air Discharge Samples
February 17, 2010

ARCADIS G&M of North Carolina, Inc.
801 Corporate Center, Suite 300
Raleigh, NC 27607

Attn: Alan Pinnix

PROJECT: “UNC Airport Road”; Contract Number: NC000239.0018
RTP Labs ID: 10-036

Enclosed with this letter is the report on the chemical analysis for the two Tedlar bag samples received on February 11, 2010 for a normal turnaround. The samples were analyzed by EPA Method TO-15 GC/MS for 60 VOC target compounds and included benzene, chloroform; 1,2-dichloroethane; methylene chloride; 1,1,2,2-tetrachloroethane; trichloroethylene; trichlorofluoromethane; and vinyl chloride.

Please call if you have any questions.

Sincerely,

[Signature]

Alston Sykes, Principal Chemist

Attachments: GC/MS reports, COC forms
<table>
<thead>
<tr>
<th>CAS NO.</th>
<th>COMPOUND</th>
<th>CONCENTRATION</th>
<th>UNITS</th>
<th>MDL and Reporting Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (Freon 12)</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Chloro-1,1,2,2-Tetrafluoroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl chloride</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichloromonomfluoromethane</td>
<td>0.60</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>76-13-1</td>
<td>1,1,2-trichloro-1,2,2-trifluoroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>64-17-5</td>
<td>Ethanol</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon disulfide</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-63-0</td>
<td>Isopropyl alcohol</td>
<td>2.72</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene chloride</td>
<td>2.53</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>2.86</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>156-60-5</td>
<td>1,1,2-trichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>11-05-3</td>
<td>Hexane</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl t-butyl ether (MTBE)</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl acetal</td>
<td>2.49</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-dichloroethene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>110-52-7</td>
<td>Cyclohexane</td>
<td>0.81</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>4.07</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>109-39-9</td>
<td>Tetrahydrofuran</td>
<td>6.12</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-trichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.55</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>142-82-5</td>
<td>Heptane</td>
<td>1.28</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>2.61</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-dichloropropane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-dioxane</td>
<td>1.61</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-dichloropropene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-88-3</td>
<td>Toluene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-10-1</td>
<td>4-Methyl-2-penylanone (MI BK)</td>
<td>61.86</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1006-02-6</td>
<td>l-1,3-dichloropropene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrahydrochloroethylene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-trichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-dibromoethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>581-78-4</td>
<td>2-Hexanone</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>0.77</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>m/p-Xylene</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Tribromomethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-tetrachloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>622-96-8</td>
<td>1-ethyl-4-methylbenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-trimethylbenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-trimethylbenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl chloride</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>87-88-3</td>
<td>1,1,2,3,4,4,6-hexachloro-1,3-butadiene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-trichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TENTATIVELY IDENTIFIED COMPOUNDS

EPA Method TO-15

Data File: c:\varianws\wsdatafiles\voc060109\10-036-01.sms
Comment: Arcadis; UNC Airport; 2/1/10; Air Stripper; 10mL; DF=50

