

The University of North Carolina at Chapel Hill Department of Environment, Health & Safety 1120 Estes Drive Ext. Chapel Hill, North Carolina 27599-1650

May 25, 2022

Ms. Dianne Thomas NC DEQ Division of Waste Management Inactive Hazardous Sites Branch 217 West Jones Street Raleigh, North Carolina 27603

Subject: 2022 Project Status Report

UNC Cogeneration Facility Chapel Hill, Orange County, NC Site ID No. NCR000010272

Dear Ms. Thomas:

Attached for your review is the 2022 Annual Status Report for the subject site. Geosyntec Consultants of NC, P.C., the Registered Environmental Consultant for the site, prepared the document.

Please contact me at (919) 843-5331 if you have any questions. Thank you.

Sincerely,

Catherine Brennan

The R. The

Executive Director, Environment, Health and Safety & Risk Management

Attachment

Cc: William Lowery II, PE, UNC-CH

Daniel Elliott, Geosyntec Eric Nesbit, Geosyntec

REC PROGRAM DOCUMENT CERTIFICATION FORM - PAGE 1 OF 2

IHSB SITE NAME

UNC Cogeneration Facility, Site ID No. NCR000010272

DATE & NAME OF DOCUMENT

05/2022

2022 Progress Status Report

TYPE OF SUBMITTAL (Report, Plan, Work Phase Comp. Statement, Schedule Change):

Report

REMEDIATING PARTY DOCUMENT CERTIFICATION STATEMENT (.0306(b)(2))

"I certify that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for willfully submitting false, inaccurate, or incomplete information."

Catherine Brennan Name of Remediating Party

Signature of Remediating Party

5/25/22 Date

NOTARIZATION

North Carolina (Enter State)	
Alamance COUNTY	
	c of said County and State, do hereby certify that
Catherine Brennan did personally app	pear and sign before me this day, produced proper identification
in the form of driver's license, was duly swo	rn or affirmed, and declared that, to the best of his or her
knowledge and belief, after thorough investigation, the	information contained in the above certification is true and
accurate, and he or she then signed this Certification in	my presence.
WITNESS my hand and official seal this $\underline{\it 25}$ day of	May ,2022.
an Butler	(OFFICIAL SEAL)
Notary P å blic (signature)	Amy Butler
My commission expires: July 23, 2022	Notary Public Alamance County

North Carolina

REGISTERED SITE MANAGER CERTIFICATION OF SIGNATURES

As the Registered Environmental Consultant for the Site for which this filing is made. I certify that the signatures included herewith are genuine and authentic original handwritten signatures and/or true, accurate, and complete copies of the genuine and authentic original handwritten signatures of the persons who purport to sign for this filing. I further certify that I have collected through reliable means the originals and/or copies of said signatures from the persons authorized to sign for this filing who, in fact, signed the originals thereof. Those persons and I understand and agree that any copies of signatures have the same legally binding effect as original handwritten signatures, and I certify that any person for whom I am submitting a copy of their signature has provided me with their express consent to submit said copy. Additionally, I certify that I am authorized to attest to the genuineness and authenticity of the signatures, both originals and any copies, being submitted herewith and that by signing below. I do in fact attest to the genuineness and authenticity of all the signatures, both originals and copies, being submitted for this filing.

this filing	g.
Eric Ne	sbit
Name of F	Registered Site Manager
//	May 26, 2022
Signature	of Registered Site Manager Date
REC	GISTERED SITE MANAGER DOCUMENT CERTIFICATION STATEMENT (.0306(b)(1))
knowled 130A-3 for will:	by that I am personally familiar with the information contained in this submittal, including any and all supporting into accompanying this certification, and that the material and information contained herein is, to the best of my into accompanying this certification, and that the material and information contained herein is, to the best of my into accompanying this certification, and that the material and information into the Inactive Hazardous Sites Response Act N.C.G.S. and belief, true, accurate and complete and complies with the Inactive Hazardous Sites Response Act N.C.G.S. and the remedial action program Rules 15A NCAC 13C .0300. I am aware that there are significant penalties fully submitting false, inaccurate, or incomplete information."
Name of	Registered Site Manager
1	May 26, 2022 Date
Signatur	To Registered Site Manager Date
	NOTARIZATION
	North Carolina (Enter State)
	Wake COUNTY
	Holly Van Norman a Notary Public of said County and State, do hereby certify that
	" d' 1
	identification in the form of NCDL was duly sworn or affirmed, and declared that, he or she is the
	duly authorized environmental consultant of the remediating party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that, to the building party of the property referenced above and that the property referenced above and that the property referenced above and the property referenced above above and the property referenced above above above above above above ab
	of his or her knowledge and belief, after thorough investigation, the information contained in the above certifications
	true and accurate, and he or she then signed these Certifications in my presence.
	WITCHS my land and official seal this 26 day of Notary Public (signature) My commission expires: 11/15/22 ment Certification Form No. DC - II sed 8/20) May May Notary Public Wake County
	ment Certification Form No. DC - II sed 8/20)

The University of North Carolina at Chapel Hill

Department of Environment, Health and Safety 1120 Estes Drive Extension, CB# 1650 Chapel Hill, North Carolina 27599-1650

2022 PROJECT STATUS REPORT

(Remedial Action Progress Report)

UNC-CH COGENERATION FACILITY CHAPEL HILL, NORTH CAROLINA SITE ID# NCR000010272

Prepared by

Geosyntec Consultants of NC, P.C.

Geosyntec Consultants of NC, P.C. 2501 Blue Ridge Road, Suite 430 Raleigh, North Carolina 27607

Project Number GN6666

May 2022

TABLE OF CONTENTS

1.	INTI	RODUCTION	1
2	CD C	NA DAMA TED	_
2.		DUNDWATER	
		Management of Investigation Derived Waste	
	2.2.	Remedy Performance Evaluation	
		2.2.1. Source Area Wells	4
		2.2.2. Downgradient Well	6
	2.3.	Discussion	7
3.	Soil		8
	3.1.	Proposal for Containment Remedy	8
	3.2	Discussion	8
		LIST OF TABLES	
Table	1	Groundwater Analytical Results	
Table	2	Groundwater and Surface Water Elevations	
Table	3	Surface Water Analytical Results	
		LIST OF FIGURES	
Figure	: 1	Potentiometric Surface Map	
Figure	2	Sulfate Concentrations Over Time	
Figure	3	TDS Concentrations Over Time	
Figure	4	Cobalt Concentrations Over Time	
Figure	5	Manganese Concentrations Over Time	

i

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

Appendix A Lab Reports (December 2021)

Appendix B Data Validation Report (December 2021)

1. INTRODUCTION

On behalf of The University of North Carolina at Chapel Hill (UNC-CH), Geosyntec Consultants of NC, P.C. (Geosyntec) has prepared this Project Status Report for UNC-CH's Cogeneration Facility located at 575 West Cameron Avenue, Chapel Hill, North Carolina. On September 3, 2010, UNC-CH submitted a *Notification of an Inactive Hazardous Substance or Waste Disposal Site* to the North Carolina Department of Environmental Quality's (NCDEQ) Inactive Hazardous Waste Sites Branch (IHSB). The notification was prompted when soils suspected of containing coal combustion byproducts (CCBs) were encountered during excavation activities associated with the construction of a new warehouse building for the UNC-CH Cogeneration Facility (the Facility or Site).

UNC-CH entered into an *Administrative Agreement* (AA) dated May 29, 2013, with NCDEQ to enroll the Site into the Registered Environmental Consultant (REC) program. Within the REC program, the remediating party contracts with an IHSB-approved environmental consulting firm to direct, implement, regulate, and certify that all investigation and remediation work is performed in compliance with the program regulations found under Title 15A of the North Carolina Administrative Code, Subchapter 13C .0300 (15A NCAC 13C .0300).

UNC-CH contracted with Geosyntec, an approved REC consultant, to complete a Remedial Investigation (RI). The objectives of the RI were to: (i) identify past releases of hazardous substances to the environment, (ii) identify potential exposure pathways, (iii) characterize the chemical nature of such releases and collect sufficient sampling data to support a cleanup-level determination, (iv) delineate the areal and vertical extent of contamination, and (v) characterize Site conditions sufficiently to conduct a feasibility study of remedial alternatives and to support a proposed remedy.

The RI assessed fill areas in the southern portion of the Facility, the section of McCauley Street constructed of fill material, and the creek or stream floodplain bisecting one of the two UNC-CH owned lots south of McCauley Street.

The *Remedial Investigation Report* (RIR) was submitted on May 27, 2016. The RIR concluded that concentrations of some contaminants of concern (COCs) exceeded their respective Remedial Goals (RGs) in soil (within the Facility property and in isolated

pockets south of McCauley Street) and in limited groundwater samples. The RIR recommended "No Further Action" for in-stream sediment and surface water.

A *Remedial Action Plan* (RAP) addressing groundwater remediation was submitted on March 28, 2018. The RAP concluded Monitored Natural Attenuation (MNA) with a risk-based approach for closure as the selected groundwater remedy.

This report provides a status update of soil and groundwater remedial activities.

2. GROUNDWATER

Groundwater and surface water monitoring were conducted in December 2021 in general accordance with the RAP.

Low flow or low stress purging techniques were used to purge and sample the groundwater. Pump tubing or head was placed approximately at the mid-point of the well screen and the purge rate was set to minimize drawdown. A bladder or peristaltic pump was used to collect all samples. Samples were collected after field parameters stabilized within acceptable tolerances.

MS/MSD samples were collected at MW-1 (the upgradient well).

Laboratory reports are provided in **Appendix A**. Each laboratory report was subjected to a Stage 2A data validation (**Appendix B**). Sample results are presented in **Table 1**. An associated potentiometric surface map is provided in **Figure 1**. The water level data is summarized within **Table 2**.

2.1. Management of Investigation Derived Waste

Consistent with purge water management during the RI, purge water collected during groundwater sampling was disposed of through the Facility's on-site wastewater treatment system via the drain at the tanker truck unloading apron.

Spent personal protective equipment and other solid waste generated by Geosyntec were bagged and disposed as municipal solid waste in one of the UNC-CH dumpsters.

2.2. Remedy Performance Evaluation

This section presents an evaluation of monitored attenuation in the two source-area monitoring wells MW-2 and MW-3. The well locations are shown on Figure 1 and are immediately at the downgradient end of the capped deposits. Concentration trends for four COCs (sulfate, total dissolved solids [TDS], cobalt, and manganese) in source area wells MW-2 and MW-3 are presented in Figures 2 through 5.

2.2.1. Source Area Wells

Since the initial monitoring event in March 2014, slight downward trends are apparent across the full-time span of collected data for sulfate (**Figure 2**) in both source area wells. For TDS (**Figure 3**), trends appear to be flat to slightly downward.

Both Cobalt and Manganese concentrations in MW-3 trend downward over time. Cobalt remains steady or flat in MW-2 (**Figure 4**). Manganese trended down at MW-3 through November 2019 but recorded its highest concentration in December 2020 (**Figure 5**). A decrease in manganese was observed in December 2021. Overall, manganese appears to be trending flat in MW-2.

Figure 2 - Sulfate Concentrations Over Time

Figure 3 - TDS Concentrations Over Time

Figure 4 - Cobalt Concentrations Over Time

Figure 5 - Manganese Concentrations Over Time

2.2.2. Downgradient Well

Downgradient of the source area at monitoring well MW-5, sulfate and TDS remain below their RG, with one exception. Sulfate was detected equal to the Remedial Goal of 250 mg/L for the first time since monitoring began.

Both Manganese and Cobalt have been detected in every sampling event at MW-5, but at concentrations of one to two orders of magnitude below their associated concentrations at MW-2 and MW-3 (the source area wells). Cobalt concentrations appear to be flat over time while Manganese appears to be trending up since monitoring began.

Surface Water Monitoring

Because the creek bisecting the southeast corner of the Site (**Figure 1**) is presumed to receive shallow groundwater as base flow downgradient of the source area, surface water is monitored along with the groundwater. Surface water results since the first time collected are presented in **Table 3**. No benchmarks for groundwater COCs were exceeded.

2.3. Discussion

Groundwater trends are overall down or flat since monitoring began. Analytical results downgradient from the source wells are one to two orders of magnitude below the source area wells, which illustrates substantial natural attenuation and decline and, when combined with the downward or flat trends at the source wells themselves, indicates the efficacy of MNA. UNC-CH and Geosyntec anticipate applying for Risk Based Closure of Groundwater in December 2022.

3. SOIL

Since the 2016 RIR, Geosyntec conducted a Feasibility Study (FS) for impacted soils (dated December 2017). The FS defined remedial action objectives, screened candidate technologies for potential effectiveness given site-specific conditions, evaluated potential remedial alternatives, and recommended preferred alternatives. The FS qualitatively compared remedial alternatives for soil against eight evaluation criteria and identified preferred Remedial Alternatives for both exposure units.

For impacted soil within the Facility's fence line (Exposure Unit 1) the preferred remedy is containment with land use restrictions inside the fenced Cogen Facility. Exposure Unit 2 is limited to two small, isolated areas of ash-impacted soil located south of McCauley Street. An interim removal action is proposed.

3.1. Proposal for Containment Remedy

Concurrence from NCDEQ is required for any containment remedies. A proposal was submitted to NCDEQ in February 2021 for concurrence. NCDEQ provided comments to UNC and Geosyntec in April 2021. Since the original proposal submission, UNC-CH has determined land use restrictions imposed on the lot(s) south of McCauley Street are not desirable. Because the ash-impacted areas are small and shallow, UNC-CH and Geosyntec will remove them from the UNC-CH owned lots and dispose of the spoils consistent with waste characterization sampling results. This will obviate the need for land use restrictions or engineering controls on these open lots.

3.2 Discussion

NCDEQ's April 2021 comments on the proposed RAP for soils primarily focused on the two areas of ash-impacted soil on the lot(s) south of McCauley Street, removing these isolated shallow spots will address these comments. Note, these shallow deposits were below residential screening criteria and an ecological risk assessment resulted in NCDEQ concurrence for no further action; however, some constituents exceed soil to groundwater screening levels and the cost and damage that would result to install additional wells exceeds the cost to simply exhume the shallow deposits and avoids land use restrictions or monitoring in the future on these parcels outside the facility. Accordingly, UNC prefers removal of the deposits. Geosyntec will coordinate with NCDEQ on an interim

measure to remove these pockets prior to finalizing and submitting the soil containment RAP for the Cogeneration facility parcel itself.

			1	Final						М	W-1					
Method	Analyte	Unit	2Ls and IMACs	Remediation	3/2014		9/2014		4/2015	171	11/2015		5/2016		6/2018	
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.	J	0.	U	0.	J	0.	U	0.00041	
	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.00016	
	1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.00019	
	1,2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	J	0.	U	0.	U	0.	U	0.	U	0.00066	<u> </u>
	1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	1,2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.00078	
sı	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.0000056	
and Furans	1,2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.00066	
Fu	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.00054	
and	2,3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
ins	1,2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dioxins	1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	_	0.	U	0.	U	0.	U	0.	U	0.	J	0.00074	
Ω	2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	_	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.0000056	
	2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	_	-	0.	U	0.	U	0.	U	0.	J	0.	J	0.00068	
	2,3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	_	_	0.	J	0.	U	0.	U	0.	U	0.	J	0.00008	F2
	1,2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	_	-	0.	U	0.	J	0.	J	0.	J	0.0035	U	0.00029	J
	1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	0.	J	0.	J	0.	U	0.00058	U	0.0013	U
	Calculated Dioxin/Furan TEQ	ng/L	0.0002	0.0002	0.	U	0.		0.		0.		0.		0.	
	Calculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	-	-	0.	U	0.		ND				ND		ND	
	Methylnaphthalene	μg/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2-methylnaphthalene	μg/L	30	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Acenaphthene	μg/L	80	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Acenaphthylene	μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Anthracene Renz(a)anthracene	mg/L	0.05	-	0.	U	0. 0.	U	0.	U	0.	U	0.	U	0.	U
	Benz(a)anthracene Benzo(a) pyrene	μg/L μg/L	0.05	0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Benzo(a) pyrene Benzo(b)fluoranthene	μg/L μg/L	0.005	0.005	0.	U	0.	U	0.	U	0.	J	0.	U	0.	U
Š	Benzo(g,h,i)perylene	μg/L μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
SVOCs	Benzo(k)fluoranthene	μg/L	0.5	_	0.	U	0.	U	0.	U	0.	J	0.	U	0.	U
SV	Chrysene	μg/L	5	-	0.	U	0.	U	0.	U	0.	J	0.	U	0.	U
	Dibenz(a,h)anthracene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Fluoranthene	μg/L	300	-	0.	U	0.	U	0.	U	0.	J	0.	U	0.	U
	Fluorene	μg/L	300	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Indeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	Naphthalene	μg/L	6	-	0.	U	0.	U	0.	U	0.	U	0.	J	0.	J
	Phenanthrene	μg/L	200	-	0.	U	0.	U	0.	U	0.024	J	0.0094	U	0.014	J
	Pyrene	μg/L	200	- 0.005	0.	U	0.	U	0.	U	0.041	J	0.0078 ND	U	0.0098 ND	U
	PAH TEQ	μg/L	0.005	0.005	ND				ND		0.					TT
	Bromide	mg/L	-	-	-				-				-		0.11	U
	Bicarbonate as CaCO3	mg/L	-	-	76				-				-		-	
	Total Inorganic Carbon	mg/L	-	-	-				-				-		3.7J	J+
General Chemistry	Dissolved Organic Carbon	mg/L	-	-	-				-				-		0.38	J
mis	Chloride	mg/L	250	-	27				-				-		16	В
Che	Fluoride	mg/L	2	-	-				-				-		0.06	U
а Т	Nitrate	mg/L	10	-	-				-				-		1.4	
ner	Nitrite	mg/L	1	-	-				-				-		049	U F1
3	Orthophosphate Sulfate	mg/L mg/L	250	250	69				71		71B		62	В	0.19 55	В
	Sulphide	mg/L	-	-	0.	U	_		-		/15		- 02	ь	-	ь
	TDS	mg/L	500	500	260		=		180	\vdash		H	150	H	140	\vdash
	TSS	mg/L	-	-			-		-			\Box	-		-	
	luminium	mg/L	-	-	0.		1		0.		0.		0.	J	-	
	ntimony	mg/L	0.001	-	0.	U	0.	U	0.	U	0.	U	0.0031	U	=	
	Arsenic	ug/L	10	-	4	U	8	J	4	U	4	U	4	U	-	
	arium	ug/L	700	-	42	<u> </u>		_	37	ļ	38		35		-	<u> </u>
	Beryllium	mg/L	0.004	-	0.	U	0.	U	0.	U	0.	U	0.	U	-	<u> </u>
	Oron Codmium	ug/L	700	-	-	ŢТ	0	ΤT	-	T 7	0	TT	-	ΤT	-	
	Cadmium	ug/L	2	-	0. 24	U	0.	U	0. 13	U	0.	U	9.2	U	6.2	\vdash
	alcium Chromium (III+VI)	mg/L ug/L	10	10	0.	J	2.	J	1.5	J	5	J	9.2	J	3.5	\vdash
	Hexavalent Chromium (VI)	ug/L ug/L	-	-	-	,	۷.	J	-	,	J	,	-	,	- 3.3	
	obalt	mg/L	0.001	0.001	0.	U	0.	U	0.	U	0.	U	0.0012	U	0.049	U
	Copper	mg/L	1	-	0.	U	0.	J	0.	U	0.	U	0.0012	U	0.042	
	Iron	ug/L	300	578	140		1,		430	Ť			100	U	22	U
tals	Lead	μg/L	15	-	2	U	2	U	2	U	2.6	U	2.6	U	-	
Metals	Lithium	μg/L	-	-	-				-				-		-	
	Magnesium	mg/L	-	-	5		3		2		2		2		1.4	
	anganese	ug/L	50	70	190	<u> </u>			22				10	U	10	U
	Mercury	ug/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	-	<u> </u>
	olybdenum	ug/L	-	-	-	<u> </u>			-	<u> </u>			-			<u> </u>
	Nickel	ug/L	100	-	1	U	1	U	2	J	1	U	1	U	-	<u> </u>
	Potassium	mg/L	-	-	3		2.		2	J	2	J	3	U	1.5	<u> </u>
	Selenium	ug/L	20		4	U	4	U	5	J	13	J	5.6J	**	-	<u> </u>
	Silver	ug/L	20	-	0. 57	U	0.	U	0.	U	0.93	U B	0.93 34	U B	34	-
	Sodium	mg/L ug/L	-	-	- 57	 			41	 		D	- 34	В	- 34	
	hallium	mg/L	0.0002	-	0.	U	0.	U	0.	U	0.	J	0.	U	-	
	anadium	mg/L	0.0002	0.0003	0.	U	0.	J	0.	U	0.	J	0.	U	0.	U
	Zinc	mg/L	1	-	0.02	U	0.013	J	0.0082	J	0.011	J	0.009	J	-	
							,									

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- ${\it 4. TEQ indicates\ total\ equivalents}.$
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.
- However, the method detection limit is an approximation.

 B is a laboratory flag indicating compound was detected in both the many compound was detected in t
- $8.\,B$ is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

				Final			N	I-1 co	ntinued			
Method	Analyte	Unit	2Ls and IMACs	Remediation Goals for Groundwater	12/12/201	18	11/14/201		12/2020		12/14/202	1
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	-		-		-	
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L ng/L	-	-	0.	U	-		-		-	+
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	-		-		-	1
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	-		-		-	
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	-		-		-	
ns	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	-		-		-	
ura	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	-		-		-	4
nd F	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	- 0.0002	-	0.	U	-		-	-	-	+
Dioxins and Furans	3,7,8-Tetrachlorooxanthrene (TCDD) 2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L ng/L	0.0002	-	0.0006	U	-		-		-	+
ioxi	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	-		-	-	<u> </u>	+
ā	3.4.6,7.8-Hexachlorodibenzofuran (HxCDF)	ng/L	_	_	0.	U			-		_	+
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	-		-		-	+
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.	U	-		-		-	
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.12	U	-		-		-	
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) alculated Dioxin/Furan TEQ	ng/L ng/L	0.0002	0.0002	0.12 ND	U	-		-		-	_
	alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	-	-	ND		-		-		-	+
	Methylnaphthalene	μg/L	1	-	0.0062	U	-		-		-	\Box
	methylnaphthalene	μg/L	30	-	0.0056	U	-		-		-	+
	cenaphthene cenaphthylene	μg/L μg/L	80 200	-	0.012	U	-		-	\vdash	-	+
	nthracene	μg/L mg/L	2	-	0.011	U	-		-		<u>-</u> -	+
	enz(a)anthracene	μg/L	0.05	-	0.0035	U	-		-		-	
	enzo(a) pyrene	μg/L	0.005	0.005	0.0056	U	-		-		-	_
Š	enzo(b)fluoranthene enzo(g,h,i)perylene	μg/L μg/L	0.05 200	-	0.0038	U	-		-		-	+
SVOCs	enzo(k)fluoranthene	μg/L	0.5	-	0.0055	U	-		-		-	+
S	hrysene	μg/L	5	-	0.0035	U	-		-		-	
	ibenz(a,h)anthracene luoranthene	μg/L μg/L	0.005 300	0.005	0.0053	U	-		-	-	-	+
	luorantinene	μg/L μg/L	300	-	0.005	U	-		-		-	+
	ndeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	0.016	U	-		-		-	
	aphthalene	μg/L	6	-	0.012	J	-		-		-	
	henanthrene yrene	μg/L μg/L	200 200	-	0.013	J U	-		-		-	+
	AH TEQ	μg/L μg/L	0.005	0.005	ND		-		-		-	+
	romide	mg/L	-	-	0.11	U	0.23	U	0.23	U	0.23	U
	icarbonate as CaCO3	mg/L	-	-	-		-		-		-	
	otal Inorganic Carbon	mg/L	-	-	6.9		6		5.4	J	3.7	J+
General Chemistry	issolved Organic Carbon	mg/L	-	-	1	U	0.58	J	1	U	0.	J
emi	hloride luoride	mg/L mg/L	250	-	16 0.06	U	10 0.19		10 0.17	U	12 0.17	U
Ch	itrate	mg/L	10	-	1.6	U	0.19		-	U	0.17	+-
era	itrite	mg/L	1	-	0.049		0.	J	-		0.049	U
Gen	rthophosphate	mg/L	-	-	0.19	F1	0.47	UF1	-		0.47	U
	ulfate ulphide	mg/L mg/L	250	250	60	J+	62		54		63	+
	DS	mg/L	500	500	150		150		150	J	140	1
	SS	mg/L	-	-	-		-		-		-	
	luminium ntimony	mg/L mg/L	0.001	-	-	<u> </u>	-		-		-	+
	senic	mg/L ug/L	10	-	-		-		4.4	U	4.4	U
	arium	ug/L	700	-	-		-		-		-	
	eryllium	mg/L	0.004	-	-		-		- 42	H	- 22	+
	oron admium	ug/L ug/L	700	-	-		-		42	J	32	J
	alcium	mg/L	-	-	6.7		8.6		6.2		4.4	1
	hromium (III+VI)	ug/L	10	10	10	U	10	U	1.5	J	1.7	J
	exavalent Chromium (VI) obalt	ug/L mg/L	0.001	0.001	0.0012	U	0.	U	0.	U	0.0012	U
	opper	mg/L mg/L	0.001	- 0.001	- 0.0012	U	- -	U	- -	U	0.0012	+
	on	ug/L	300	578	180		170		22	U	37	J
Metals	ead	μg/L	15	-	-		-		-		-	<u> </u>
Ĭ	ithium agnesium	μg/L mg/L	-	-	1.3		1.9		9.1 1.1	U	9.1 0.8	U
	Manganese	ug/L	50	70	1.3	U	5	J	1.1	U	1.9	U
	ercury	ug/L	1	-	-		-		-		-	
	olybdenum	ug/L	- 100	-	-		-		1.0	U	1.0	U
	ickel otassium	ug/L mg/L	100	-	1.9	J	3	U	1.9	J	1.6	J
	elenium	ug/L	20	-	-	,	-		-	,	-	-
	ilver	ug/L	20	-	-		-		-		-	
	odium	mg/L	-	-	42	!	33		34		36	100
	trontium hallium	ug/L mg/L	0.0002	-	-		-		0.0049	U	65 0.0049	^6+ U
	anadium	mg/L	0.0002	0.0003	0.0011	U	0.	U	0.0047	U	0.0043	U
	nc	mg/L	1	-	-		-		-		-	

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit. However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.16. NCDENRs 2L and IMAC standards from April 1, 2013.

			1		1					3.633						
poq		T T *4	2Ls and	Final Remediation						MW	-2					
Method	Analyte	Unit	IMACs	Goals for Groundwater	3/2014		9/2014		4/2015		11/2015		5/2016		6/2018	
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.00062		0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	J	0.00079		0.	U	0.	J	0.	U	0.	U
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.00039 0.00011		0. 0.	U J	0.	U	0. 0.	U	0.	U
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L ng/L	-	-	0.	U	0.00011		0.	U	0.	U	0.	U	0.	U
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	_	-	0.	U	0.00012		0.	J	0.	U	0.	U	0.	U
7.0	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	_	-	0.	U	0.00011		0.	U	0.	J	0.	U	0.	U
and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	J	0.00011		0.	U	0.	U	0.	U	0.	U
Fu	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.	U
and	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dioxins	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	J	0.00012		0.	U	0.	U	0.	U	0.	U
Ι	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.00011		0.	U	0.	U	0.	U	0.	U
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.00021		0.	U	0.	U	0.	U	0.	U
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.	J	0.	J	0.	U	0.0024	J	0.0024	U	0.00029	U
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.0016	J	0.0017	U	0.00086	U
	alculated Dioxin/Furan TEQ alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L ng/L	0.0002	0.0002	0.		0.00012427 ND		0.		0. ND		ND ND			
	Methylnaphthalene	μg/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	methylnaphthalene	μg/L μg/L	30	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthene	μg/L	80	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthylene	μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	nthracene	mg/L	0.05	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	enz(a)anthracene enzo(a) pyrene	μg/L μg/L	0.05	0.005	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0.	U
	enzo(b)fluoranthene	μg/L μg/L	0.003	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
S	enzo(g,h,i)perylene	μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
SVOCs	enzo(k)fluoranthene	μg/L	0.5	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
S	hrysene	μg/L	5	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	ibenz(a,h)anthracene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	luoranthene	μg/L μg/L	300 300	-	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0.	U	0.	U
	ndeno(1,2,3-c,d)pyrene	μg/L μg/L	0.05	0.05	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	aphthalene	μg/L	6	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.	J
	henanthrene	μg/L	200	-	0.	U	0.	U	0.	U	0.0094	U	0.0092	U	0.01	U
	yrene	μg/L	200	-	0.	U	0.	U	0.	U	0.0078	U	0.0077	U	0.00083	U
	AH TEQ romide	μg/L	0.005	0.005	ND -		ND -				ND		ND		ND	U
	icarbonate as CaCO3	mg/L	-	-							-		-			U
	otal Inorganic Carbon	mg/L	-	-	140		-				-		-		1.5	
y		mg/L	-	-	-		-				-		-		1.5	
istr	Issolved Organic Carbon	mg/L	- 250	-	- 10		-				- 11	D	-			
General Chemistry	hloride luoride	mg/L mg/L	250	-	19		-				- 11	В	-		17 0.4J	
C	itrate	mg/L	10	_	_		_				_				0.051J	
era	itrite	mg/L	1	-	-		1				1				0.049	U
Gen	rthophosphate	mg/L	-	-	-		-				-				0.19	U
ľ	ulfate	mg/L	250	250	170		140			В	90	В	85		99	
	ulphide DS	mg/L mg/L	500	500	0. 400	U	320				250		530		-	1
	SS	mg/L mg/L	-	-	1	U	- 320				- 250		- 530			1
	luminium	mg/L	-	-	0.	U	0.	U	0.	U	0.		0.	U	-	
	ntimony	mg/L	0.001	-	0.	U	0.	U	0.	U	0.		0.0031	U	-	
	senic	ug/L	10	-	4	U	6.5		4	U	5		4	U	-	1
	arium eryllium	ug/L mg/L	700 0.004	-	0.	U	53 0.00047		0.	B U	39 0.	J	50	U	-	1
	oron	mg/L ug/L	700	-	- -	U			U.	U	- -		- U.	U	-	
	admium	ug/L ug/L	2	-	0.	U	0.45		0.	U	0.		0.	U	-	1
	alcium	mg/L	-	-	31		24				15		17		16	
	hromium (III+VI)	ug/L	10	10	0.	U	0.66		0.	U	2.7	J	0.66	U	0.66	U
	exavalent Chromium (VI)	ug/L	- 0.001	0.001	-		-		0		-		0.029	<u> </u>	0.02	1
	obalt opper	mg/L mg/L	0.001	0.001	0. 0.	U	0. 0.	J	0. 0.	U	0. 0.		0.029	U	0.03	
	on on	ug/L	300	578	22	U	340	,	· · ·		140		· ·	J	630	
Metals	ead	μg/L	15	-	2	U	2.6		2	U	2		2.6	U	-	
Me	ithium	μg/L	-	-	9	U	-				-				-	
	agnesium	mg/L	-	- 70	7		5.9		5		3	D	3	- P	3.7	В
	Manganese ercury	ug/L ug/L	50	70	6, 0.	U	5, 0.	U	6, 0.	U	3,800 0.	В	4,400	В	4,600	
	olybdenum	ug/L ug/L	-	-	-	U	- -	U	U.	U	J. -		-			
	ickel	ug/L	100	-	5	J	4.1		5	J	2	J	3	J	-	1
	otassium	mg/L	-	-	3		3		3		2	J	3	В	2.8	J
	elenium	ug/L	20	-	4	U	4.9		4	U	4		4	U	-	
	ilver	ug/L	20	-	1	J	2.3		0.	U	0.93	ъ	0.93	U	- 75	г.
	odium trontium	mg/L ug/L	-	-	99	J	69			-	62	В	66	-	75	В
	hallium	mg/L	0.0002	-	0.	U	0.	U	0.	U	0.	J	0.	U	-	
																+
	anadium	mg/L	0.0003	0.0003	0. 0.02	U	0. 0.0062	U	0.	U	0.	J	0.	U	0.0017	J

- $1.\ ng/L\ indicates\ nanogram\ per\ liter.$
- 2. mg/L indicates milligram per liter.
- 3. $\mu g/L$ indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.
- However, the method detection limit is an approximation.
- $8.\ B$ is a laboratory flag indicating compound was detected in both the method blank and sample 9. R indicates the results are rejected due to deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- $14.\ ND\ indicates\ all\ of\ the\ input\ parameters\ in\ the\ calculated\ parameter\ equation\ were\ non-detect.$
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- $16. \ \ NCDENRs\ 2L\ and\ IMAC\ standards\ from\ April\ 1,\ 2013.$

Г				Final			M	W-2 c	ontinued			
Method	Analyte	Unit	2Ls and IMACs	Remediation Goals for Groundwater	12/17/2018	3	11/2019		12/2020		12/13/202	1
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	-		1		-	
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	-		-		-	
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L ng/L	-	-	0.	U	-		-		-	+
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	-		-		-	
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	-		-		-	
SU	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	-		-		-	
Dioxins and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	-		-		-	
ld F	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	-		-		-	
s ar	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	-		-		-	-
oxin	2,3,7,8-Pentachlorooxanthrene (PeCDD) 2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	-		-		-	+
Ďį	3,4,6,7,8-Pentacniorodibenzofuran (PeCDF)	ng/L ng/L	-	-	0.	U	-		-		<u>-</u>	+
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	_	0.	U	_		_			+
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.	U	-		-		-	+
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.11	U	-		-		-	
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	-		-		-	_
	alculated Dioxin/Furan TEQ alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L ng/L	0.0002	0.0002	ND ND		-		-		-	+
	Methylnaphthalene	μg/L	1	-	R		-		-		-	1
	methylnaphthalene	μg/L	30	-	R		-		-		-	
	cenaphthene cenaphthylene	μg/L	80 200	-	R R	-	-		-		-	+
	nthracene	μg/L mg/L	200	-	R	-	-		-		-	+-
	enz(a)anthracene	μg/L	0.05	-	0.11	U	-		-		-	
	enzo(a) pyrene	μg/L	0.005	0.005	0.11	U	-		-		-	
20	enzo(b)fluoranthene	μg/L	0.05	-	0.11	U	-		-		-	-
SVOCs	enzo(g,h,i)perylene enzo(k)fluoranthene	μg/L μg/L	200 0.5	-	0.11	J	-		-		-	+
SV	hrysene	μg/L	5	-	0.11	U	-		-		-	1
	ibenz(a,h)anthracene	μg/L	0.005	0.005	R		-		-		-	
	luoranthene	μg/L	300	-	0.11	U	-		-		-	+
	luorene ndeno(1,2,3-c,d)pyrene	μg/L μg/L	300 0.05	0.05	R R		-		-		-	+
	aphthalene	μg/L	6	-	0.0067	J	-		-		-	†
	henanthrene	μg/L	200	-	R		-		-		-	
	yrene	μg/L	200 0.005	0.005	0.11	U	-		-		-	+
	AH TEQ romide	μg/L mg/L	-	-	0.	U	0.	U	0.23	U	0.23	U
	icarbonate as CaCO3	mg/L	-	-	-		-		-		-	Ť
	otal Inorganic Carbon	mg/L	-	-	22		24		22	J	26	1
try	issolved Organic Carbon	mg/L	-	-	1.7	В	1.4		1		1.7	1
mist	hloride	mg/L	250	-	11	В	8.4		21		18	
Che	luoride	mg/L	2	-	0.47	J	0.	J	0.		0.69	-
General Chemistry	itrate itrite	mg/L mg/L	10	-	0.12 0.049	J U	0. 0.	U	0.	J	0.19 0.049	J U
ene	rthophosphate	mg/L	-	-	0.19	U	0.	U	-		0.47	U
9	ulfate	mg/L	250	250	96	В	51		100		89	
	ulphide	mg/L	- 500	-	- 260		- 210		- 270		- 270	+
	DS SS	mg/L mg/L	500	500	260		210		270		270	+
	luminium	mg/L	-	-	-		-		-		-	1
	ntimony	mg/L	0.001	-	-		-		-		-	
	senic arium	ug/L	10 700	-	-	-	-		4.4	U	4.4	U
	eryllium	ug/L mg/L	0.004	-	-	1	-		-		-	+
	oron	ug/L	700	-	-		-		42	J	50	J
	admium	ug/L	2	-	-		-		-		-	
	alcium	mg/L	- 10	- 10	15	T	14	II	30	TT	29	TI
	hromium (III+VI) exavalent Chromium (VI)	ug/L ug/L	10	- 10	0.74	J	10	U	0.66	U	0.66	U
	obalt	mg/L	0.001	0.001	0.024		0.		0.043		0.04	
	opper	mg/L	1	-	-		-		-		-	
ş	on ead	ug/L	300 15	578	100	-	400		130		110	+
Metals	ithium	μg/L μg/L	-	-	-	1	-		9	U	9.1	U
~	agnesium	mg/L	-	-	3.7		3.7		8.6	Ĺ	8.9	
	Manganese	ug/L	50	70	3,900	В	3,		7,		6,600	
	ercury	ug/L	1	-	-	-	-		- 1	TT	2.2	т
	olybdenum ickel	ug/L ug/L	100	-	-		-		1 -	U	2.3	J
	otassium	mg/L	-	-	2.6	J	3	U	3.5		3.7	1
	elenium	ug/L	20	-	-		-		-		-	
	ilver	ug/L	20	-	- (1	1	- 44		- 27		- 20	-
	odium trontium	mg/L ug/L	-	-	61	-	44		37 550		38 550	^6+
	hallium	mg/L	0.0002	-	-	l	-		0.0049	U	0.0056	J
	anadium	mg/L	0.0003	0.0003	0.0011	U	0.	U	0.0011	U	0.0011	U
	nc	mg/L	1	-	-		-		-		-	1

- 1. ng/L indicates nanogram per liter.
- mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.