<table>
<thead>
<tr>
<th>CAS NO.</th>
<th>COMPOUND NAME</th>
<th>Retention Time</th>
<th>Estimated Concentration, ppbv</th>
</tr>
</thead>
<tbody>
<tr>
<td>69483-50-7</td>
<td>5,6A,8,8A,14,14-b-Cholestane-3,</td>
<td>2.99</td>
<td>32.72</td>
</tr>
<tr>
<td>15402-84-3</td>
<td>2-Amino-1-(o-methoxyphenyl)propane</td>
<td>8.18</td>
<td>213.38</td>
</tr>
<tr>
<td>66830-56-6</td>
<td>N-Dimethylaminomethyl-tetra-4-butylphenyl</td>
<td>8.40</td>
<td>17.59</td>
</tr>
<tr>
<td>104704-05-1</td>
<td>Trimethyl-1-buta-isoluteone</td>
<td>8.48</td>
<td>27.46</td>
</tr>
<tr>
<td>22520-39-4</td>
<td>meso-3,4-Hexanediol</td>
<td>11.2</td>
<td>40.49</td>
</tr>
<tr>
<td>105774-08-6</td>
<td>1,3,5-Triazine-2,4-diamine, 6-chloro-N,N</td>
<td>11.5</td>
<td>11.57</td>
</tr>
<tr>
<td>75629-02-6</td>
<td>2-(2',3'-Dimethoxy-4',5'-methylenedioxy</td>
<td>11.6</td>
<td>14.02</td>
</tr>
<tr>
<td>70477-20-2</td>
<td>2,2'-Bifuran, 5,5'-dibromo-</td>
<td>18.6</td>
<td>9.44</td>
</tr>
<tr>
<td>118451-71-1</td>
<td>4-Bromo-4'-(1-ethoxybenzyl)oxy</td>
<td>-</td>
<td>21.7</td>
</tr>
<tr>
<td>27126-22-3</td>
<td>Heptane, 4-azo-</td>
<td>21.8</td>
<td>210.81</td>
</tr>
<tr>
<td>59422-92-7</td>
<td>Ethaneperoxoic acid, 1-cyano-1-(2-(2-phe</td>
<td>21.9</td>
<td>26.36</td>
</tr>
<tr>
<td>76100-13-5</td>
<td>Propanedinitrile, 2-(5-phenylthio-2-thie</td>
<td>23.2</td>
<td>225.75</td>
</tr>
<tr>
<td>1714-14-3</td>
<td>9,10-Anthracenedione, 1-phenyl-</td>
<td>23.7</td>
<td>13000.23</td>
</tr>
<tr>
<td>17071-54-4</td>
<td>Hexyl octyl ether</td>
<td>25.0</td>
<td>469.28</td>
</tr>
<tr>
<td>29812-79-1</td>
<td>Hydroxylamine, O-decyl-</td>
<td>29.1</td>
<td>187.08</td>
</tr>
<tr>
<td>77892-03-6</td>
<td>3-Chloro-4-phenoxy-5,6-diphenylpyridazin</td>
<td>29.9</td>
<td>923.98</td>
</tr>
<tr>
<td>24126-93-0</td>
<td>4H-1-Benzopyran-4-one, 3-(3,4-dimethoxy</td>
<td>27.9</td>
<td>178.87</td>
</tr>
<tr>
<td>40571-17-3</td>
<td>2,5-Methano-1H-inden-7-ol, octahydro-7-</td>
<td>29.8</td>
<td>12.88</td>
</tr>
</tbody>
</table>

(IS) is BFB Internal Standard and (SS) are Surrogate Standards that are added to each sample.