 However, the method detection limit is an approximation.
- $8.\,B$ is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- $15. \ Groundwater Final\ Remediation\ Goals\ reference\ Geosyntec's\ 2016\ Remedial\ Investigation\ Report.$
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

		1	1		T											
Method	Analyte	Unit	2Ls and IMACs		3/2014		3/10/D)		9/2014	MV	9/10/D)		4/2015		4/24/Dup)	
		_		Groundwater										T ==		
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L ng/L	-	-	0.	U	0. 0.	U	0.00035	U	0.	U	0.	U	0. 0.	U
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.00012		0.	U	0.	U	0.	U
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.		0.	J, U	0.	U	0.	U
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.00013		0.	U	0.	J	0.	J,U
18	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.00012		0.	U	0.	U	0.	U
d F	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
s an	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dioxins	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	J	0.	U
Dio	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	J	0.	U,J	0.	J, U	0.	J	0.	U	0.	U
	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	J
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	3,7,8-Tetrachlorodibenzofuran (TCDF) 2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L ng/L	-	-	0.	U	0. 0.	U	0.	U	0. 0.0025	U	0. 0.0037	U	0.007	U
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.0025	U	0.0037	U	0.007	U
	alculated Dioxin/Furan TEQ	ng/L	0.0002	0.0002	0.		ND		0.		0.		0.		0.	
	alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	-	-	ND		ND		ND		ND		0.		ND	
	Methylnaphthalene methylnaphthalene	μg/L	30	-	0.	U	0.	U	0.	U	0.	U	0.	U	0. 0.	U
	methylnaphthalene cenaphthene	μg/L μg/L	80	-	0.	U	0. 0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthylene	μg/L μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	nthracene	mg/L	2	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	enz(a)anthracene	μg/L	0.05	- 0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	enzo(a) pyrene enzo(b)fluoranthene	μg/L μg/L	0.005	0.005	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0.	U	0. 0.	U
Š	enzo(g,h,i)perylene	μg/L μg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
SVOCs	enzo(k)fluoranthene	μg/L	0.5	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
S	hrysene	μg/L	5	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	ibenz(a,h)anthracene luoranthene	μg/L μg/L	0.005 300	0.005	0.	U	0. 0.	U	0. 0.	U	0.	U	0.	U	0.	U U
	luorene	μg/L μg/L	300	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	ndeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	aphthalene	μg/L	6	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	henanthrene	μg/L μg/L	200	-	0.	U	0. 0.	U	0. 0.	U	0.0093 0.0077	U	0.0094 0.0078	U	0.0096 0.008	U
	yrene AH TEQ	μg/L μg/L	0.005	0.005	ND		ND		ND	U	0.0077	U	ND	U	ND	
	romide	mg/L	-	-	-		-		-				-		-	
	icarbonate as CaCO3	mg/L	-	-	55		-		-				-		-	
	otal Inorganic Carbon	mg/L	-	-	-		-		-				-		=	
try	issolved Organic Carbon	mg/L	-	-	-		ı		-				-		-	
mis	hloride	mg/L	250	-	45		1		1				-		-	
General Chemistry	luoride	mg/L	2 10	-	-		-		-				-		-	
ral	itrate	mg/L mg/L	10	-	-		-		-				-		-	
èene	rthophosphate	mg/L	-	-	-		-		-		-				-	
	ulfate	mg/L	250	250	330		-		290				330		350	
	ulphide	mg/L	500	500	0.79	U	-		-		-		670		- (70	
	DS SS	mg/L mg/L	-	-	.1	U	-		650 -		640 -		670 -		670 -	
	luminium	mg/L	-	-	12		0.	U,J	0.	U	0.	U	0.	U	0.	U
	ntimony	mg/L	0.001	-	0.	U	0.	U	0.	U	0.0031	U	0.0031	U	0.0031	U
	senic	ug/L	10 700	-	4.4	U	4	U	4	U	4	U	4	UJ	5	J
	arium eryllium	ug/L mg/L	0.004	-	0.	J	0.		18 0.00051		0.	J	19 0.	J	19 0.	J
	oron	ug/L	700	-	-	1	-		-		<u> </u>		-		-	-
	admium	ug/L	2	-	0.67	J	0.		0.	U	0.	U	0	J	0.	J
	alcium	mg/L	- 10	-	61	TT	-	TT	65	11	0.66	TT	78	T.T.	77	U
	hromium (III+VI) exavalent Chromium (VI)	ug/L ug/L	10	10	0.66	U	0.	U	0.	U	0.66	U	0.66	U		U
	obalt	mg/L	0.001	0.001	0.15		0.		0.		0.12		0.13		0.12	
	opper	mg/L	1	-	0.	J	0.	U,J	0.		0.	J	0.	U		U
S	on	ug/L	300	578	200		67J		460	**	2.6	**	370	**	340	**
Metals	ead ithium	μg/L μg/L	15	-	2.6	U	2	U	2	U	2.6	U	2.6	U	2.6	U
Σ	agnesium	mg/L	-	-	16	1	-		19		18		20		20	
	Manganese	ug/L	50	70	8,		8,		7,		7,600		8,500		8,200	
	8	ug/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	ercury				_	1	-		-]		<u> </u>	-	1	-	
	ercury olybdenum	ug/L	100	-		T	271	1	27		27		26		25	т .
	ercury olybdenum ickel	ug/L ug/L	100	-	31	J	32J -		27 8		27 8		26 8		25 8	J
	ercury olybdenum	ug/L	100	-		J		U	27 8 4	U	27 8 4.9			U	8 4.9	U
	ercury olybdenum ickel otassium elenium ilver	ug/L ug/L mg/L ug/L ug/L	100 - 20 20	-	31 9.2 4.9 0.93		-	U U	8 4 2	U	8 4.9 1.8	J	8 4.9 2.1	U	8 4.9 2.7	
	ercury olybdenum ickel otassium elenium ilver odium	ug/L ug/L mg/L ug/L ug/L	100 - 20 20 -		31 9.2 4.9	U	4 0.		8 4 2 99		8 4.9 1.8 97	J	8 4.9 2.1 110		8 4.9 2.7 100	U
	ercury olybdenum ickel otassium elenium ilver odium trontium	ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L	100 - 20 20 - -	- - -	31 9.2 4.9 0.93 100	U	4 0.	U	8 4 2 99		8 4.9 1.8 97	J	8 4.9 2.1 110	J	8 4.9 2.7 100	U
	ercury olybdenum ickel otassium elenium ilver odium	ug/L ug/L mg/L ug/L ug/L	100 - 20 20 -	- - - -	31 9.2 4.9 0.93	U	4 0.		8 4 2 99	J	8 4.9 1.8 97	J	8 4.9 2.1 110		8 4.9 2.7 100	U

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.

 However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- $15.\ Groundwater\,Final\,Remediation\,Goals\,reference\,Geosyntec's\,2016\,Remedial\,Investigation\,Report.$
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

Ā				Final					М	W-3 c	ontinued					
Method	Analyte	Unit	2Ls and IMACs	Remediation	11/21/2015	5	11/2015 (Dup	p)	5/6/2016		6/13/2018		12/17/201	8	11/13/201	19
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.00069	U	0.	U	0.	U	0.	U	0.	U	-	
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	J,U	0.	J	0.	U	0.	U	0.	U	-	
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) 2,3,4,7.8-Hexachlorooxanthrene (HxCDD)	ng/L ng/L	-	-	0.00041 0.00024	U	0.	U	0.	U	0. 0.	U	0. 0.	U	-	+
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.00024	U	0.	U	0.	U	0.	U	0.	U		+-
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.00028	U	0.	U	0.	U	0.	U	0.	U	-	
s	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.00029	U	0.	U	0.	U	0.	U	0.	U	-	
and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.00024	U	0.	U	0.	U	0.	U	0.	U	-	
I.Fu	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.00035	U	0.	U	0.	U	0.	U	0.	U	-	
anc	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.00011	U	0.	U	0.	U	0.	U	0.	U	-	
Dioxins	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.00013	U	0.	U	0.	U	0.	U	0.	U	-	
Dio	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.00021	U	0.	U	0.	U	0.	U	0.	U	-	
	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.0003	U	0.	U	0.	U	0.	U	0.	U	-	
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.00018	U	0.	U	0.	U	0.	U	0.	U	-	
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.00017	U	0.	U	0.	U	0.	U	0.	U	-	4
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD) 2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L ng/L	-	-	0.0015 0.00016	U	0.	J U	0.	J U	0.099 0.0016	U	0.1	U	-	+-
	alculated Dioxin/Furan TEO	ng/L	0.0002	0.0002	ND		0.	0	0.	0	ND	- 0	ND		-	+
	alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	-	-	ND		ND		ND		ND		ND		-	
	Methylnaphthalene	μg/L	1	-	0.0055	U	0.	U	0.	U	0.	U	0.	U	-	1
	methylnaphthalene cenaphthene	μg/L μg/L	30 80	-	0.005	U	0.01	U	0. 0.01	U	0. 0.01	U	0. 0.	U	-	+
	cenaphthylene	μg/L μg/L	200	-	0.001	U	0.01	U	0.01	U	0.01	U	0.	U	-	+
	nthracene	mg/L	2	-	0.	U	0.	U	0.	U	0.	U	0.	U	-	
	enz(a)anthracene	μg/L	0.05	-	0.0031	U	0.	U	0.	U	0.	J	0.11	U	-	\Box
	enzo(a) pyrene enzo(b)fluoranthene	μg/L	0.005	0.005	0.005	U	0. 0.	U	0. 0.	U	0. 0.	U	0.11	U	-	+-
,sí	enzo(g,h,i)perylene	μg/L μg/L	200	-	0.0033	U	0.	U	0.	U	0.	U	0.11	J	-	+-
SVOCs	enzo(k)fluoranthene	μg/L	0.5	-	0.0049	U	0.	U	0.	U	0.	U	0.	J	-	+
S	hrysene	μg/L	5	-	0.0031	U	0.	U	0.003	U	0.	J	0.11	U	-	
	ibenz(a,h)anthracene	μg/L	0.005	0.005	0.0047	U	0.	U	0.	U	0.	U	0.	U	-	
	luoranthene luorene	μg/L μg/L	300 300	-	0.0044	U	0. 0.018	U	0. 0.018	U	0. 0.	U	0.11	U	-	+-
	ndeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	0.014	U	0.014	U	0.014	U	0.	U	0.	U	-	
	aphthalene	μg/L	6	-	0.0052	U	0.	U	0.095	U	0.	U	0.	J	-	
	henanthrene	μg/L	200	-	0.0094	U	0.	U	0.	U	0.015	J	0.012	J	-	4
	yrene AH TEQ	μg/L μg/L	200 0.005	0.005	0.0078 ND	U	0. ND	U	0. ND	U	0.013 0.000839	J	0.11 0.000075	U	-	+-
	romide	mg/L	-	-	-		-		-		0.14	J	0.11	U	0.23	U
	icarbonate as CaCO3	mg/L	-	-	-		-		-		-		-		-	
	otal Inorganic Carbon	mg/L	-	-	-		-		-		Not Rported		39	J+	39	
try	issolved Organic Carbon	mg/L	-	-	-		-		-		0.78	J	1.0	В	0.9	J
mis	hloride	mg/L	250	-	54	В	53	В	-		13	В	13	В	12	
General Chemistry	luoride	mg/L	2	-	-		-		-		0.16	J	0.14	J	0.17	U
ra	itrate	mg/L mg/L	10	-	-		-		-		0. 0.	U U	0. 0.	U	0.09	R
ene	rthophosphate	mg/L	-	-	-		-		-		0.19	U	0.19	U	0.47	R
9	ulfate	mg/L	250	250	340	В	340	В	330	В	250	В	300		210	
	ulphide	mg/L	-	- 500	-		-		-				-		-	
	DS SS	mg/L mg/L	500	500	680		680 -		630 -		540 -		560 -		480	+
	luminium	mg/L	-	-	0.018	U	0.018	U	0.31		-		-		-	
	ntimony	mg/L	0.001	-	0.0031	U	0.	U	0.	U	-		-		-	
	senic	ug/L	10	-	12	J	12	J	4.4	U	-		-		-	
	arium eryllium	ug/L mg/L	700 0.004	-	19 0.00052	J	19 0.	J	0.	J	-		-		-	+-
	oron	ug/L	700	-	-	,	-	,	-	3	-		-		-	
	admium	ug/L	2	-	0.45	U	0.45	U	0.88	J	-		-		-	
	alcium	mg/L	-	-	73		74		71		73		77		65	1
	hromium (III+VI) exavalent Chromium (VI)	ug/L ug/L	10	10	2	J	1.8	J	0.99	J	0.66	U	0.66	U	10	U
	obalt	mg/L	0.001	0.001	0.12		0.12		0.11		0.06		0.073		0.055	+
	opper	mg/L	1	-	0.0014	U	0.	U	0.	U	-		-		-	
_s ₂	on	ug/L	300	578	360		330		940	J	110		170		480	\Box
Metals	ead	μg/L	15	-	2.6	U	2.6	U	2.6	U	-		-		-	+
Z	ithium agnesium	μg/L mg/L	-	-	20		20		18		18		20		18	+-
	Manganese	ug/L	50	70	7,800	В	7,900	В	7,200		5,400		6,300	В	4,800	
	ercury	ug/L	1	-	0.027	U	0.027	U	0.027	U	-		-		-	
	olybdenum	ug/L	- 100	-	- 25		-		-		-		-		-	$\downarrow \downarrow \downarrow \downarrow$
	ickel otassium	ug/L mg/L	100	-	25 9.5	J	25 10	J	22 8.8	J B	6.5		7.5		6.6	+
	elenium	mg/L ug/L	20	-	9.5	J	14	J	4.9	U	- 0.5		- 1.5	1	-	+
	ilver	ug/L	20	-	0.93	U	0.93	U	0.93	U	-		-		-	
ı	odium	mg/L	-	-	97B	В	97	В	88	В	56		63		44	$oxed{\Box}$
1				-	-	1	-	1	-	1	_	1	-	1 1	-	İ
	trontium hallium	ug/L	0.0002							ΤT				† †		
	hallium anadium	mg/L mg/L	0.0002	0.0003	0.018 0.0011	UJ	0.021	J	0.	U	- 0.	U	0.0011	U	0.0016	J

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.

 However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

<u></u>				Final	M	W-3 c	ontinued	
Method	Analyte	Unit	2Ls and IMACs	Remediation Goals for Groundwater	12/17/202	0.0	13/2021	
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	-		-	
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L ng/L	-	-	-		-	+
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	-		-	+
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	-		-	
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	-		-	
sur	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	-		-	_
Dioxins and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD) 2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L ng/L	-	-	-		-	
md]	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	-		-	+
ns a	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	_	-		_	+
ioxi	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	_	-		_	+
D	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	-		-	+
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	-		-	
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	-		-	
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	-		-	4
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) alculated Dioxin/Furan TEQ	ng/L ng/L	0.0002	0.0002	-		-	+
	alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	-	-	-		-	
	Methylnaphthalene	μg/L	1	-	-		-	
	methylnaphthalene cenaphthene	μg/L μg/L	30 80	-	-		-	_
	cenaphthylene	μg/L μg/L	200	-	-		<u>-</u>	_
	nthracene	mg/L	2	-	-		-	
	enz(a)anthracene	μg/L	0.05	- 0.005	-		-	4
	enzo(a) pyrene enzo(b)fluoranthene	μg/L μg/L	0.005	0.005	-		-	+-
င္မ	enzo(g,h,i)perylene	μg/L	200	-	-		-	
SVOCs	enzo(k)fluoranthene	μg/L	0.5	-	-		-	
S	hrysene ibenz(a,h)anthracene	μg/L μg/L	5 0.005	0.005	-		-	
	luoranthene	μg/L μg/L	300	-	-		<u> </u>	+-
	luorene	μg/L	300	-	-		-	
	ndeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	-		-	
	aphthalene henanthrene	μg/L μg/L	6 200	-	-		-	+
	yrene	μg/L μg/L	200	-	-		-	_
	AH TEQ	μg/L	0.005	0.005	-		-	
	romide	mg/L	-	-	0.23	U	0.23	U
	icarbonate as CaCO3	mg/L	-	-	- 45	т	- 47	4
×	otal Inorganic Carbon issolved Organic Carbon	mg/L	-	-	45 0.78	J	1.3	_
istr	hloride	mg/L	250	-	19	J	1.3	-
hen	luoride	mg/L	2	-	0.17	J	0.17	U^1+
al C	itrate	mg/L	10	-	0.09	U	0.09	U
General Chemistry	itrite	mg/L	1	-	-		0.049	U
3	rthophosphate ulfate	mg/L mg/L	250	250	280		270	-
	ulphide	mg/L	-	-	-		-	
	DS SS	mg/L	500	500	560		580	4
	luminium	mg/L mg/L	-	-	-		-	+-
	ntimony	mg/L	0.001	-	-		-	_
	senic	ug/L	10	-	4.4	U	4.4	U
	arium eryllium	ug/L mg/L	700 0.004	-	-		-	
	oron	ug/L	700	-	78	J	77	J
	admium	ug/L	2	-	-		-	
	alcium	mg/L	-	-	83	**	91	-
	hromium (III+VI) exavalent Chromium (VI)	ug/L ug/L	10	10	0.66	U	0.66	U
	obalt	mg/L	0.001	0.001	0.061		0.051	+
	opper	mg/L	1	-	-		-	
S	on and	ug/L	300 15	578	120		270	+
Metals	ead ithium	μg/L μg/L	-	-	9.1	U	9.1	U
	agnesium	mg/L	-	-	21		22	
	Manganese	ug/L	50	70	5,800		5,	口
	ercury olybdenum	ug/L ug/L	1 -	-	- 1	U	1	U
	ickel	ug/L ug/L	100	-	-	U	-	+
	otassium	mg/L	-	-	6.7		6.1	
	elenium	ug/L	20	-	-	\prod	-	$\downarrow \downarrow \downarrow \downarrow$
	ilver	ug/L mg/L	20	-	53	+ +	<u>-</u> 44	+
	trontium	mg/L ug/L	-	-	1,100		1,	^6+
	hallium	mg/L	0.0002	-	0.0049	U	0.0052	J
	anadium	mg/L	0.0003	0.0003	0.0011	U	0.0013	J
	nc	mg/L	1	-	-		-	

- 1. ng/L indicates nanogram per liter.
- $2.\ mg/L\ indicates\ milligram\ per\ liter.$
- 3. $\mu g/L$ indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit. However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

		1	1	Final						P7/	MW-4					
Method	Analyte	Unit	2Ls and IMACs	Remediation Goals for Groundwater	9/2014		4/2015		11/2015	12/	6/2016		6/2018		12/2018	
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD) 2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L ng/L	-	-	0.	U	0.	U	0.	U	0. 0.	U	0. 0.	U	0.	U
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.	U
S	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
ıran	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
and Furans	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dioxins	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dic	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF) 3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L ng/L	-	-	0.	U	0.	U	0. 0.	U	0.	U	0. 0.	U	0. 0.	U
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.005	j	0.00076	U	0.11	U
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.00092	U	0.0015	U	0.00055	U
	alculated Dioxin/Furan TEQ alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L ng/L	0.0002	0.0002	ND		0.		ND ND		0.		ND ND		ND ND	-
	Methylnaphthalene	μg/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	methylnaphthalene	μg/L	30	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthene	μg/L	80	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthylene nthracene	μg/L mg/L	200	-	0.	U	0.	U	0. 0.	U	0. 0.	U	0.	U	0. 0.	U
	enz(a)anthracene	μg/L	0.05	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	enzo(a) pyrene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
7.0	enzo(b)fluoranthene	μg/L	0.05	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
SVOCs	enzo(g,h,i)perylene enzo(k)fluoranthene	μg/L μg/L	200 0.5	-	0.	U	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0. 0.	J
SV	hrysene	μg/L μg/L	5	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	ibenz(a,h)anthracene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	0.	U	0.	U	0.	J
	luoranthene	μg/L	300	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	luorene ndeno(1,2,3-c,d)pyrene	μg/L μg/L	300 0.05	0.05	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0. 0.	U J
	aphthalene	μg/L μg/L	6	-	0.	U	0.	U	0.	U	0.	U	0.	J	0.	U
	henanthrene	μg/L	200	-	0.	U	0.	U	0.	U	0.0093	U	0.01	U	0.011	U
	yrene AH TEQ	μg/L	200 0.005	0.005	0. ND	U	0. ND	U	0. ND	U	0.0077	U	0.0084 ND	U	0.0093 0.02145	U
	romide	μg/L mg/L	-	-	- ND		- ND		ND -				0.11	U	0.02143	U
	icarbonate as CaCO3	mg/L	-	-	-		-		-				=		-	
	otal Inorganic Carbon	mg/L	-	-	-		-		-				6.7		13	J+
try	issolved Organic Carbon	mg/L	-	-	-		-		-				0.28	J	1	U
mis	hloride	mg/L	250	-	-		-		-				3	U	3	U
General Chemistry	luoride	mg/L	10	-	-		-		-				0.06	U	0.06	U
eral	itrate	mg/L mg/L	10	-	-		-		-				0.		1.1 0.049	U
- jene	rthophosphate	mg/L	-	-	-		-		-				0.19	F1, U	0.81	J+
	ulfate	mg/L	250	250	53		62B	В	73		21		16	В	9.7	В
	ulphide DS	mg/L mg/L	500	500	140		140		170				62		70	
	SS	mg/L	-	-	-		-		-				-		-	
	luminium	mg/L	-	-	0.	J	0.	J	0.	J	0.		-		-	
	ntimony senic	mg/L ug/L	0.001	-	0. 4	U	0. 4	U	0. 7	U J	0. 4	U	-		-	
	arium	ug/L ug/L	700	-	34		32	В	41	,	7		-		-	
	eryllium	mg/L	0.004	-	0.	U	0.	U	0.	U	0.	U	-		-	
	oron	ug/L	700	-	-	* *	-	**	-		0		-		-	
	admium alcium	ug/L mg/L	2	-	0.	U	0. 15	U	0. 20	U	0.	U	6.4		5.8	
	hromium (III+VI)	ug/L	10	10	19		26		29				8	J	8	J
	exavalent Chromium (VI)	ug/L	-	-	-				-		_		8	J	7.6	В
	obalt	mg/L mg/L	0.001	0.001	0.	U J	0.	U	0. 0.	U	0. 0.	U	0.	U	0.	U
	opper on	ug/L	300	578	22	U	35	J	70	U	680	J	22	U	22	U
Metals	ead	μg/L	15	-	2	U	2	U	2	U	2.6	U	-		-	
Me	ithium	μg/L	-	-	-		-		-		2	1	- 1		- 1.5	1
	agnesium Manganese	mg/L ug/L	50	70	7	J	4	J	5 4		2 22	В	1.4	J	1.5 1.1	J
	ercury	ug/L ug/L	1	-	0.	U	0.	U	0.	U	0.	U	-	J	-	,
	olybdenum	ug/L	-	-	-		-		-				-		-	
	ickel	ug/L	100	-	1.		2	J	1	U	1	U	-		-	ļ <u> </u>
í	otassium elenium	mg/L ug/L	20	-	3 4	U	<u>3</u>		3 4	U	3 4	B U	2	J	2.8	J
		~5/ L				U	0.	U	0.	U	0.93	U	-		-	
	ilver	ug/L	20	-	0.		0.			_						
	ilver odium	mg/L	-	-	15	Ü	15		14	Ŭ	11		6		6	
	ilver odium trontium	mg/L ug/L	-	-	15		15 -		14 -		11	T T	-		6 -	
	ilver odium	mg/L	-	-	15	U	15	U	14	J		U		U		U

- 1. ng/L indicates nanogram per liter.
- $2.\ mg/L\ indicates\ milligram\ per\ liter.$
- 3. $\mu g/L$ indicates microgram per liter.
- 4. TEQ indicates total equivalents. 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.
- However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- $10.\ F1\ \&\ F2$ are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- $14.\ ND\ indicates\ all\ of\ the\ input\ parameters\ in\ the\ calculated\ parameter\ equation\ were\ non-detect.$
- $15. \ \ Groundwater Final \ Remediation \ Goals \ reference \ Geosyntec's \ 2016 \ Remedial \ Investigation \ Report.$
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

			Ι	Final	T	т	PZ/M-4 continu	har		
poq		TT 14	2Ls and	Remediation		r	Z/M-4 Continu	lea		
Method	Analyte	Unit	IMACs	Goals for Groundwater	11/14/2019	9	12/2020		12/13/202	1
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	-	Ш	-	\sqcup	-	\perp
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	-	\vdash	-	++	-	+
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L ng/L	-	-	-	₩	-	₩	-	+
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	-	\vdash	-	++	-	+
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	_	\vdash	-	++	-	+
	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-			₩		++		+
Dioxins and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	-	₩	-	++	-	+
dura	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)					\vdash		++		+
l pu		ng/L	- 0.0002	-	-	\vdash	-	++	-	+
s aı	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	-	Ш	-	\sqcup	-	\rightarrow
xin	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	-		-	$\perp \perp$	-	\perp
Dio	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	-	Ш	-	\sqcup	-	
	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	-		-	$\sqcup \downarrow$	-	
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	-		-	Ш	-	
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	-		-	$\perp \perp \downarrow$	-	\perp
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	-	₩	-	++	-	+
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) alculated Dioxin/Furan TEQ	ng/L ng/L	0.0002	0.0002	-	₩	-	₩	-	+
	alculated Dioxin/Furan 1EQ alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L ng/L	-	-	-		-	++	-	+
	Methylnaphthalene	μg/L	1	-	-	\vdash	-	\dagger	_	+
	methylnaphthalene	μg/L	30	-	-		-	t	-	+
	cenaphthene	μg/L	80	-	-		-		-	
	cenaphthylene	μg/L	200	-	-		-		-	
	nthracene	mg/L	2	-	-	ш	-	\sqcup	-	\perp
	enz(a)anthracene	μg/L	0.05	- 0.005	-		-	++	-	-
	enzo(a) pyrene	μg/L μg/L	0.005	0.005	-	₩	-	₩	-	+
_xi	enzo(b)fluoranthene enzo(g,h,i)perylene	μg/L μg/L	200	-	-		-	++	-	+
SVOCS	enzo(k)fluoranthene	μg/L μg/L	0.5	-		\vdash	_	++		+
SV	hrysene	μg/L	5	-	-	\vdash	-	T	-	+
	ibenz(a,h)anthracene	μg/L	0.005	0.005	-		-		-	\top
	luoranthene	μg/L	300	-	-		-		-	
	luorene	μg/L	300	-	-		-	Ш	-	
	ndeno(1,2,3-c,d)pyrene	μg/L	0.05	0.05	-	ш	-	\sqcup	-	\perp
	aphthalene	μg/L	6	-	-	\sqcup	-	++	-	+
	henanthrene	μg/L μg/L	200 200	-	-	₩	-	++	-	-
	yrene AH TEQ	-	0.005	0.005	-	\vdash	-	++	<u> </u>	+
	romide	μg/L mg/L	-	-	0.23	U	1.2	U	0.23	U
	icarbonate as CaCO3	mg/L	_	-				+		+
	otal Inorganic Carbon	mg/L	-	-	6.7	\vdash	7.7	J	5	+
Y	issolved Organic Carbon	mg/L	_	_	0.35	U	0.35	U	0.	J
istr						J		J		J
em	hloride luoride	mg/L mg/L	250 2	-	1.9 J 0.17	U	9.9 0.83	U	2.4 0.	J^1
Ch	itrate	mg/L	10	-	0.17	U	0.83	J	0.	01
General Chemistry	itrite	mg/L	1	-	0.049	U	-	+*+	0.049	U
ene	rthophosphate	mg/L	-	-	0.47	U	-	11	0.47	U
9	ulfate	mg/L	250	250	8.9		73		10	
	ulphide	mg/L	-	-	-	Ш	-	\sqcup	-	
	DS	mg/L	500	500	59	igsquare	64	\sqcup	62	\bot
	SS	mg/L	-	-	-	\vdash	-	++	-	+
	luminium ntimony	mg/L mg/L	0.001	-	-	\vdash	-	++	-	+
	senic	mg/L ug/L	10	-	-	┼┤	4.4	U	4.4	U
	arium	ug/L ug/L	700	-	-	\vdash	-	+++	-	+
	eryllium	mg/L	0.004	-	-	\Box	-	T	-	\top
	oron	ug/L	700	-	-		11	J	13	J
	admium	ug/L	2	-	-	\Box	-	П	-	
	alcium	mg/L	-	-	4.9	لب	5.3	igspace	5	Ш
	hromium (III+VI)	ug/L	10	10	10	U	3.1	J	3	J
	exavalent Chromium (VI)	ug/L	0.001	- 0.001	4.7	U	3.2	J U	2.6	т т
	obalt	mg/L mg/L	0.001	0.001	0.0012	U	0.	+-	0.0012	U
	opper on	ug/L	300	578	350	\vdash	22	U	520	+
als	ead	μg/L	15	-	-	t^{-1}	-	+ + +	-	+
Metals	ithium	μg/L	-	-	-		9.1	U	9.1	U
	agnesium	mg/L	-	-	1.5		1.4		1.4	
	Manganese	ug/L	50	70	14	\Box	1.9	U	16	
	ercury	ug/L	1	-	-	igspace	-	\coprod	-	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}$
	olybdenum	ug/L	-	-	-	igspace	1	U	1	U
	ickel	ug/L	100	-	- 2	<u> </u>	2.6	++	- 2.7	++
	otassium elenium	mg/L ug/L	20	-	3	В	2.6	J	2.7	J
	ilver	ug/L ug/L	20	-	-	┼┤	-	++		+
	odium	mg/L	-	-	5.1	\vdash	4.9	++	5	+
1	trontium	ug/L	-	-	-	t^{-1}	79	++	80	^6+
I						\vdash		U		U
	hallium	mg/L	0.0002	-	-	1 1	0.	U	0.0049	
	hallium anadium	mg/L mg/L mg/L	0.0002	0.0003	0.0011	U	0.	U	0.0049	J

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. $\mu g/L$ indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.
- However, the method detection limit is an approximation.
- $8.\ B$ is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- $14.\ ND\ indicates\ all\ of\ the\ input\ parameters\ in\ the\ calculated\ parameter\ equation\ were\ non-detect.$
- $15. \ \ Groundwater\ Final\ Remediation\ Goals\ reference\ Geosyntec's\ 2016\ Remedial\ Investigation\ Report.$
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

			1	Final						M	IW-5					
Method	Analyte	Unit	2Ls and IMACs		9/2014		4/2015		11/2015	11/1	5/2016		5/5/D)		6/2018	
Z				Groundwater									,			
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) 2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L ng/L	-	-	0.	U	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0. 0.	U
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	J	0.	U	0.	U	0.	U	0.	U
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
sui	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
nd I	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF) 3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
ns a	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
Dioxins	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	_	_	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
D	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	_	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L	-	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.	U	0.	U	0.	U	0.0015	U	0.00093	U	0.00017	U
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) alculated Dioxin/Furan TEQ	ng/L	- 0.0002	- 0.0002	0.	U	0. 0.	U	0. ND	U	0.00076	U	0.0011 ND	U	0.0012 ND	U
	alculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L ng/L	0.0002	0.0002	0.		ND		ND				ND		ND ND	+
	Methylnaphthalene	μg/L	1	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	methylnaphthalene	μg/L	30	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	cenaphthene cenaphthylene	μg/L μg/L	80 200	-	0.	U	0.	U	0. 0.	U	0.	U	0.	U	0.	U
	nthracene	μg/L mg/L	200	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
	enz(a)anthracene	μg/L	0.05	-	0.	U	0.	U	0.	J	0.	U	0.	U	0.	J,U
	enzo(a) pyrene	μg/L	0.005	0.005	0.	U	0.	U	0.	J	0.	U	0.	U	0.	U
S	enzo(b)fluoranthene enzo(g,h,i)perylene	μg/L μg/L	0.05 200	-	0.	U	0.	U	0. 0.	J	0.	U	0. 0.	U	0. 0.	U
SVOCs	enzo(k)fluoranthene	μg/L μg/L	0.5	-	0.	U	0.	U	0.	J	0.	U	0.	U	0.	U
$\mathbf{S}\mathbf{V}$	hrysene	μg/L	5	-	0.	U	0.	U	0.	J	0.	U	0.	U	0.	U
	ibenz(a,h)anthracene	μg/L	0.005	0.005	0.	U	0.	U	0.	J	0.	U	0.	U	0.	U
	luoranthene	μg/L	300 300	-	0.	U	0.	U	0. 0.	U	0. 0.	U	0. 0.	U	0.	U
	luorene ndeno(1,2,3-c,d)pyrene	μg/L μg/L	0.05	0.05	0.	U	0.	U	0.	J	0.	U	0.	U	0.	U
	aphthalene	μg/L	6	-	0.	U	0.	U	0.	U	0.	U	0.	U	0.	J
	henanthrene	μg/L	200	-	0.	U	0.	U	0.	U	0.0095	U	0.0094	U	0.0097	U
	yrene AH TEQ	μg/L μg/L	200 0.005	0.005	0. ND	U	0. ND	U	0. 0.	J	0.0078 ND	U	0.0078 ND	U	0.008 ND	U
	romide	μg/L mg/L	-	-	-		-		- -		ND		- ND		0.14	J
	icarbonate as CaCO3	mg/L	-	-	-		-		-				-		-	+
	otal Inorganic Carbon	mg/L	-	-	-		-		-				-		0.71	J
try	issolved Organic Carbon	mg/L	-	-	-		-		-				-		0.77	J
mis	hloride	mg/L	250	-	-		-		-				-		20	
General Chemistry	luoride	mg/L	2	-	-		-		-				-		0.08	J
ral	itrate	mg/L mg/L	10	-	-		-		-				-		049	U
èene	rthophosphate	mg/L	-	-	-		-		-				-		0.26	J
	ulfate	mg/L	250	250	170		200		200		210	В	210	В	210	
	ulphide DS	mg/L mg/L	500	500	420		390		410				400		-	-
	SS	mg/L	-	-	- 420		-		-				-		_	+
	luminium	mg/L	-	-	0.	U	0.	J	0.		0.	U	0.	U	-	
	ntimony	mg/L	0.001	-	0.	U	0.	U	0.	U	0.	U	0.0031	U	-	
	senic arium	ug/L ug/L	10 700	-	4	U	23	U B	5 21	J	5.	J	4 21	J,U	-	+
	eryllium	mg/L	0.004	-	0.	U	0.	U	0.	U	0.	U	0.	U	-	+-
	oron	ug/L	700	-			-		-				-		-	
	admium	ug/L	2	-	0.	U	0.	U	0.	U	0.	U	0.	U	- 42	
	alcium hromium (III+VI)	mg/L ug/L	10	10	0.	U	37 0.	J	40	J	0.	J	0.	J	43 0.	U
	exavalent Chromium (VI)	ug/L	-	-	-		-	3	-	,	0.	3	-	,	-	+
	obalt	mg/L	0.001	0.001	0.	J	0.	J	0.	J	0.	J	0.		0.	J
	opper	mg/L	1	-	0.	J	0.	U	0.	U	0.	U	0.	U	- 110	_
als	on ead	ug/L μg/L	300 15	578	2	U	2	J U	67 2	U	22	U	100 2.6	U	110	+
Metals	ithium	μg/L	-	-	-		-		-				-			+
	agnesium	mg/L	-	-	14		13		13				14		14	
	Manganese	ug/L	50	70	28	**	38	т.	22	**	17B	В	16	В	75	4
	ercury olybdenum	ug/L ug/L	1 -	-	0.	U	0.	U	0.	U	0.	U	0.	U	-	+
	ickel	ug/L ug/L	100	-	5	J	7	J	3	J	5.	J	5	U	-	+
	otassium	mg/L	-	-	2	J	2	J	2	J	3B	В	3		2	J
	elenium	ug/L	20	-	4	U	4	U	11	**	4	U	4	U	-	lacksquare
	odium	ug/L mg/L	20	-	0. 61	U	0. 61	U	0. 63	U	0.93 63B	U B	0.93 64	U	65	+
	trontium	ug/L	-	-	-	+	-		-		0.515	ע	-		-	+
	hallium	mg/L	0.0002	-	0.	U	0.	U	0.	J	0.	J	0.	UJ	-	
	anadium	mg/L	0.0003	0.0003	0.	U	0.	U	0.	U	0.	U	0.	U	0.	U
<u></u>	nc	mg/L	1	-	0.0045	U	0.0046	J	0.0045	U	0.0045	U	0.0045	U	-	

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. UJ indicates the analyte was not detected above the method detection limit.

 However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence of the analyte cannot be verified.
- $10.\ F1$ & F2 are data qualifiers used by the laboratory.
- 11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

	T			Final					M	[-5 co	ntinued					
Method	Analyte	Unit	2Ls and IMACs		6/14/Dup)		12/13/201	8	12/13/D)	2 00	11/2019		12/17/202	0	12/13/202	:1
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L	-	-	0.	U	0. 0.	U	0. 0.	U	-		-		-	
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD) 2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L ng/L	-	-	0.	U	0.	J,U	0.	J			-		-	
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	-		_		-	
s	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
and Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
d Fu	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
an	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L	0.0002	-	0.	U	0.	U	0.	U	-		-		-	
Dioxins	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
Dio	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF) 3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	3,4,7,8-Pentachlorodibenzofuran (PeCDF) 3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L	-	-	0.	U	0.11	U	0.	U	-		-		-	
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	-	-	0.	U	0.	U	0.	U	-		-		-	
	alculated Dioxin/Furan TEQ	ng/L	0.0002	0.0002	ND		ND		0.		-		-		-	
	alculated Hexachlorodibenzo-p-dioxin, Mixture Methylnaphthalene	ng/L µg/L	1	-	ND 0.	U	ND 0.	U	ND 0.	U	-		-		-	
	methylnaphthalene	μg/L	30	-	0.	U	0.	J	0.	J,U	-		-		-	
	cenaphthene	μg/L	80	-	0.	U	0.012	U	0.	U	-		-	\Box	-	
	cenaphthylene	μg/L mg/L	200	-	0.01	U	0.011	U	0.	U	-		-		<u>-</u>	+
	nthracene enz(a)anthracene	mg/L μg/L	0.05	-	0.	J	0.11	U	0.	U	<u>-</u>		-		-	+
	enzo(a) pyrene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	-		-		-	
	enzo(b)fluoranthene	μg/L	0.05	-	0.	U	0.11	U	0.	U	-		-		-	
SVOCs	enzo(g,h,i)perylene enzo(k)fluoranthene	μg/L μg/L	200 0.5	-	0.	U	0. 0.	U	0. 0.	U	-		-		-	
SV	hrysene	μg/L μg/L	5	-	0.	U	0.11	U	0.	J	-		-		-	
	ibenz(a,h)anthracene	μg/L	0.005	0.005	0.	U	0.	U	0.	U	-		-		-	
	luoranthene	μg/L	300	-	0.1	U	0.11	U	0.	U	-		-		-	
	luorene ndeno(1,2,3-c,d)pyrene	μg/L μg/L	300 0.05	0.05	0.	U	0.02 0.016	U	0. 0.	U	-		-		-	
	aphthalene	μg/L	6	-	0.	J	0.	J	0.	J,U	-		-		-	
	henanthrene	μg/L	200	-	0.01	U	0.01	U	0.	U	-		-		-	
	yrene AH TEQ	μg/L	200 0.005	0.005	0.	U	0. ND	U	0. 0.	U	-		-		-	
	romide	μg/L mg/L	-	-	0.43	J	0.13	J	0.	J	0.23		0.23	U	0.23	U
	icarbonate as CaCO3	mg/L	-	-	-	+	-	+ -	-		-		-		-	
	otal Inorganic Carbon	mg/L	-	-	0.71	J	31		29		8		19	J	18	
try	issolved Organic Carbon	mg/L	-	-	0.75	J	1		1	U	1		0.91	J	1.1	
mis	hloride	mg/L	250	-	20		19	В	19	J	20		25		30	
Che	luoride	mg/L	10	-	0. 1.2	J	0.12 2.5	J	0. 1.1	U J	0. 1.	J	0.17 0.92	U J	0.17 1.1	U^1-
General Chemistry	itrate itrite	mg/L mg/L	10	-	0.		0.049	J	0.	1F2,	0.	R	- 0.92	J	0.049	U
3en	rthophosphate	mg/L	-	-	0.19	J	0.98	J	0.19	J,U	0.47	R	-		0.47	U
	ulfate	mg/L	250	250	210		220		210		230		210	J	250	1
	ulphide DS	mg/L mg/L	500	500	440		420		430		500		400		460	
	SS	mg/L	-	-	-		-		-		-		-		-	
	luminium	mg/L	-	-	-		-		-		-		-		-	
	ntimony senic	mg/L ug/L	0.001	-	-		-		-	-	-		4.4	U	4.4	U
	arium	ug/L ug/L	700	-	-		-		-		-		-	U	- 4.4	U
	eryllium	mg/L	0.004	-	-		-		-		-		-		-	
	oron	ug/L	700	-	-		-	-	-	-	-		32	J	35	J
	admium alcium	ug/L mg/L	2	-	42		41	1	43		41		38		46	
	hromium (III+VI)	ug/L	10	10	0.66	U	0.77	J	0.	J	10	U	0.68	J	0.66	U
	exavalent Chromium (VI)	ug/L	-	-	-		-		-				-	_	-	
	obalt	mg/L mg/L	0.001	0.001	0.	J	0.	J	0.	J	0.	J	0.002	J	0.0024	J
	opper on	ug/L	300	578	110	+	240	J	350	J	840		550		1,200	
Metals	ead	μg/L	15	-	-		-	Ė	-		-		-		-	
Me	ithium	μg/L	-	-	-	ļ	-		- 12		-		9.1	U	0.0091	U
	agnesium Manganese	mg/L ug/L	50	70	14 79	В	13 73		13 90		14 480		12 78		14 76	
	ercury	ug/L ug/L	1	-	-		-		-		-		-		-	
	olybdenum	ug/L	-	-	-		-		-		-		1	U	1.0	U
	ickel	ug/L	100	-	- 2.7	+-	- 2.7	ļ <u> </u>	-	Ļ	-	F.	-		-	+-
	otassium elenium	mg/L ug/L	20	-	2.7	J	2.7	J	2.8	J	3.6	В	2.9	J	2.8	J
	ilver	ug/L ug/L	20	-	-		-		-		-		-		-	
1	odium	mg/L	-	-	66	В	68		71		77		65		68	
	trontium	ug/L	-	-	-	ĺ	_	1	-	1	-	1	360	1	440	^6+
			0.0002											ΤT	0.0040	TT
	hallium anadium	mg/L mg/L	0.0002 0.0003	0.0003	- 0.	U	- 0.		- 0.	U	0.0011	U	0.0049 0.0011	U U	0.0049 0.0011	U

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μg/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- UJ indicates the analyte was not detected above the method detection limit.
 However, the method detection limit is an approximation.
- 8. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 9. R indicates the results are rejected due to deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence of the analyte cannot be verified.
- 10. F1 & F2 are data qualifiers used by the laboratory.11. TDS indicates total dissolved solids.
- 12. TSS indicates total suspended solids.
- 13. PAH indicates polyaromatic hydrocarbon.
- 14. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 15. Groundwater Final Remediation Goals reference Geosyntec's 2016 Remedial Investigation Report.
- 16. NCDENRs 2L and IMAC standards from April 1, 2013.