2/17/2010 11:33
<table>
<thead>
<tr>
<th>CAS NO.</th>
<th>COMPOUND</th>
<th>CONCENTRATION</th>
<th>UNITS</th>
<th>MDL and Reporting Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (Freon 12)</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Chloro-1,1,2,2-tetrafluoroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl chloride</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>109-69-0</td>
<td>1,3-Butadiene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-03-3</td>
<td>Chloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichloromonofluoromethane</td>
<td>0.93</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>76-13-1</td>
<td>1,1,2-trichloro-1,2,2-trifluoroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>64-17-5</td>
<td>Ethanol</td>
<td>4.49</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon disulfide</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-63-0</td>
<td>Isopropyl alcohol</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene chloride</td>
<td>3.48</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>156-60-5</td>
<td>t-1,2-dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>11-05-3</td>
<td>Hexane</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1834-04-4</td>
<td>Methyl-t-butyl ether (MTBE)</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl acetate</td>
<td>1.89</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-dichloroethene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>0.91</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>67-69-3</td>
<td>Chloroform</td>
<td>17.42</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran</td>
<td>31.35</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-trichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.55</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>142-82-5</td>
<td>Heptane</td>
<td>1.01</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>19.33</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-dichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>78-01-6</td>
<td>Trichloroethylene</td>
<td>8.87</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-dichloropropane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-dioxane</td>
<td>11.90</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-dichloropropene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-88-3</td>
<td>Toluene</td>
<td>8.27</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>136.56</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1006-02-6</td>
<td>t-1,3-dichloropropene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-trichloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-dibromoethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>591-76-6</td>
<td>2-Hexanone</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-44-4</td>
<td>Ethylbenzene</td>
<td>1.49</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>m/p-Xylene</td>
<td>Below MDL</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-47-5</td>
<td>o-Xylene</td>
<td>1.00</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Tribromomethane</td>
<td>8.56</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-tetrachloroethane</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>622-96-8</td>
<td>1-ethyl-4-methylbenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-trimethylbenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-trimethylbenzene</td>
<td>0.67</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl chloride</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>95-56-1</td>
<td>1,2-dichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>87-68-3</td>
<td>1,1,2,3,4,4-hexachloro-1,3-butadiene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-trichlorobenzene</td>
<td>Not Found</td>
<td>ppbv</td>
<td>0.5</td>
</tr>
<tr>
<td>CAS NO.</td>
<td>COMPOUND NAME</td>
<td>Retention Time</td>
<td>Estimated Concentration</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>21618-99-5</td>
<td>5-(2-Aminopropyl)-2-methylphenol</td>
<td>8.17</td>
<td>161.55 ppbv</td>
<td></td>
</tr>
<tr>
<td>21618-99-5</td>
<td>5-(2-Aminopropyl)-2-methylphenol</td>
<td>8.27</td>
<td>42.64 ppbv</td>
<td></td>
</tr>
<tr>
<td>12128-90-4</td>
<td>Dichloro tetra(cyclopentadienyl)dityterb</td>
<td>9.47</td>
<td>21.97 ppbv</td>
<td></td>
</tr>
<tr>
<td>19662-30-5</td>
<td>7a-Aza-8-homocholest-3,5-dien-7-one</td>
<td>18.8</td>
<td>27.65 ppbv</td>
<td></td>
</tr>
<tr>
<td>70028-64-7</td>
<td>Methyl 7-ethyl-10-(heptafluorobutyroxy</td>
<td>19.3</td>
<td>31.40 ppbv</td>
<td></td>
</tr>
<tr>
<td>5426-43-7</td>
<td>Penty glycolate</td>
<td>19.3</td>
<td>23.84 ppbv</td>
<td></td>
</tr>
<tr>
<td>2034-69-7</td>
<td>Coumarin, 7-hydroxy-6-methoxy-3,7-oxydi</td>
<td>19.7</td>
<td>30.55 ppbv</td>
<td></td>
</tr>
<tr>
<td>71338-49-6</td>
<td>(3R,2E)-2-(Hexadec-15-ynylidene)-3-hydro</td>
<td>21.5</td>
<td>47.22 ppbv</td>
<td></td>
</tr>
<tr>
<td>67587-04-6</td>
<td>Propanedioic acid, (bromomethyl)methyl-</td>
<td>21.7</td>
<td>31.02 ppbv</td>
<td></td>
</tr>
<tr>
<td>27125-22-3</td>
<td>Heptane, 4-azido-</td>
<td>21.8</td>
<td>236.43 ppbv</td>
<td></td>
</tr>
<tr>
<td>63523-65-3</td>
<td>1-Methyl-bis(1,2,4)-triazole-5,1'-</td>
<td>21.9</td>
<td>61.92 ppbv</td>
<td></td>
</tr>
<tr>
<td>84854-43-3</td>
<td>3-Methyl-10,10-diphenyl-9-(beta-cyanoc</td>
<td>22.4</td>
<td>27.72 ppbv</td>
<td></td>
</tr>
<tr>
<td>76100-13-5</td>
<td>Propanedinitril, 2-(5-phenylthio-2-thie</td>
<td>23.2</td>
<td>262.77 ppbv</td>
<td></td>
</tr>
<tr>
<td>70025-30-3</td>
<td>cis-1-Acetamido-3-(p-toulenesulfonamido)</td>
<td>23.4</td>
<td>31.19 ppbv</td>
<td></td>
</tr>
<tr>
<td>629-82-5</td>
<td>Nonadecane</td>
<td>25.1</td>
<td>203.62 ppbv</td>
<td></td>
</tr>
<tr>
<td>76100-13-5</td>
<td>Propanedinitril, 2-(5-phenylthio-2-thie</td>
<td>25.9</td>
<td>867.71 ppbv</td>
<td></td>
</tr>
<tr>
<td>17302-38-2</td>
<td>5-Ethyldecanol</td>
<td>27.7</td>
<td>44.57 ppbv</td>
<td></td>
</tr>
<tr>
<td>24126-93-0</td>
<td>4H-1-Benzopyran-4-one, 3-(3,4-dimethoxy</td>
<td>27.9</td>
<td>168.38 ppbv</td>
<td></td>
</tr>
</tbody>
</table>

(IS) is BFB Internal Standard and (SS) are Surrogate Standards that are added to each sample.