Table 2
Groundwater and Surface Water Elevations
UNC-CH Cogeneration Facility - Chapel Hill, North Carolina

Groundwaer											
Locaton	TOC Elevaton (ft NAVD8)	DTW (ft BTO) 5	Groundwater Elevation (ft NAVD88) ⁵								
MW	477.05	31.07	98								
MW	447.53	16.48	05								
MW	447.15	16.84	31								
MW-4PZ-4	458.42	27.32	1								
MW	426.07	7.65	42								

Surface Wter		
Locaton	Approx. Benchma Elevation (ft NAVD8)	Approx. Surface Wter Elevation (ft NAVD8) 5
SWP	424.81	423.00
SW-N	419.45	416.89

- 1. ft indicates feet.
- 2. BGS indicates below ground surface.
- 3. NAVD88 indicates North America Vertical Datum 1988.
- 4. BTOC indicates below top of casing.
- 5. Measurements were collected on 12/17/2021.

				E 1 . 1	SP		SW-DWN		SP		SW-DOW	N	SW-UP	
Method	Analyte		Humn Health Surfce Water Bchmark	Ecological Risk Surface Water Benchmark	6/14/2018		6/14/2018		12/2018		12/12/2018		11/13/2019	
	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L		-	0.	J	0.		0.	J	0.	U	-	_
	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	_
	1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	
	1,2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	-
	1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	-
	1,2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	-
	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		-	0.	U	0.	J	0.	U	0.	U	-	1-
and Furans	1,2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L		-	0.	U	0.	J	0.	U	0.	U	-	T-
Fu	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L		-	0.	U	0.	U	0.	U	0.	U	-	Τ-
pui	2,3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L		-	0.	U	0.	U	0.	U	0.	U	_	+-
	1,2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L		_	0.	U	0.	IJ	0.	IJ	0.	U		+-
Dioxins	1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L		_	0.	U	0.	IJ	0.	IJ	0.	U		+
D	2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		_	0.	U	0.	II	0.	II	0.	U		+
	2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L		_		U		TT		TI		U		干
	2,3,7,8-Tetrachlorodibenzofuran (TCDF)	_			0.		0.	U	0.	U	0.		-	丰
		ng/L		-	0.	U	0.	U	0.	U	0.	U	-	丰
	1,2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L		-	0.	U	0.37	В	0.	U	0.	U	-	丰
	1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L	000007	-	0.	U	0.	U	0.	Ű	0.11	U	-	╀-
	Calculated Dioxin/Furan TEQ	ng/L	000005	0.01	0.	H	0.	Н	0.	\vdash	ND	++	-	+-
	Calculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L		-	ND		0.		ND	\bigsqcup_{-}	ND	+		 -
	1-Methylnaphthalene	μg/L		-	0.	U	0.	U	0.	U	0.	U	-	ᆚ-
	2-methylnaphthalene	μg/L		-	0.	U	0.	U	0.	U	0.	U	-	
	Acenaphthene	μg/L		-	0.	U	0.	U	0.	U	0.	U	-	
	Acenaphthylene	μg/L		-	0.	U	0.	U	0.	U	0.	U	-	-
	Anthracene	mg/L		-	0.	U	0.	U	0.	U	0.	U	-	-
	Benz(a)anthracene	μg/L		-	0.	J	0.	J	0.	J	0.	J	-	1-
	Benzo(a) pyrene	μg/L	0311	0.014	0.	J	0.	J	0.	J	0.	U	-	1-
	Benzo(b)fluoranthene	μg/L		-	0.	J	0.	J	0.	J	0.	U	-	T -
Š	Benzo(g,h,i)perylene	μg/L		-	0.	J	0.	U	0.	U	0.	U	-	Τ-
00	Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	μg/L		_	0.	J	0.	J	0.	J	0.	U	_	Τ-
S	Chrysene	μg/L		_	0.	J	0.	J	0.	Ţ	0.	J		+-
	Dibenz(a,h)anthracene	μg/L	0311	_	0.	U	0.	II	0.	II	0.	U		十
	Fluoranthene	μg/L	0011	_	0.	U	0.	II	0.	1	0.	J		+
	Fluorene	μg/L		_	0.	U	0.	II	0.	TT	0.	U		干
	Indeno(1,2,3-c,d)pyrene	_	0311	4.31	0.	U	0.	U	0.	T I	0.	U	-	丰
	Naphthalene	μg/L μg/L	0311	4.31	0.	U		T I	0.	ī		J	-	干
	Phenanthrene	_		_		J	0.	U		J	0.	U	-	干
		μg/L			0.	-	0.	J	0.	J	0.	+++	-	丰
	Pyrene	μg/L	0.211	-	0.	J	0.	J	0.	J	0.0091	J	-	+
	PAH TEQ	μg/L	0311	0.014	0.		0.		0.		0.	1	-	+-
	Bromide	mg/L		-	0.	U	0.11	U	0.	U	0.11	U	-	╀-
	Total Inorganic Carbon	mg/L		-	1.		1.		-				-	┷
try	Dissolved Organic Carbon	mg/L		-	1.		1.		-				-	
General Chemistry	Chloride	mg/L		-			14		190				-	
Che	Fluoride	mg/L		-	0.	J	0.	J	0.	U	0.06	U	-	
) [3]	Nitrate	mg/L		-	1.		1.		1.		1.		-	-
ner	Nitrite	mg/L		-	0.	U	0.	U	0.	U	0.	U	-	-
Ge	Orthophosphate	mg/L		-	0.	U	0.19	U	0.	U	0.19	U	-	1-
	Sulfate	mg/L		-			36				35		-	1-
	TDS	mg/L		_	160		170		4.	U	260		150	\top
	Arsenic	ug/L		50	_		-							+
	Boron	ug/L		_	_				_			+		十
	Calcium	mg/L		116			21				27	+	17	+
	Chromium (III+VI)	ug/L		50	1	J	0.72	ī	10	TT	21	U	10	т.
	Cobalt		004	0.003	0.	U	0.72	U	0.	T I	0.0012	U	0.0012	U
	Iron	mg/L ug/L	000	1000	650	U	200	U	370	U	0.0012	U	110	+0
	Lithium		000	-	030	$\vdash \vdash$		${\mathbb H}$		H		++	110	+
tals		μg/L				<u></u>	-	-	-	H	-	++	<i>r</i> .	+
Metals	Magnesium	mg/L		82	5.	В	6	В	6	-	6.	-	5.4	+
	Manganese Malak dangar	ug/L		80		Н	17	Н		В	20	В	16	+
	Molybdenum	ug/L				\sqcup	-	Ш	-			+	-	\downarrow
	Potassium	mg/L		53	3.	\sqcup	3	Ц	4.		4	$\bot \bot$	5	В
	Sodium	mg/L		680		В	16	В	120				14	丄
Ì	Strontium	ug/L		-	-		-		-			\coprod	-	\perp
	Thallium	mg/L	00047	0.004	-		-		-		-	U		1

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
- 3. μ g/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 5. U indicates result was below the method detection limit.
- 6. J indicates results is an estimate.
- 7. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 8. TDS indicates total dissolved solids.
- 9. PAH indicates polyaromatic hydrocarbon.
- 10. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- $11. \ Benchmarks \ were \ established \ in \ the \ \textit{Sediment / Surface Water Screening Report} \ \ (Geosyntec, October \ 2015).$
- 12. Highlighted concentrations are exceedences of a Benchmark.

Table 3
Surface Water Analytical Results
UNC-CH Cogeneration Facility - Chapel Hill, North Carolina

	T		1		- chaper	-			GTT TT		CIV DOWN		
g	Analyte		Han Health	Ecological	SOWN	SP	SW-DWN		SW-UF	,	SW-DOV	VN	
Method			Suace Water Bchmark	Risk Surface Water Benchmark	11/13/2019	12/2020	12/17/		12/13/202	21	12/13/202	21	
1 L	1,2,3,4,6,7,8-Heptachlorooxanthrene (HpCDD)	ng/L		-	-	-					-		
	2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	ng/L		-	-	-							
	2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	ng/L		-	-	-					-		
	2,3,4,7,8-Hexachlorooxanthrene (HxCDD)	ng/L		-	-	-					-		
	2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		-	-	-					-		
	2,3,6,7,8-Hexachlorooxanthrene (HxCDD)	ng/L		-	-	-					-		
70	2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		-	-	-					-		
Furans	2,3,7,8,9-Hexachlorooxanthrene (HxCDD)	ng/L		-	-	-					-		
Fu	2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	ng/L		-	-	-					-		
	3,7,8-Tetrachlorooxanthrene (TCDD)	ng/L		-	_	_							
ns a	2,3,7,8-Pentachlorooxanthrene (PeCDD)	ng/L		-	_	_		11				1	
1 TO L	2,3,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L		_	_	_					_	+	
Ď	3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	ng/L		-	_	_					 _	+	
	3,4,7,8-Pentachlorodibenzofuran (PeCDF)	ng/L		_	_	_					 _	+	
I L	3,7,8-Tetrachlorodibenzofuran (TCDF)	ng/L		_	_			+				-	
	2,3,4,6,7,8,9-Octachlorooxanthrene (OCDD)	ng/L		_								+	
	2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	ng/L ng/L		-	-	-		++				+	
I L					-	-		++			<u>-</u>		
	lculated Dioxin/Furan TEQ lculated Hexachlorodibenzo-p-dioxin, Mixture	ng/L	000005	0.01	-	-		++			-	+	
	_	ng/L		-	- +	-		+			<u>-</u>		
L	ethylnaphthalene	μg/L		-	-	-		+			-		
	ethylnaphthalene	μg/L		-	-	-					-		
L	cenaphthene	μg/L		-	-	-					-		
	cenaphthylene	μg/L		-	-	-					-		
	nthracene	mg/L		-	-	-					-		
	nz(a)anthracene	μg/L		-	-	-					-		
	nzo(a) pyrene	μg/L	0311	0.014	-	-					-		
	nzo(b)fluoranthene	μg/L		-	-	-							
\mathbf{s}	nzo(g,h,i)perylene nzo(k)fluoranthene sene	μg/L		-	-	-					- -		
0	nzo(k)fluoranthene	μg/L		-	-	-					-		
S	sene	μg/L		-	-	-					-		
	ibenz(a,h)anthracene	μg/L	0311	-	-	-					-		
	luoranthene	μg/L		-	-	-					-		
	luorene	μg/L		-	_	_					-		
L	ndeno(1,2,3-c,d)pyrene	μg/L	0.0311	4.31	_	_					-		
-	aphthalene	μg/L	0.000	-	_	_					-		
	henanthrene	μg/L		-	_	_		11			-	1	
-	yrene	μg/L		_	_	_					_	+	
1 4	AH TEQ	μg/L	0311	0.014	_	_					 _	+	
	mide	mg/L	0011	-	_	_			23	U	0.23	U	
	otal Inorganic Carbon	mg/L		_	_	_					-	+	
S	issolved Organic Carbon	mg/L		_		_					_	+	
istr	oride	mg/L		_	_						17		
em	luoride	mg/L		_					17	U^1+	0.17	U^1+	
C	issolved Organic Carbon oride luoride itrate itrite rthophosphate			-	-	-		+	3	J 1⊤	1.2	+ 5 1+	
eral	itrita	mg/L			-	-		++	0.	U	0.049	U	
řen	rthophoephata	mg/L		-	-	-		++	47	U		U	
9	rinophosphate	mg/L		-	-	-		++		U	0.47	+ 0	
	ulfate	mg/L		-	-	38	56	+	38		42		
	S	mg/L			170	150	160	$\downarrow \downarrow$		••	170		
-	senic	ug/L		50	-		U 4.	U	4.4	U	4.	U	
1 F	oron	ug/L		-	-	18	J 17	$\perp \downarrow$	11	J	12	J	
1 4	lcium	mg/L		116	19	20	22				20		
	mium (III+VI)	ug/L		50		U 0.	J 0.	U	0.66	U	0.	U	
 	balt	mg/L	004	0.003	0.0012	U 0.	U 0.	U	0.0012	U	0.0012	U	
1 4	on	ug/L	000	1000	58	J 270	210				130		
ls l	ithium	μg/L		-	-	9.	U 9.	U	9.1	U	9.1	U	
Metals	gnesium	mg/L		82	6	5.	5.	\prod	5.6		6.0		
\mathbf{Z}	anganese	ug/L		80	7.1	J 24	79				14		
	olybdenum	ug/L		-	-	1	U 1		1	U	1	U	
F	otassium	mg/L		53	3.5	В 3.	3.	11	3		3	1	
1 1		_		680	15	13	16	$\dagger \dagger$			15	1	
-	odium	mg/L		000	1.)	1.,							
	odium trontium	mg/L ug/L		-	-	+ +	+	+		^6+	180	^6+	
-		mg/L ug/L mg/L	00047			190	200 U 0.	U	0.	^6+ U		^6+ U	

- 1. ng/L indicates nanogram per liter.
- 2. mg/L indicates milligram per liter.
 μg/L indicates microgram per liter.
- 4. TEQ indicates total equivalents.
- 4. LEQ indicates total equivalents.5. U indicates result was below the method detection limit.
- $6. \ \ Jindicates \ results \ is \ an \ estimate.$
- 7. B is a laboratory flag indicating compound was detected in both the method blank and sample
- 8. TDS indicates total dissolved solids.
- 9. PAH indicates polyaromatic hydrocarbon.
- 10. ND indicates all of the input parameters in the calculated parameter equation were non-detect.
- 11. Benchmarks were established in the Sediment / Surface Water Screening Report (Geosyntec, October 2015).
- 12. Highlighted concentrations are exceedences of a Benchmark.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-209718-1 Client Project/Site: UNC Cogen

For:

Geosyntec Consultants, Inc. 2501 Blue Ridge Rd. Suite 430 Raleigh, North Carolina 27607

Attn: Mr. Michael Schott

Datul J. M. Enter

Authorized for release by: 12/28/2021 4:33:40 AM

Patrick McEntee, Client Service Manager (303)736-0107

Patrick.McEntee@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

__

3

_

6

10

4.6

13

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	8
QC Association	9
QC Sample Results	10
Chronicle	11
Certification Summary	12
Chain of Custody	13
Pacaint Chacklists	15

11

12

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 500-209718-1

Job ID: 500-209718-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: UNC Cogen

Report Number: 500-209718-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The sample was received on 12/14/2021 10:30 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

HEXAVALENT CHROMIUM

Sample MW-4-20211213 (500-209718-1) was analyzed for hexavalent chromium in accordance with EPA 218.6. The samples were analyzed on 12/17/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

8

9

1 1

4.6

10

Detection Summary

Client: Geosyntec Consultants, Inc.

Client Sample ID: MW-4-20211213

Project/Site: UNC Cogen

Lab Sample ID: 500-209718-1

Job ID: 500-209718-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	d Prep Type
Chromium, hexavalent	2.6		0.30	0.23	ug/L	1	218.6	Dissolved

4

5

8

10

11

13

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 500-209718-1

Method	Method Description	Protocol	Laboratory
218.6	Chromium, Hexavalent (Ion Chromatography)	EPA	TAL CHI
Filtration	Sample Filtration	None	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

None = None

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Л

5

7

8

1 1

12

Sample Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 500-209718-1
 MW-4-20211213
 Water
 12/13/21 16:05
 12/14/21 10:30

Job ID: 500-209718-1

2

3

4

Q

9

10

12

13

Client: Geosyntec Consultants, Inc. Job ID: 500-209718-1

Project/Site: UNC Cogen

Client Sample ID: MW-4-20211213 Lab Sample ID: 500-209718-1

Date Collected: 12/13/21 16:05 **Matrix: Water**

General Chemistry - Dissolved

Date Received: 12/14/21 10:30

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 12/17/21 12:56 0.30

Chromium, hexavalent 0.23 ug/L 2.6

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 500-209718-1

Project/Site: UNC Cogen

Qualifiers

General Chemistry

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basi

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

6

8

10

13

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 500-209718-1

General Chemistry

Filtration Batch: 634118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-209718-1	MW-4-20211213	Dissolved	Water	Filtration	

Analysis Batch: 634390

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-209718-1	MW-4-20211213	Dissolved	Water	218.6	634118
MB 500-634390/3	Method Blank	Total/NA	Water	218.6	
LCS 500-634390/4	Lab Control Sample	Total/NA	Water	218.6	

2

-

6

7

0

9

11

13

QC Sample Results

Client: Geosyntec Consultants, Inc. Job ID: 500-209718-1

Project/Site: UNC Cogen

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 500-634390/3 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 634390

MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.30 0.23 ug/L 12/17/21 11:26 Chromium, hexavalent 0.23 U

Lab Sample ID: LCS 500-634390/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 634390

Spike LCS LCS %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits

25.0 25.3 101 90 - 110 Chromium, hexavalent ug/L

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Job ID: 500-209718-1

Project/Site: UNC Cogen

Client Sample ID: MW-4-20211213 Lab Sample ID: 500-209718-1

Date Collected: 12/13/21 16:05 Matrix: Water
Date Received: 12/14/21 10:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Filtration	Filtration			634118	12/14/21 11:37	EAT	TAL CHI
Dissolved	Analysis	218.6		1	634390	12/17/21 12:56	EAT	TAL CHI

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

6

9

11

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Job ID: 500-209718-1

Project/Site: UNC Cogen

Laboratory: Eurofins TestAmerica, Chicago

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2903	04-29-22
Georgia	State	N/A	04-29-22
Georgia (DW)	State	939	04-30-21 *
Hawaii	State	NA	04-29-22
Illinois	NELAP	IL00035	04-29-22
Indiana	State	C-IL-02	04-29-22
Iowa	State	082	05-01-22
Kansas	NELAP	E-10161	10-31-22
Kentucky (UST)	State	AI # 108083	04-29-22
Kentucky (WW)	State	KY90023	12-31-21
Louisiana	NELAP	02046	06-30-22
Mississippi	State	NA	04-30-22
North Carolina (WW/SW)	State	291	12-31-21
North Dakota	State	R-194	04-29-22
Oklahoma	State	8908	08-31-22
South Carolina	State	77001003	04-29-22
USDA	US Federal Programs	P330-18-00018	02-11-24
Wisconsin	State	999580010	08-31-22
Wyoming	State	8TMS-Q	04-30-22

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

4955 Yarrow Street

Chain of Custody Record

` `	eurofins	
٧.	Curonnis	

Environment Testing

Arvada CO 80002 Phone (303) 736-0100 Phone (303) 431-7171	·	• mann	o. o ao	touj.			4													America	1	
Client Information	Sampler A +	taddo	N MOOV	Lab Mc	PM Entee	Patr	ıck J		· · · · · · · · · · · · · · · · · · ·			Carrie	Track	ing No	(s)			COC No 280-11488	80-309	944 1		_
Slient Contact: Michael Schott	Phone 9 9 - 4	74-19	40	E-M	ail			urofins	ot cor			State	of Origi	n				Page				_
Company.		1211	PWSID	II at	I ICK.IV	IOL III	-cwr										\dashv	Job#	<u> </u>	209	716	-
Geosyntec Consultants Inc.	Due Date Request	ad	<u> </u>		188			т	Ana	lysis	Req	uesi	ed								110	_
2501 Blue Ridge Road	Í						9				¥.	3/4	842				機響	Preservation	on Coa	M Hexan	_	
City Raleigh	TAT Requested (d	ays)	À		के	e e	>				- 5	7)					響	B NaOH C Zn Aceta	nte.	N None O AsNaC		
State Zip					_ *	Ē	7						4				33	D Nitric Ac	id	P Na2O4	S	
NC 27607 Phone	Compliance Proje	ct: ∆ Yes	Δ No										40.0	20			S.	E NaHSO4 F MeOH		Q Na2SC R Na2S2	O3	
919 424 1824					Jal				1		500-	2097	18 C					G Amchlor H Ascorbic		S H2SO4	odecahydrate	
mail <u>MSchott@Geosyntec.com</u>	WO #:				or N		3					I					5	l Ice J DI Water		U Aceton V MCAA	е	
Project Name UN COSCN	Project#: 6N 8Le(ρĢ			le (Yes	MSD (Yes or No)	3										ıtain	K EDTA L EDA		W pH 4-5 Z other (s		
chaperth11	SSOW#				Samp	د ا S											o to	Other [.]				
	C	Sample	Sample Type (C=comp,	Matrix (W=water S=solid, O=waste/oil,	Field Filtered	Ferrorm MS/MSD ()	1										Total Number	0	-1-11-		- M-4-	
Sample Identification	Sample Date	Time	G=grab) to Preservat				*		die de		Vide 1	A.W.			A AL	a de la constante de la consta	Ż	Spe	siai in	structions	s/Note	2
MW-4-20211213	12/13/21	LACE		Water	1	1×		all	7	100	-86969 -	35.1.1		dia Late	1,597	Seedille				18.18 T	2.00	er
1100 11 20211213	10/13/21	1605	6	Water	╁╁	+	+-					\dashv	+	+		+-	京 等	 			······································	_
				Water	${\dag}{\dag}$	+				-		\dashv		-	-	+-						-
				Water	++	+	+		\dashv			\dashv	\dashv	+	_		- April 1	<u> </u>				-
				Water	$\dag \dag$	_	+		+			1	\dashv		+	-	- 154 - 154					1
				Water	$\dagger \dagger$	-			+				_		_							
				Water										1							***************************************	1
				Water	Π												编				***************************************	
				Water													ř					
				Water													嵾					
				Water														ı				
Possible Hazard Identification					s					may					oles a	re ret	aine	ed longer ti	han 1	month)		٦
Non-Hazard Flammable Skin Irritant Pois Deliverable Requested I II, III IV Other (specify)	on B Unkn	iown 1	Radiological		- -			To Cli		Paguire			al By	Lab			Archi	ive For		Months	S	\dashv
							i iliətii	uctions	/QC 1	vedune	51116111									<u>,,</u>		╛
Empty Kit Relinquished by		Date			Time							N	lethod									4
Relinquiphed by Relinquished by Relinquished by	12[[3]2] Date/Time	1745	5	ompany POSW ompany	tev		eived b		F	9 X	KPI				te/Time					Company		4
						St	eer	nam	1e 1	tem	om	Ide	1		te/Time		21	1030			-CH1	
Relinquished by	Date/Time		C	ompany		Rec	eived b	y.					U	Da	te/Time					Company		
Custody Seals Intact. Custody Seal No	<u> </u>					Coo	ler Tem	perature	(s) °C	and Othe	er Rem	arks.		2.	9					I 		1

URIGIN ID:MXEA (919) 424-1840

GEOSYNTEC CONSULTANTS STE 430 2501 BLUE RIDGE RD STE 430 RALEIGH, NC 27507 UNITED STATES US SHIP DATE: 13DEC21 ACTWGT: 10.35 LB CAD: 6572628/SSFE2220 DIMS: 11×14×10 IN

BILL THIRD PARTY

TO ATTN: SAMPLE RECEIVING EUROFINS TESTAMERICA 2417 BOND STREET

UNIVERSITY PARK IL 60484

(708) 534 - 5200 INU: PO:

REF:

FedEx Express

art # 156297-**435_PBBBA-1639** 05/22

TRK# 2875 1962 3371

TUE - 14 DEC 11:30A PRIORITY OVERNIGHT

AHS 60484

6U484

GC JOTA

1694.

Page 14 of 15 12/28/2021

2

3

4

J

٠,

9

4 4

10

13

Client: Geosyntec Consultants, Inc.

Job Number: 500-209718-1

Login Number: 209718 List Source: Eurofins TestAmerica, Chicago

List Number: 1

Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-156786-1 Client Project/Site: UNC Cogen

For:

Geosyntec Consultants, Inc. 2501 Blue Ridge Rd. Suite 430 Raleigh, North Carolina 27607

Attn: Mr. Michael Schott

Datul & MoEnter

Authorized for release by: 1/6/2022 11:18:42 AM

Patrick McEntee, Client Service Manager (303)736-0107

Patrick.McEntee@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

5

7

8

1 N

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	6
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	16
QC Association	22
Chronicle	25
Certification Summary	27
Chain of Custody	28
Receint Checklists	31

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

Qualifiers

Meta	S
Qualifi	er

Qualifier	Qualifier Description
^6+	Interference Check Standard (ICSA and/or ICSAB) is outside acceptance limits, high biased.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
^1+	Initial Calibration Verification (ICV) is outside acceptance limits, high biased.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

LOQ

MCL

MDA MDC

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

1/6/2022

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

Job ID: 280-156786-1

Laboratory: Eurofins TestAmerica, Denver

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: UNC Cogen

Report Number: 280-156786-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/14/2021 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.2° C and 4.2° C.

TOTAL METALS (ICP)

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3), SW-DOWN-20211213 (280-156786-4), SW-UP-20211213 (280-156786-5) and MW-4-20211213 (280-156786-6) were analyzed for Total Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 12/21/2021 and analyzed on 12/22/2021.

The interference check standard solution (ICSA) associated with batch 280-561487 had results for one or more elements at a level greater than the limit of detection (LOD). The initial ICSA result(s) was 24.9ppb which is greater than the LOD of 0.3ppb for Sr. This element has been shown to be a trace impurity by MS. These results are not indicative of a matrix interference.

The interference check standard solution (ICSA) associated with batch 280-561533 had results for one or more elements at a level greater than the limit of detection (LOD). The initial ICSA result(s) was 24.9ppb which is greater than the LOD of 0.3ppb for Sr.This element has been shown to be a trace impurity by MS. These results are not indicative of a matrix interference.

The interference check standard solution (ICSA) associated with the following samples showed results for strontium (24.9 ppb) at a level greater than 2 times the reporting limit (10 ppb). It is believed that the solution contains trace impurities of this element / these elements and the results are not due to matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3), SW-DOWN-20211213 (280-156786-4), SW-UP-20211213 (280-156786-5), MW-4-20211213 (280-156786-6), (ICSA 280-561533/13), (LCS 280-561285/2-A), (LCSD 280-561285/3-A), (MB 280-561285/1-A).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3), SW-DOWN-20211213 (280-156786-4), SW-UP-20211213 (280-156786-5) and MW-4-20211213 (280-156786-6) were analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 12/17/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

6

7

10

12

13

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

Job ID: 280-156786-1 (Continued)

Laboratory: Eurofins TestAmerica, Denver (Continued)

ANIONS (28 DAYS)

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3), SW-DOWN-20211213 (280-156786-4), SW-UP-20211213 (280-156786-5) and MW-4-20211213 (280-156786-6) were analyzed for anions (28 days) in accordance with EPA SW-846 Method 9056A (28 Days). The samples were analyzed on 01/05/2022 and 12/15/2021.

Samples MW-3-20211213 (280-156786-2)[5X] and MW-5-20211213 (280-156786-3)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The initial calibration verification (ICV) result for batch 280-560575 was above the upper control limit. Sample results were non-detects, and have been reported as qualified data.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (48 HOURS)

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3), SW-DOWN-20211213 (280-156786-4), SW-UP-20211213 (280-156786-5) and MW-4-20211213 (280-156786-6) were analyzed for anions (48 hours) in accordance with EPA SW-846 Method 9056A (48 Hours). The samples were analyzed on 12/15/2021.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3) and MW-4-20211213 (280-156786-6) were analyzed for dissolved organic carbon in accordance with SM20 5310B. The samples were analyzed on 12/30/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples MW-2-20211213 (280-156786-1), MW-3-20211213 (280-156786-2), MW-5-20211213 (280-156786-3) and MW-4-20211213 (280-156786-6) were analyzed for total organic carbon in accordance with SM20 5310B. The samples were analyzed on 12/21/2021 and 12/23/2021.

Sample MW-3-20211213 (280-156786-2)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Batch QC Matrix Spike/Matrix Spike Duplicate (MS/MSD) is over calibration range of 40 mg/L with a 2X dilution. The samples were not rerun as the parent sample result was within range with a 2X dilution. MW-3-20211213 (280-156786-2), (280-156786-A-2 MSD) and (280-156786-A-2 MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

6

10

12

13

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

Client Sample ID: MW-2-20211213 Lab Sample ID: 280-156786-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Calcium	29000		200	78	ug/L		6010C	Total/NA
Cobalt	40		10	1.2	ug/L	1	6010C	Total/NA
Iron	110		100	22	ug/L	1	6010C	Total/NA
Magnesium	8900		200	26	ug/L	1	6010C	Total/NA
Manganese	6600		10	1.9	ug/L	1	6010C	Total/NA
Potassium	3700		3000	240	ug/L	1	6010C	Total/NA
Sodium	38000		1000	370	ug/L	1	6010C	Total/NA
Thallium	5.6	J	15	4.9	ug/L	1	6010C	Total/NA
Molybdenum	2.3	J	20	1.0	ug/L	1	6010C	Total/NA
Strontium	550	^6+	10	0.30	ug/L	1	6010C	Total/NA
Boron	50	J	100	4.4	ug/L	1	6010C	Total/NA
Nitrate as N	0.19	J	0.50	0.090	mg/L	1	9056A	Total/NA
Chloride	18		3.0	1.0	mg/L	1	9056A	Total/NA
Fluoride	0.69		0.50	0.17	mg/L	1	9056A	Total/NA
Sulfate	89		5.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	270		10	4.7	mg/L	1	SM 2540C	Total/NA
Total Inorganic Carbon - Quad	26		1.0	0.35	mg/L	1	SM 5310B	Total/NA
Dissolved Organic Carbon - Quad	1.7		1.0	0.35	mg/L	1	SM 5310B	Dissolved

Client Sample ID: MW-3-20211213

Lab Sample ID: 280-156786-2 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 91000 200 6010C Calcium 78 ug/L Total/NA Cobalt 51 10 1.2 ug/L 1 6010C Total/NA Iron 270 100 22 ug/L 1 6010C Total/NA 22000 200 26 6010C Total/NA Magnesium ug/L 5400 10 6010C Total/NA Manganese 1.9 ug/L 1 Potassium 6100 3000 240 ug/L 6010C Total/NA Sodium 44000 1 6010C Total/NA 1000 370 ug/L Vanadium 1.3 J 10 1.1 ug/L 6010C Total/NA Thallium 5.2 15 4.9 ug/L 1 6010C Total/NA Strontium 1300 ^6+ 10 0.30 ug/L 6010C Total/NA Boron 77 100 4.4 ug/L 1 6010C Total/NA Chloride 19 9056A 3.0 1.0 mg/L Total/NA Sulfate 25 5 9056A 270 5.2 mg/L Total/NA Total Dissolved Solids 580 10 4.7 mg/L SM 2540C Total/NA 1 Total Inorganic Carbon - Quad 47 2.0 0.69 mg/L 2 SM 5310B Total/NA Dissolved Organic Carbon - Quad 1.3 1.0 0.35 mg/L SM 5310B Dissolved

Client Sample ID: MW-5-20211213

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Calcium	46000		200	78	ug/L	1	6010C	Total/NA
Cobalt	2.4	J	10	1.2	ug/L	1	6010C	Total/NA
Iron	1200		100	22	ug/L	1	6010C	Total/NA
Magnesium	14000		200	26	ug/L	1	6010C	Total/NA
Manganese	76		10	1.9	ug/L	1	6010C	Total/NA
Potassium	2800	J	3000	240	ug/L	1	6010C	Total/NA
Sodium	68000		1000	370	ug/L	1	6010C	Total/NA
Strontium	440	^6+	10	0.30	ug/L	1	6010C	Total/NA
Boron	35	J	100	4.4	ug/L	1	6010C	Total/NA
Nitrate as N	1.1		0.50	0.090	mg/L	1	9056A	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Denver

1/6/2022

Lab Sample ID: 280-156786-3

Page 6 of 31

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Lab Sample ID: 280-156786-3

Lab Sample ID: 280-156786-4

Lab Sample ID: 280-156786-5

Job ID: 280-156786-1

Client Sample ID: I	MW-5-20211213 (0	Continued)			Lab Sa	ample ID
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method
Chloride	30		3.0	1.0	mg/L		9056A
Sulfate	250		25	5.2	mg/L	5	9056A

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	30		3.0	1.0	mg/L	1	_	9056A	Total/NA
Sulfate	250		25	5.2	mg/L	5		9056A	Total/NA
Total Dissolved Solids	460		10	4.7	mg/L	1		SM 2540C	Total/NA
Total Inorganic Carbon - Quad	18		1.0	0.35	mg/L	1		SM 5310B	Total/NA
Dissolved Organic Carbon - Quad	1.1		1.0	0.35	mg/L	1		SM 5310B	Dissolved

Client Sample ID: SW-DOWN-20211213

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	20000	200	78	ug/L	1	_	6010C	Total/NA
Iron	130	100	22	ug/L	1		6010C	Total/NA
Magnesium	6000	200	26	ug/L	1		6010C	Total/NA
Manganese	14	10	1.9	ug/L	1		6010C	Total/NA
Potassium	3000	3000	240	ug/L	1		6010C	Total/NA
Sodium	15000	1000	370	ug/L	1		6010C	Total/NA
Strontium	180 ^6+	10	0.30	ug/L	1		6010C	Total/NA
Boron	12 J	100	4.4	ug/L	1		6010C	Total/NA
Nitrate as N	1.2	0.50	0.090	mg/L	1		9056A	Total/NA
Chloride	17	3.0	1.0	mg/L	1		9056A	Total/NA
Sulfate	42	5.0	1.0	mg/L	1		9056A	Total/NA
Total Dissolved Solids	170	10	4.7	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SW-UP-20211213

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Calcium	19000	200	78	ug/L	1	6010C	Total/NA
Iron	130	100	22	ug/L	1	6010C	Total/NA
Magnesium	5600	200	26	ug/L	1	6010C	Total/NA
Manganese	13	10	1.9	ug/L	1	6010C	Total/NA
Potassium	3000	3000	240	ug/L	1	6010C	Total/NA
Sodium	15000	1000	370	ug/L	1	6010C	Total/NA
Strontium	170 ^6+	10	0.30	ug/L	1	6010C	Total/NA
Boron	11 J	100	4.4	ug/L	1	6010C	Total/NA
Nitrate as N	1.3	0.50	0.090	mg/L	1	9056A	Total/NA
Chloride	16	3.0	1.0	mg/L	1	9056A	Total/NA
Sulfate	38	5.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	160	10	4.7	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-4-20211213

Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Prep Type
5000		200	78	ug/L		6010C	Total/NA
3.5	J	10	0.66	ug/L	1	6010C	Total/NA
520		100	22	ug/L	1	6010C	Total/NA
1400		200	26	ug/L	1	6010C	Total/NA
16		10	1.9	ug/L	1	6010C	Total/NA
2700	J	3000	240	ug/L	1	6010C	Total/NA
5100		1000	370	ug/L	1	6010C	Total/NA
1.2	J	10	1.1	ug/L	1	6010C	Total/NA
80	^6+	10	0.30	ug/L	1	6010C	Total/NA
13	J	100	4.4	ug/L	1	6010C	Total/NA
0.85		0.50	0.090	mg/L	1	9056A	Total/NA
	5000 3.5 520 1400 16 2700 5100 1.2 80	3.5 J 520 1400 16 2700 J 5100 1.2 J 80 ^6+	5000 200 3.5 J 10 520 100 1400 200 16 10 2700 J 3000 5100 1000 1.2 J 10 80 ^6+ 10 13 J 100	5000 200 78 3.5 J 10 0.66 520 100 22 1400 200 26 16 10 1.9 2700 J 3000 240 5100 1000 370 1.2 J 10 1.1 80 ^6+ 10 0.30 13 J 100 4.4	5000 200 78 ug/L 3.5 J 10 0.66 ug/L 520 100 22 ug/L 1400 200 26 ug/L 16 10 1.9 ug/L 2700 J 3000 240 ug/L 5100 1000 370 ug/L 1.2 J 10 1.1 ug/L 80 ^6+ 10 0.30 ug/L 13 J 100 4.4 ug/L	5000 200 78 ug/L 1 3.5 J 10 0.66 ug/L 1 520 100 22 ug/L 1 1400 200 26 ug/L 1 16 10 1.9 ug/L 1 2700 J 3000 240 ug/L 1 5100 1000 370 ug/L 1 1.2 J 10 1.1 ug/L 1 80 ^6+ 10 0.30 ug/L 1 13 J 100 4.4 ug/L 1	5000 200 78 ug/L 1 6010C 3.5 J 10 0.66 ug/L 1 6010C 520 100 22 ug/L 1 6010C 1400 200 26 ug/L 1 6010C 16 10 1.9 ug/L 1 6010C 2700 J 3000 240 ug/L 1 6010C 5100 1000 370 ug/L 1 6010C 1.2 J 10 1.1 ug/L 1 6010C 80 ^6+ 10 0.30 ug/L 1 6010C 13 J 100 4.4 ug/L 1 6010C

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Denver

Lab Sample ID: 280-156786-6

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

Client Sample ID: MW-4-20211213 (Continued)

Lab Sample ID: 280-156786-6

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	2.4 J	3.0	1.0	mg/L	1	9056A	Total/NA
Sulfate	10	5.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	62	10	4.7	mg/L	1	SM 2540C	Total/NA
Total Inorganic Carbon - Quad	5.3	1.0	0.35	mg/L	1	SM 5310B	Total/NA
Dissolved Organic Carbon - Quad	0.69 J	1.0	0.35	mg/L	1	SM 5310B	Dissolved

4

J

9

10

12

13

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL DEN
9056A	Anions, Ion Chromatography	SW846	TAL DEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL DEN
SM 5310B	Organic Carbon, Dissolved (DOC)	SM	TAL DEN
SM 5310B	Organic Carbon, Total (TOC)	SM	TAL DEN
3010A	Preparation, Total Metals	SW846	TAL DEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Sample Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Lab Sample ID **Client Sample ID** Matrix Collected Received 280-156786-1 MW-2-20211213 Water 12/13/21 10:55 12/14/21 10:40 280-156786-2 MW-3-20211213 12/13/21 12:15 12/14/21 10:40 Water 280-156786-3 MW-5-20211213 Water 12/13/21 14:00 12/14/21 10:40 SW-DOWN-20211213 280-156786-4 Water 12/13/21 14:10 12/14/21 10:40 SW-UP-20211213 Water 12/13/21 14:15 12/14/21 10:40 280-156786-5 280-156786-6 MW-4-20211213 Water 12/13/21 16:05 12/14/21 10:40 1

Job ID: 280-156786-1

2

Δ

5

7

8

. .