2/17/2010 11:34
Chain of Custody Record

Client: ARCADIS
Address: 903 CORPORATE CENTER DRIVE
City: RALEIGH
State: NC
Zip Code: 27607
Project Name: UNC AIRPORT ROAD WASTE DISPOSAL AREA
Contract/Purchase Order No.: NC000239.0000L
E-mail: APINNIX@ARCADIS-US.COM
Fax Number: (919) 854-5448

Requested Analyses

- Air Samples
- Summa Canisters
- Vacuum or Pressure

<table>
<thead>
<tr>
<th>Sample ID No. & Description</th>
<th>Date Sampled</th>
<th>Time</th>
<th>Matrix</th>
<th>Unlabeled</th>
<th>Preservatives</th>
<th>Field Containers</th>
<th>Lab Containers</th>
<th>RPM</th>
<th>FPM</th>
<th>Project Tracking Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AIR STRIPPER</td>
<td>2/11/10</td>
<td>0845</td>
<td>X</td>
<td>X</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10-036</td>
</tr>
<tr>
<td>2 VER DISCHARGE</td>
<td>2/11/10</td>
<td>0845</td>
<td>X</td>
<td>X</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10-036</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Turn Around Time Requested for Report:
- Business Days: *rush multiplier (X)*
 - 1 day (X)
 - 2 days (X)
 - 3 days (X)
 - 5 days (X)
- EPA Level IV for Compliance
- Data Pack: Std □ Full □ 1.1x surcharge
- QC Requirements: Screen □ Standard □
- Electronic Deliverable: □ 1.1x surcharge
- EPA Level IV for Compliance
- Samples approved OAPP sent to lab

Refilled By:

Date: 2/11/10
Time: 12:20
August 4, 2010

ARCADIS G&M of North Carolina, Inc.
801 Corporate Center, Suite 300
Raleigh, NC 27607

Attn: Alan Pinnix

PROJECT: “UNC Airport Road”; Contract Number: NC000239.0018
RTP Labs ID: 10-222

Enclosed with this letter is the report on the chemical analysis for the two Tedlar bag samples received on July 27, 2010 for a normal turnaround. The samples were analyzed by EPA Method TO-15 GC/MS for 60 VOC target compounds and included benzene, chloroform; 1,2-dichloroethane; methylene chloride; 1,1,2,2-tetrachloroethane; trichloroethylene; trichlorofluoromethane; and vinyl chloride.

Please call if you have any questions.

Sincerely,

[Signature]