13

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP)

Client Sample ID: MW-2-20211213 Lab Sample ID: 280-156786-1 Date Collected: 12/13/21 10:55 **Matrix: Water**

Date Received: 12/14/21 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	29000		200	78	ug/L		12/21/21 15:02	12/22/21 02:57	1
Chromium	0.66	U	10	0.66	ug/L		12/21/21 15:02	12/22/21 02:57	1
Cobalt	40		10	1.2	ug/L		12/21/21 15:02	12/22/21 02:57	1
Iron	110		100	22	ug/L		12/21/21 15:02	12/22/21 02:57	1
Magnesium	8900		200	26	ug/L		12/21/21 15:02	12/22/21 02:57	1
Manganese	6600		10	1.9	ug/L		12/21/21 15:02	12/22/21 02:57	1
Potassium	3700		3000	240	ug/L		12/21/21 15:02	12/22/21 02:57	1
Sodium	38000		1000	370	ug/L		12/21/21 15:02	12/22/21 02:57	1
Vanadium	1.1	U	10	1.1	ug/L		12/21/21 15:02	12/22/21 02:57	1
Lithium	9.1	U	20	9.1	ug/L		12/21/21 15:02	12/22/21 14:48	1
Thallium	5.6	J	15	4.9	ug/L		12/21/21 15:02	12/22/21 02:57	1
Molybdenum	2.3	J	20	1.0	ug/L		12/21/21 15:02	12/22/21 02:57	1
Strontium	550	^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 02:57	1
Arsenic	4.4	U	15	4.4	ug/L		12/21/21 15:02	12/22/21 02:57	1
Boron	50	J	100	4.4	ug/L		12/21/21 15:02	12/22/21 02:57	1

Client Sample ID: MW-3-20211213 Lab Sample ID: 280-156786-2 Date Collected: 12/13/21 12:15 **Matrix: Water**

Date Received: 12/14/2	1 10:40								
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	91000		200	78	ug/L		12/21/21 15:02	12/22/21 03:01	1
Chromium	0.66 U	J	10	0.66	ug/L		12/21/21 15:02	12/22/21 03:01	1
Cobalt	51		10	1.2	ug/L		12/21/21 15:02	12/22/21 03:01	1
Iron	270		100	22	ug/L		12/21/21 15:02	12/22/21 03:01	1
Magnesium	22000		200	26	ug/L		12/21/21 15:02	12/22/21 03:01	1
Manganese	5400		10	1.9	ug/L		12/21/21 15:02	12/22/21 03:01	1
Potassium	6100		3000	240	ug/L		12/21/21 15:02	12/22/21 03:01	1
Sodium	44000		1000	370	ug/L		12/21/21 15:02	12/22/21 03:01	1
Vanadium	1.3 J	l	10	1.1	ug/L		12/21/21 15:02	12/22/21 03:01	1
Lithium	9.1 U	J	20	9.1	ug/L		12/21/21 15:02	12/22/21 14:52	1
Thallium	5.2 J	l	15	4.9	ug/L		12/21/21 15:02	12/22/21 03:01	1
Molybdenum	1.0 U	J	20	1.0	ug/L		12/21/21 15:02	12/22/21 03:01	1
Strontium	1300 ^	6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 03:01	1
Arsenic	4.4 U	J	15	4.4	ug/L		12/21/21 15:02	12/22/21 03:01	1
Boron	77 J	I	100	4.4	ug/L		12/21/21 15:02	12/22/21 03:01	1

Client Sample ID: MW-5-20211213 Lab Sample ID: 280-156786-3 Date Collected: 12/13/21 14:00 **Matrix: Water**

Date Received: 12/14/2	1 10:40								
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	46000		200	78	ug/L		12/21/21 15:02	12/22/21 03:05	1
Chromium	0.66 U	J	10	0.66	ug/L		12/21/21 15:02	12/22/21 03:05	1
Cobalt	2.4 J	l	10	1.2	ug/L		12/21/21 15:02	12/22/21 03:05	1
Iron	1200		100	22	ug/L		12/21/21 15:02	12/22/21 03:05	1
Magnesium	14000		200	26	ug/L		12/21/21 15:02	12/22/21 03:05	1
Manganese	76		10	1.9	ug/L		12/21/21 15:02	12/22/21 03:05	1
Potassium	2800 J		3000	240	ug/L		12/21/21 15:02	12/22/21 03:05	1
Sodium	68000		1000	370	ug/L		12/21/21 15:02	12/22/21 03:05	1
Vanadium	1.1 U	J	10	1.1	ug/L		12/21/21 15:02	12/22/21 03:05	1
Lithium	9.1 U	J	20	9.1	ug/L		12/21/21 15:02	12/22/21 15:13	1

Eurofins TestAmerica, Denver

Page 11 of 31 1/6/2022

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: MW-5-20211213 Lab Sample ID: 280-156786-3 Date Collected: 12/13/21 14:00 **Matrix: Water**

Date Received: 12/14/21 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	4.9	U	15	4.9	ug/L		12/21/21 15:02	12/22/21 03:05	1
Molybdenum	1.0	U	20	1.0	ug/L		12/21/21 15:02	12/22/21 03:05	1
Strontium	440	^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 03:05	1
Arsenic	4.4	U	15	4.4	ug/L		12/21/21 15:02	12/22/21 03:05	1
Boron	35	J	100	4.4	ug/L		12/21/21 15:02	12/22/21 03:05	1

Lab Sample ID: 280-156786-4 Client Sample ID: SW-DOWN-20211213 **Matrix: Water** Date Collected: 12/13/21 14:10

Date Received: 12/14/21	10:40							
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	20000	200	78	ug/L		12/21/21 15:02	12/22/21 03:09	1
Chromium	0.66 U	10	0.66	ug/L		12/21/21 15:02	12/22/21 03:09	1
Cobalt	1.2 U	10	1.2	ug/L		12/21/21 15:02	12/22/21 03:09	1
Iron	130	100	22	ug/L		12/21/21 15:02	12/22/21 03:09	1
Magnesium	6000	200	26	ug/L		12/21/21 15:02	12/22/21 03:09	1
Manganese	14	10	1.9	ug/L		12/21/21 15:02	12/22/21 03:09	1
Potassium	3000	3000	240	ug/L		12/21/21 15:02	12/22/21 03:09	1
Sodium	15000	1000	370	ug/L		12/21/21 15:02	12/22/21 03:09	1
Vanadium	1.1 U	10	1.1	ug/L		12/21/21 15:02	12/22/21 03:09	1
Lithium	9.1 U	20	9.1	ug/L		12/21/21 15:02	12/22/21 15:17	1
Thallium	4.9 U	15	4.9	ug/L		12/21/21 15:02	12/22/21 03:09	1
Molybdenum	1.0 U	20	1.0	ug/L		12/21/21 15:02	12/22/21 03:09	1
Strontium	180 ^6	6+ 10	0.30	ug/L		12/21/21 15:02	12/22/21 03:09	1
Arsenic	4.4 U	15	4.4	ug/L		12/21/21 15:02	12/22/21 03:09	1
Boron	12 J	100	4.4	ug/L		12/21/21 15:02	12/22/21 03:09	1

Client Sample ID: SW-UP-20211213 Lab Sample ID: 280-156786-5 **Matrix: Water**

Date Collected: 12/13/21 14:15

Date Received: 12/14/21	10:40								
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	19000		200	78	ug/L		12/21/21 15:02	12/22/21 03:13	1
Chromium	0.66 U		10	0.66	ug/L		12/21/21 15:02	12/22/21 03:13	1
Cobalt	1.2 U		10	1.2	ug/L		12/21/21 15:02	12/22/21 03:13	1
Iron	130		100	22	ug/L		12/21/21 15:02	12/22/21 03:13	1
Magnesium	5600		200	26	ug/L		12/21/21 15:02	12/22/21 03:13	1
Manganese	13		10	1.9	ug/L		12/21/21 15:02	12/22/21 03:13	1
Potassium	3000		3000	240	ug/L		12/21/21 15:02	12/22/21 03:13	1
Sodium	15000		1000	370	ug/L		12/21/21 15:02	12/22/21 03:13	1
Vanadium	1.1 U		10	1.1	ug/L		12/21/21 15:02	12/22/21 03:13	1
Lithium	9.1 U		20	9.1	ug/L		12/21/21 15:02	12/22/21 15:21	1
Thallium	4.9 U		15	4.9	ug/L		12/21/21 15:02	12/22/21 03:13	1
Molybdenum	1.0 U		20	1.0	ug/L		12/21/21 15:02	12/22/21 03:13	1
Strontium	170 ^6	6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 03:13	1
Arsenic	4.4 U		15	4.4	ug/L		12/21/21 15:02	12/22/21 03:13	1
Boron	11 J		100	4.4	ug/L		12/21/21 15:02	12/22/21 03:13	1

1/6/2022

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP)

Client Sample ID: MW-4-20211213 Lab Sample ID: 280-156786-6 Date Collected: 12/13/21 16:05 **Matrix: Water**

Date Received: 12/14/21 10):40							
Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	5000	200	78	ug/L		12/21/21 15:02	12/22/21 03:17	1
Chromium	3.5 J	10	0.66	ug/L		12/21/21 15:02	12/22/21 03:17	1
Cobalt	1.2 U	10	1.2	ug/L		12/21/21 15:02	12/22/21 03:17	1
Iron	520	100	22	ug/L		12/21/21 15:02	12/22/21 03:17	1
Magnesium	1400	200	26	ug/L		12/21/21 15:02	12/22/21 03:17	1
Manganese	16	10	1.9	ug/L		12/21/21 15:02	12/22/21 03:17	1
Potassium	2700 J	3000	240	ug/L		12/21/21 15:02	12/22/21 03:17	1
Sodium	5100	1000	370	ug/L		12/21/21 15:02	12/22/21 03:17	1
Vanadium	1.2 J	10	1.1	ug/L		12/21/21 15:02	12/22/21 03:17	1
Lithium	9.1 U	20	9.1	ug/L		12/21/21 15:02	12/22/21 15:25	1
Thallium	4.9 U	15	4.9	ug/L		12/21/21 15:02	12/22/21 03:17	1
Molybdenum	1.0 U	20	1.0	ug/L		12/21/21 15:02	12/22/21 03:17	1
Strontium	80 ^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 03:17	1
Arsenic	4.4 U	15	4.4	ug/L		12/21/21 15:02	12/22/21 03:17	1
Boron	13 J	100	4.4	ug/L		12/21/21 15:02	12/22/21 03:17	1

General Chemistry

Client Sample ID: MW-2-20211213 Lab Sample ID: 280-156786-1 Date Collected: 12/13/21 10:55 **Matrix: Water**

Date Received: 12/14/21 10:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 02:02	1
Nitrate as N	0.19	J	0.50	0.090	mg/L			12/15/21 02:02	1
Chloride	18		3.0	1.0	mg/L			12/15/21 02:02	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 02:02	1
Fluoride	0.69		0.50	0.17	mg/L			01/05/22 17:40	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 02:02	1
Sulfate	89		5.0	1.0	mg/L			12/15/21 02:02	1
Total Dissolved Solids	270		10	4.7	mg/L			12/17/21 09:58	1
Total Inorganic Carbon - Quad	26		1.0	0.35	mg/L			12/21/21 20:56	1

Client Sample ID: MW-3-20211213 Lab Sample ID: 280-156786-2 Date Collected: 12/13/21 12:15 **Matrix: Water**

Date Received: 12/14/21 10:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 02:16	1
Nitrate as N	0.090	U	0.50	0.090	mg/L			12/15/21 02:16	1
Chloride	19		3.0	1.0	mg/L			12/15/21 02:16	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 02:16	1
Fluoride	0.17	U ^1+	0.50	0.17	mg/L			12/15/21 02:16	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 02:16	1
Sulfate	270		25	5.2	mg/L			12/15/21 02:30	5
Total Dissolved Solids	580		10	4.7	mg/L			12/17/21 09:58	1
Total Inorganic Carbon - Quad	47		2.0	0.69	mg/L			12/23/21 12:19	2

Eurofins TestAmerica, Denver

Page 13 of 31

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

General Chemistry

Client Sample ID: MW-5-20211213 Lab Sample ID: 280-156786-3 Date Collected: 12/13/21 14:00 **Matrix: Water**

Date Received: 12/14/21 10:40

Date Received. 12/14/21 10.40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 02:44	1
Nitrate as N	1.1		0.50	0.090	mg/L			12/15/21 02:44	1
Chloride	30		3.0	1.0	mg/L			12/15/21 02:44	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 02:44	1
Fluoride	0.17	U ^1+	0.50	0.17	mg/L			12/15/21 02:44	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 02:44	1
Sulfate	250		25	5.2	mg/L			12/15/21 02:58	5
Total Dissolved Solids	460		10	4.7	mg/L			12/17/21 09:58	1
Total Inorganic Carbon - Quad	18		1.0	0.35	mg/L			12/21/21 21:22	1

Client Sample ID: SW-DOWN-20211213 Lab Sample ID: 280-156786-4

Date Received: 12/14/21 10:40

Date Collected: 12/13/21 14:10 **Matrix: Water**

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 03:12	1
Nitrate as N	1.2		0.50	0.090	mg/L			12/15/21 03:12	1
Chloride	17		3.0	1.0	mg/L			12/15/21 03:12	1
Nitrite as N	0.049 L	U	0.50	0.049	mg/L			12/15/21 03:12	1
Fluoride	0.17 L	U ^1+	0.50	0.17	mg/L			12/15/21 03:12	1
Orthophosphate as P	0.47 L	U	1.0	0.47	mg/L			12/15/21 03:12	1
Sulfate	42		5.0	1.0	mg/L			12/15/21 03:12	1
Total Dissolved Solids	170		10	4.7	mg/L			12/17/21 09:58	1

Client Sample ID: SW-UP-20211213 Lab Sample ID: 280-156786-5 Date Collected: 12/13/21 14:15 **Matrix: Water**

Date Received: 12/14/21 10:40

	• ••							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23 U	0.50	0.23	mg/L			12/15/21 03:26	1
Nitrate as N	1.3	0.50	0.090	mg/L			12/15/21 03:26	1
Chloride	16	3.0	1.0	mg/L			12/15/21 03:26	1
Nitrite as N	0.049 U	0.50	0.049	mg/L			12/15/21 03:26	1
Fluoride	0.17 U ^1+	0.50	0.17	mg/L			12/15/21 03:26	1
Orthophosphate as P	0.47 U	1.0	0.47	mg/L			12/15/21 03:26	1
Sulfate	38	5.0	1.0	mg/L			12/15/21 03:26	1
Total Dissolved Solids	160	10	4.7	mg/L			12/17/21 09:58	1

Client Sample ID: MW-4-20211213 Lab Sample ID: 280-156786-6 Date Collected: 12/13/21 16:05 **Matrix: Water**

Date Received: 12/14/21 10:40

Date Received: 12/14/21 10:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 03:40	1
Nitrate as N	0.85		0.50	0.090	mg/L			12/15/21 03:40	1
Chloride	2.4	J	3.0	1.0	mg/L			12/15/21 03:40	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 03:40	1
Fluoride	0.17	U ^1+	0.50	0.17	mg/L			12/15/21 03:40	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 03:40	1
Sulfate	10		5.0	1.0	mg/L			12/15/21 03:40	1
Total Dissolved Solids	62		10	4.7	mg/L			12/17/21 09:58	1
Total Inorganic Carbon - Quad	5.3		1.0	0.35	mg/L			12/21/21 22:09	1

Eurofins TestAmerica, Denver

Page 14 of 31

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

General Chemistry - Dissolved

Client Sample ID: MW-2-20211213	Lab Sample ID: 280-156786-1
Date Collected: 12/13/21 10:55	Matrix: Water

Date Collected: 12/13/21 10:55 Date Received: 12/14/21 10:40

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon - Quad	1.7	1.0	0.35 mg/L			12/30/21 03:14	1

Date Collected: 12/13/21 12:15 Date Received: 12/14/21 10:40

Client Sample ID: MW-3-20211213

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 0.35 mg/L 12/30/21 04:00 **Dissolved Organic Carbon - Quad** 1.3

Client Sample ID: MW-5-20211213 Lab Sample ID: 280-156786-3 **Matrix: Water**

Date Collected: 12/13/21 14:00 Date Received: 12/14/21 10:40

Result Qualifier RL **MDL** Unit Prepared Analyzed **Dissolved Organic Carbon - Quad** 1.0 0.35 mg/L 12/30/21 04:19 1.1

Client Sample ID: MW-4-20211213 Lab Sample ID: 280-156786-6 **Matrix: Water**

Date Collected: 12/13/21 16:05 Date Received: 12/14/21 10:40

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Dissolved Organic Carbon - Quad** 0.69 J 1.0 0.35 mg/L 12/30/21 04:38

Lab Sample ID: 280-156786-2

Matrix: Water

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 280-561285/1-A

Analysis Batch: 561533

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 561285

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	78	U	200	78	ug/L		12/21/21 15:02	12/22/21 02:45	1
Chromium	0.66	U	10	0.66	ug/L		12/21/21 15:02	12/22/21 02:45	1
Cobalt	1.2	U	10	1.2	ug/L		12/21/21 15:02	12/22/21 02:45	1
Iron	22	U	100	22	ug/L		12/21/21 15:02	12/22/21 02:45	1
Magnesium	26	U	200	26	ug/L		12/21/21 15:02	12/22/21 02:45	1
Manganese	1.9	U	10	1.9	ug/L		12/21/21 15:02	12/22/21 02:45	1
Potassium	240	U	3000	240	ug/L		12/21/21 15:02	12/22/21 02:45	1
Sodium	370	U	1000	370	ug/L		12/21/21 15:02	12/22/21 02:45	1
Vanadium	1.1	U	10	1.1	ug/L		12/21/21 15:02	12/22/21 02:45	1
Thallium	4.9	U	15	4.9	ug/L		12/21/21 15:02	12/22/21 02:45	1
Molybdenum	1.0	U	20	1.0	ug/L		12/21/21 15:02	12/22/21 02:45	1
Strontium	0.30	U ^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 02:45	1
Arsenic	4.4	U	15	4.4	ug/L		12/21/21 15:02	12/22/21 02:45	1
Boron	4.4	U	100	4.4	ug/L		12/21/21 15:02	12/22/21 02:45	1

MD MD

Lab Sample ID: MB 280-561285/1-A

Matrix: Water

Analysis Batch: 561601

Prep Type: Total/NA **Prep Batch: 561285** MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lithium 9.1 U 20 9.1 ug/L 12/21/21 15:02 12/22/21 14:28

Lab Sample ID: LCS 280-561285/2-A

Matrix: Water

Analysis Batch: 561533

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Alialysis balcii. 50 1555							Prep Batch. 361203
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	50000	50400		ug/L		101	90 - 111
Chromium	1000	985		ug/L		99	90 - 113
Cobalt	1000	1000		ug/L		100	89 - 111
Iron	10000	10100		ug/L		101	89 - 115
Magnesium	50000	48900		ug/L		98	90 - 113
Manganese	1000	1010		ug/L		101	90 - 110
Potassium	50000	50300		ug/L		101	89 - 114
Sodium	50000	51800		ug/L		104	90 - 115
Vanadium	1000	1000		ug/L		100	90 - 111
Thallium	2000	1940		ug/L		97	88 - 110
Molybdenum	1000	1010		ug/L		101	90 - 110
Strontium	1000	1030	^6+	ug/L		103	90 - 111
Arsenic	2000	2070		ug/L		104	88 - 110
Boron	1000	1030		ug/L		103	86 - 110