Alston Sykes, Principal Chemist

Attachments: GC/MS reports, COC forms
### CAS NO.	COMPOUND	CONCENTRATION	UNITS	MDL and Reporting Limit
75-71-8 | Dichlorodifluoromethane (Freon 12) | Not Found | ppbv | 1
76-14-2 | 1,2-Chloro-1,1,2,2-Tetrafluoroethane | Not Found | ppbv | 1
74-87-3 | Chloromethane | Not Found | ppbv | 1
75-01-4 | Vinyl chloride | Not Found | ppbv | 1
106-89-0 | 1,3-Butadiene | Not Found | ppbv | 1
74-83-9 | Bromomethane | Not Found | ppbv | 1
75-00-3 | Chloroethane | Not Found | ppbv | 1
75-69-4 | Trichloromethoxyfluoromethane | Not Found | ppbv | 1
75-35-4 | 1,1-dichloroethene | Not Found | ppbv | 1
76-13-1 | 1,1,2-trichloro-1,2,2-trifluoroethane | Not Found | ppbv | 1
64-17-5 | Ethanol | Not Found | ppbv | 1
75-15-0 | Carbon disulfide | Not Found | ppbv | 1
67-63-0 | Isopropyl alcohol | 28.80 | ppbv | 1
75-09-2 | Methylene chloride | 10.12 | ppbv | 1
67-64-1 | Acetone | 110.32 | ppbv | 1
156-60-5 | T-1,2-dichloroethene | Not Found | ppbv | 1
11-05-3 | Hexane | 9.51 | ppbv | 1
1634-04-4 | Methyl-1-butyl ether (MTBE) | Not Found | ppbv | 1
75-34-3 | 1,1-Dichloroethane | Not Found | ppbv | 1
108-05-4 | Vinyl acetate | Not Found | ppbv | 1
156-69-2 | cis-1,2-dichloroethene | Not Found | ppbv | 1
110-82-7 | Cyclohexane | 2.39 | ppbv | 1
67-66-3 | Chloroform | 2.28 | ppbv | 1
141-78-6 | Ethyl Acetate | Not Found | ppbv | 1
103-01-9 | Tetrahydrofuran | 4.84 | ppbv | 1
71-65-6 | 1,1,1,1-Tetrachloroethane | Not Found | ppbv | 1
50-23-5 | Carbon Tetrachloride | Not Found | ppbv | 1
78-93-3 | 2-Butanone | Not Found | ppbv | 1
142-82-5 | Heptane | Not Found | ppbv | 1
71-43-2 | Benzene | 2.63 | ppbv | 1
107-06-2 | 1,2-dichloroethane | Not Found | ppbv | 1
79-01-8 | Trichloroethylene | Not Found | ppbv | 1
75-87-5 | 1,2-dichloropropane | Not Found | ppbv | 1
75-27-4 | Bromodichloromethane | Not Found | ppbv | 1
123-91-1 | 1,4-dioxane | 3.72 | ppbv | 1
10061-01-5 | cis-1,3-dichloropropene | Not Found | ppbv | 1
108-88-3 | Toluene | 1.98 | ppbv | 1
108-10-1 | 4-Methyl-2-pentanone (MBK) | Not Found | ppbv | 1
106-02-6 | t,1,3-dichloropropene | Not Found | ppbv | 1
127-18-4 | Tetrachloroethylene | Not Found | ppbv | 1
79-00-5 | 1,1,2-trichloroethane | Not Found | ppbv | 1
124-48-1 | Dibromochloromethane | Not Found | ppbv | 1
106-93-4 | 1,2-dibromoethane | Not Found | ppbv | 1
591-78-5 | 2-Hexanone | Not Found | ppbv | 1
100-41-4 | Ethylbenzene | Below MDL | ppbv | 1
108-90-7 | Chlorobenzene | Not Found | ppbv | 1
1330-20-7 | m/p-Xylene | 1.48 | ppbv | 1
95-47-6 | o-Xylene | Not Found | ppbv | 1
100-42-5 | Styrene | Not Found | ppbv | 1
75-25-2 | Tribromomethane | Not Found | ppbv | 1
79-34-5 | 1,1,2,2-Tetrachloroethane | Not Found | ppbv | 1
622-96-5 | 1-ethyl-4-methylbenzene | Not Found | ppbv | 1
105-87-9 | 1,3,5-trimethylbenzene | Not Found | ppbv | 1
95-63-6 | 1,2,4-trimethylbenzene | Not Found | ppbv | 1
541-73-1 | 1,3-dichlorobenzene | Not Found | ppbv | 1
106-46-7 | 1,4-dichlorobenzene | Not Found | ppbv | 1
100-44-7 | Benzyl chloride | Not Found | ppbv | 1
95-50-1 | 1,2-dichlorobenzene | Not Found | ppbv | 1
87-88-3 | 1,1,2,3,4,4-Hexachloro-1,3-butadiene | Not Found | ppbv | 1
120-82-1 | 1,2,4-Trichlorobenzene | Not Found | ppbv | 1
<table>
<thead>
<tr>
<th>CAS NO.</th>
<th>COMPOUND</th>
<th>CONCENTRATION</th>
<th>UNITS</th>
<th>MDL and Reporting Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (Freon 12)</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Chloro-1,2,2-Tetrafluoroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloroform</td>
<td>8.22</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl chloride</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>33.64</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichloromonomfluoromethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>76-13-1</td>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>64-17-5</td>
<td>Ethanol</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon disulfide</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>67-63-0</td>
<td>Isopropyl alcohol</td>
<td>11.90</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene chloride</td>
<td>11.88</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>42.45</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>156-60-5</td>
<td>t-1,2-Dichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>11-05-3</td>
<td>Hexane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>1334-04-4</td>
<td>Methyl t-butyl ether (MTBE)</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl acetate</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>2.72</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>28.58</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran</td>
<td>7.18</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>71-65-6</td>
<td>1,1,1-Trichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>142-82-5</td>
<td>Heptane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>34.48</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>1.40</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-87-5</td>
<td>1,2-Dichloropropane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>3.90</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>1.18</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>1006-02-6</td>
<td>t-1,3-Dichloropropene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>591-18-6</td>
<td>2-Hexanone</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>109-44-1</td>
<td>Ethylbenzene</td>
<td>Below MDL</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>109-99-7</td>
<td>Chlorobenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>m-Xylene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Tribromomethane</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>3.46</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>822-96-8</td>
<td>1-ethyl-4-methylbenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>106-67-5</td>
<td>1,3,5-trimethylbenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-trimethylbenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl chloride</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>87-88-3</td>
<td>1,2,3,4,4-Hexachloro-1,3-butadiene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>Not Found</td>
<td>ppbw</td>
<td>1</td>
</tr>
</tbody>
</table>