Lab Sample ID: LCS 280-561285/2-A

Matrix: Water

Analysis Batch: 561601

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 561285**

Spike LCS LCS %Rec. Added Result Qualifier **Analyte** Unit D %Rec Limits Lithium 1000 1020 102 90 - 112 ug/L

Eurofins TestAmerica, Denver

Page 16 of 31

Prep Batch: 561285

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 280-561285/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 561533

Prep Type: Total/NA **Prep Batch: 561285**

Analysis Daton. 301000							i icp D	ALCII. OL	1200
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	50000	49900		ug/L		100	90 - 111	1	20
Chromium	1000	981		ug/L		98	90 - 113	0	20
Cobalt	1000	993		ug/L		99	89 - 111	1	20
Iron	10000	10000		ug/L		100	89 - 115	1	20
Magnesium	50000	48700		ug/L		97	90 - 113	0	20
Manganese	1000	1000		ug/L		100	90 - 110	1	20
Potassium	50000	49800		ug/L		100	89 - 114	1	20
Sodium	50000	51500		ug/L		103	90 - 115	1	20
Vanadium	1000	995		ug/L		99	90 - 111	1	20
Thallium	2000	1930		ug/L		96	88 - 110	1	20
Molybdenum	1000	1000		ug/L		100	90 - 110	1	20
Strontium	1000	1020	^6+	ug/L		102	90 - 111	1	20
Arsenic	2000	2050		ug/L		103	88 - 110	1	20

Lab Sample ID: LCSD 280-561285/3-A

Matrix: Water

Boron

Analysis Batch: 561601

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

104

Prep Batch: 561285 %Rec. **RPD**

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Lithium 1000 1000 ug/L 100 90 - 112

1040

ug/L

1000

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 280-560574/39

Matrix: Water

Analysis Batch: 560574

Client Sample ID: Method Blank Prep Type: Total/NA

86 - 110

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.090	U	0.50	0.090	mg/L			12/14/21 23:56	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/14/21 23:56	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/14/21 23:56	1

Lab Sample ID: LCS 280-560574/37

Matrix: Water

Analysis Batch: 560574

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Nitrate as N 5.00 4.80 mg/L 96 90 - 110 Nitrite as N 5.00 4.94 99 mg/L 90 - 110 Orthophosphate as P 5.00 4.61 mg/L 92 90 - 110

Lab Sample ID: LCSD 280-560574/38		Cile	nt Sample ID: Lab Control Samp	oie Dup
Matrix: Water			Prep Type: To	otal/NA
Analysis Batch: 560574				
	Spike	LCSD LCSD	%Rec.	RPD

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	5.00	4.76		mg/L		95	90 - 110	1	10
Nitrite as N	5.00	4.96		mg/L		99	90 - 110	0	10
Orthophosphate as P	5.00	4.55		mg/L		91	90 - 110	1	10

Eurofins TestAmerica, Denver

Page 17 of 31 1/6/2022

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MRL 280-560574/3

Matrix: Water

Analysis Batch: 560574

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike MRL MRL %Rec. Result Qualifier Analyte Added Unit %Rec Limits Nitrate as N 0.500 0.470 J mg/L 94 50 - 150 Nitrite as N 0.500 0.481 J mg/L 96 50 - 150 Orthophosphate as P 0.500 0.47 U 50 - 150 mg/L 93

Lab Sample ID: MB 280-560575/39

Matrix: Water

Analysis Batch: 560575

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/14/21 23:56	1
Chloride	1.0	U	3.0	1.0	mg/L			12/14/21 23:56	1
Fluoride	0.17	U ^1+	0.50	0.17	mg/L			12/14/21 23:56	1
Sulfate	1.0	U	5.0	1.0	mg/L			12/14/21 23:56	1

MB MB

Lab Sample ID: LCS 280-560575/37

Matrix: Water

Analysis Batch: 560575

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Bromide 5.00 4.61 mg/L 92 90 - 110 Chloride 100 101 mg/L 101 90 - 110 Fluoride 5.00 4.56 ^1+ mg/L 91 90 - 110 Sulfate 100 90 - 110 101 mg/L 101

Lab Sample ID: LCSD 280-560575/38

Matrix: Water

Analysis Batch: 560575

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
Bromide	5.00	4.54		mg/L	91	90 - 110	2	10
Chloride	100	100		mg/L	100	90 - 110	0	10
Fluoride	5.00	4.67	^1+	mg/L	93	90 - 110	2	10
Sulfate	100	101		mg/L	101	90 - 110	0	10

Lab Sample ID: MRL 280-560575/3

Matrix: Water

Analysis Batch: 560575

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Bromide 0.500 0.461 J 92 50 - 150 mg/L Chloride 5.00 5.08 mg/L 102 50 - 150 Fluoride 0.500 0.508 ^1+ 102 mg/L 50 - 150 Sulfate 5.00 4.99 J mg/L 100 50 - 150

Lab Sample ID: MB 280-562555/6

Matrix: Water

Analysis Batch: 562555

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Fluoride 0.17 U 0.50 0.17 mg/L 01/05/22 12:22

Eurofins TestAmerica, Denver

Page 18 of 31

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: MW-2-20211213

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: LCS 280-562555/4

Matrix: Water

Analysis Batch: 562555

Spike LCS LCS %Rec. Result Qualifier Added %Rec Limits Analyte Unit D Fluoride 5.00 4.84 mg/L 97 90 - 110

Lab Sample ID: LCSD 280-562555/5

Matrix: Water

Analysis Batch: 562555

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 5.00 90 - 110 Fluoride 4.83 mg/L 97 n

Lab Sample ID: MRL 280-562555/3

Matrix: Water

Analysis Batch: 562555

Spike MRL MRL %Rec. Analyte Added Result Qualifier Limits Unit %Rec Fluoride 0.500 0.481 J 50 - 150 mg/L

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 280-561048/1

Matrix: Water

Analysis Batch: 561048

MB MB

Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids 4.7 U 10 4.7 mg/L 12/17/21 08:58

Lab Sample ID: LCS 280-561048/2

Matrix: Water

Analysis Batch: 561048

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits Total Dissolved Solids 502 504 mg/L 100 88 - 114

Lab Sample ID: LCSD 280-561048/3

Matrix: Water

Analysis Batch: 561048

LCSD LCSD RPD Spike %Rec. Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Total Dissolved Solids 502 504 100 88 - 114 mg/L

Lab Sample ID: 280-156786-1 DU

Matrix: Water

Analysis Batch: 561048

RPD DU DU Sample Sample Result Qualifier Result Qualifier Unit D **RPD** Limit 10

Total Dissolved Solids 270 262 mg/L

1/6/2022

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

|--|

Lab Sample ID: MB 280-561526/11

Matrix: Water

Analysis Batch: 561526

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 1.0 12/21/21 20:07 Total Inorganic Carbon - Quad 0.35 U 0.35 mg/L

Lab Sample ID: MB 280-561526/7

Matrix: Water

Analysis Batch: 561526

MB MB

MDL Unit Result Qualifier RL Prepared Analyzed Dil Fac 1.0 0.35 mg/L 12/21/21 19:17 Total Inorganic Carbon - Quad 0.35 U

Lab Sample ID: LCS 280-561526/9

Matrix: Water

Analysis Batch: 561526

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Total Inorganic Carbon - Quad 25.0 25.0 88 - 112 mg/L

Lab Sample ID: LCSD 280-561526/10

Matrix: Water

Analysis Batch: 561526

Spike LCSD LCSD **RPD** %Rec. Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit Total Inorganic Carbon - Quad 25.0 88 - 112 24.4 mg/L

Lab Sample ID: MB 280-561673/5

Matrix: Water

Analysis Batch: 561673

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Total Inorganic Carbon - Quad 0.35 U 1.0 0.35 mg/L 12/23/21 12:07

Lab Sample ID: LCS 280-561673/3

Matrix: Water

Analysis Batch: 561673

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit D 25.0 Total Inorganic Carbon - Quad 24.5 98 88 - 112

Lab Sample ID: LCSD 280-561673/4

Matrix: Water

Analysis Batch: 561673

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Unit %Rec Limit 25.0 Total Inorganic Carbon - Quad 24.0 mg/L 96 88 - 112

Lab Sample ID: 280-156786-2 MS

Matrix: Water

Analysis Batch: 561673

Spike MS MS %Rec. Sample Sample Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec Total Inorganic Carbon - Quad 47 50.1 88 - 112 99.3 mg/L

Eurofins TestAmerica, Denver

Client Sample ID: MW-3-20211213

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Method: SM 5310B - Organic Carbon, Total (TOC)

Lab Sample ID: 280-156786-2 MSD Client Sample ID: MW-3-20211213

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 561673** RPD Sample Sample Spike MSD MSD %Rec.

Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Analyte Total Inorganic Carbon - Quad 47 50.1 99.7 mg/L 105 88 - 112 0 15

Method: SM 5310B - Organic Carbon, Dissolved (DOC)

Lab Sample ID: MB 280-562191/38 Client Sample ID: Method Blank **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562191

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 12/30/21 02:05 0.35 U 0.35 mg/L Dissolved Organic Carbon - Quad

Lab Sample ID: MB 280-562191/4 Client Sample ID: Method Blank **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562191

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed Dissolved Organic Carbon - Quad 0.35 U 1.0 0.35 mg/L 12/29/21 16:32

Lab Sample ID: LCS 280-562191/36 **Client Sample ID: Lab Control Sample Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562191

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Dissolved Organic Carbon -25.0 26.0 104 88 - 112 mg/L

Quad

Lab Sample ID: LCSD 280-562191/37 Client Sample ID: Lab Control Sample Dup **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562191

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Unit %Rec Limits RPD Limit Analyte 25.0 26.1 88 - 112 Dissolved Organic Carbon mg/L 104

Quad

Lab Sample ID: 280-156786-1 MS Client Sample ID: MW-2-20211213

Matrix: Water

Analysis Batch: 562191

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits Dissolved Organic Carbon -25.0 1.7 27.8 mg/L 104 88 - 112

Quad

Lab Sample ID: 280-156786-1 MSD Client Sample ID: MW-2-20211213 **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562191

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Dissolved Organic Carbon -1.7 25.0 28.5 mg/L 107 88 - 112

Quad

Eurofins TestAmerica, Denver

1/6/2022

Prep Type: Dissolved

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Job ID: 280-156786-1

Metals

Prep Batch: 561285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	3010A	
280-156786-2	MW-3-20211213	Total/NA	Water	3010A	
280-156786-3	MW-5-20211213	Total/NA	Water	3010A	
280-156786-4	SW-DOWN-20211213	Total/NA	Water	3010A	
280-156786-5	SW-UP-20211213	Total/NA	Water	3010A	
280-156786-6	MW-4-20211213	Total/NA	Water	3010A	
MB 280-561285/1-A	Method Blank	Total/NA	Water	3010A	
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	

Analysis Batch: 561533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	6010C	561285
280-156786-2	MW-3-20211213	Total/NA	Water	6010C	561285
280-156786-3	MW-5-20211213	Total/NA	Water	6010C	561285
280-156786-4	SW-DOWN-20211213	Total/NA	Water	6010C	561285
280-156786-5	SW-UP-20211213	Total/NA	Water	6010C	561285
280-156786-6	MW-4-20211213	Total/NA	Water	6010C	561285
MB 280-561285/1-A	Method Blank	Total/NA	Water	6010C	561285
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	6010C	561285
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	561285

Analysis Batch: 561601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	6010C	561285
280-156786-2	MW-3-20211213	Total/NA	Water	6010C	561285
280-156786-3	MW-5-20211213	Total/NA	Water	6010C	561285
280-156786-4	SW-DOWN-20211213	Total/NA	Water	6010C	561285
280-156786-5	SW-UP-20211213	Total/NA	Water	6010C	561285
280-156786-6	MW-4-20211213	Total/NA	Water	6010C	561285
MB 280-561285/1-A	Method Blank	Total/NA	Water	6010C	561285
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	6010C	561285
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	561285

General Chemistry

Analysis Batch: 560574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	9056A	
280-156786-2	MW-3-20211213	Total/NA	Water	9056A	
280-156786-3	MW-5-20211213	Total/NA	Water	9056A	
280-156786-4	SW-DOWN-20211213	Total/NA	Water	9056A	
280-156786-5	SW-UP-20211213	Total/NA	Water	9056A	
280-156786-6	MW-4-20211213	Total/NA	Water	9056A	
MB 280-560574/39	Method Blank	Total/NA	Water	9056A	
LCS 280-560574/37	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-560574/38	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-560574/3	Lab Control Sample	Total/NA	Water	9056A	

Eurofins TestAmerica, Denver

Page 22 of 31

1/6/2022

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156786-1

General Chemistry

Analysis Batch: 560575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	9056A	
280-156786-2	MW-3-20211213	Total/NA	Water	9056A	
280-156786-2	MW-3-20211213	Total/NA	Water	9056A	
280-156786-3	MW-5-20211213	Total/NA	Water	9056A	
280-156786-3	MW-5-20211213	Total/NA	Water	9056A	
280-156786-4	SW-DOWN-20211213	Total/NA	Water	9056A	
280-156786-5	SW-UP-20211213	Total/NA	Water	9056A	
280-156786-6	MW-4-20211213	Total/NA	Water	9056A	
MB 280-560575/39	Method Blank	Total/NA	Water	9056A	
LCS 280-560575/37	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-560575/38	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-560575/3	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 561048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	SM 2540C	
280-156786-2	MW-3-20211213	Total/NA	Water	SM 2540C	
280-156786-3	MW-5-20211213	Total/NA	Water	SM 2540C	
280-156786-4	SW-DOWN-20211213	Total/NA	Water	SM 2540C	
280-156786-5	SW-UP-20211213	Total/NA	Water	SM 2540C	
280-156786-6	MW-4-20211213	Total/NA	Water	SM 2540C	
MB 280-561048/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 280-561048/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 280-561048/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
280-156786-1 DU	MW-2-20211213	Total/NA	Water	SM 2540C	

Analysis Batch: 561526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156786-1	MW-2-20211213	Total/NA	Water	SM 5310B	
280-156786-3	MW-5-20211213	Total/NA	Water	SM 5310B	
280-156786-6	MW-4-20211213	Total/NA	Water	SM 5310B	
MB 280-561526/11	Method Blank	Total/NA	Water	SM 5310B	
MB 280-561526/7	Method Blank	Total/NA	Water	SM 5310B	
LCS 280-561526/9	Lab Control Sample	Total/NA	Water	SM 5310B	
LCSD 280-561526/10	Lab Control Sample Dup	Total/NA	Water	SM 5310B	

Analysis Batch: 561673

Lab Sample ID 280-156786-2	Client Sample ID MW-3-20211213	Prep Type Total/NA	Matrix Water	Method SM 5310B	Prep Batch
MB 280-561673/5	Method Blank	Total/NA	Water	SM 5310B	
LCS 280-561673/3	Lab Control Sample	Total/NA	Water	SM 5310B	
LCSD 280-561673/4	Lab Control Sample Dup	Total/NA	Water	SM 5310B	
280-156786-2 MS	MW-3-20211213	Total/NA	Water	SM 5310B	
280-156786-2 MSD	MW-3-20211213	Total/NA	Water	SM 5310B	

Analysis Batch: 562191

Lab Sample ID 280-156786-1	Client Sample ID MW-2-20211213	Prep Type Dissolved	Matrix Water	Method SM 5310B	Prep Batch
280-156786-2	MW-3-20211213	Dissolved	Water	SM 5310B	
280-156786-3	MW-5-20211213	Dissolved	Water	SM 5310B	
280-156786-6	MW-4-20211213	Dissolved	Water	SM 5310B	

Eurofins TestAmerica, Denver

Page 23 of 31 1/6/2022

_

9

10

. .

15

13

1 *1*

QC Association Summary

Client: Geosyntec Consultants, Inc. Job ID: 280-156786-1

Project/Site: UNC Cogen

General Chemistry (Continued) Analysis Batch: 562191 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 280-562191/38	Method Blank	Dissolved	Water	SM 5310B	
MB 280-562191/4	Method Blank	Dissolved	Water	SM 5310B	
LCS 280-562191/36	Lab Control Sample	Dissolved	Water	SM 5310B	
LCSD 280-562191/37	Lab Control Sample Dup	Dissolved	Water	SM 5310B	
280-156786-1 MS	MW-2-20211213	Dissolved	Water	SM 5310B	
280-156786-1 MSD	MW-2-20211213	Dissolved	Water	SM 5310B	

Analysis Batch: 562555

Lab Sample ID 280-156786-1	Client Sample ID MW-2-20211213	Prep Type Total/NA	Matrix Water	Method 9056A	Prep Batch
MB 280-562555/6	Method Blank	Total/NA	Water	9056A	
LCS 280-562555/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-562555/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-562555/3	Lab Control Sample	Total/NA	Water	9056A	

Eurofins TestAmerica, Denver

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Client Sample ID: MW-2-20211213

Date Received: 12/14/21 10:40

Date Collected: 12/13/21 10:55

Lab Sample ID: 280-156786-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 02:57	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 14:48	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560574	12/15/21 02:02	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560575	12/15/21 02:02	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	562555	01/05/22 17:40	SPG	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561048	12/17/21 09:58	ABW	TAL DEN
Dissolved	Analysis	SM 5310B		1	20 mL	20 mL	562191	12/30/21 03:14	RAF	TAL DEN
Total/NA	Analysis	SM 5310B		1	20 mL	20 mL	561526	12/21/21 20:56	RAF	TAL DEN

Client Sample ID: MW-3-20211213

Date Collected: 12/13/21 12:15

Date Received: 12/14/21 10:40

Lab Sample ID: 280-156786-2

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep Total/NA 3010A 50 mL 50 mL 561285 12/21/21 15:02 CEH TAL DEN Total/NA Analysis 6010C 561533 12/22/21 03:01 LMT TAL DEN Total/NA Prep 3010A 50 mL 50 mL 561285 12/21/21 15:02 CEH TAL DEN Total/NA Analysis 6010C 561601 12/22/21 14:52 LRD TAL DEN Total/NA Analysis 9056A 1 10 mL 10 mL 560574 12/15/21 02:16 CJ TAL DEN Total/NA Analysis 9056A 1 10 mL 10 mL 560575 12/15/21 02:16 CJ TAL DEN Total/NA 9056A 10 mL Analysis 5 10 mL 560575 12/15/21 02:30 CJ TAL DEN Total/NA Analysis SM 2540C 100 mL 100 mL 561048 12/17/21 09:58 ABW TAL DEN 1 Dissolved Analysis SM 5310B 20 mL 20 mL 562191 12/30/21 04:00 RAF TAL DEN 1 Total/NA SM 5310B 2 20 mL 20 mL 561673 12/23/21 12:19 RAF TAL DEN Analysis

Client Sample ID: MW-5-20211213

Date Collected: 12/13/21 14:00

Date Received: 12/14/21 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 03:05	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 15:13	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560574	12/15/21 02:44	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560575	12/15/21 02:44	CJ	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	560575	12/15/21 02:58	CJ	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561048	12/17/21 09:58	ABW	TAL DEN
Dissolved	Analysis	SM 5310B		1	20 mL	20 mL	562191	12/30/21 04:19	RAF	TAL DEN
Total/NA	Analysis	SM 5310B		1	20 mL	20 mL	561526	12/21/21 21:22	RAF	TAL DEN

Eurofins TestAmerica, Denver

Page 25 of 31

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Client Sample ID: SW-DOWN-20211213

Date Collected: 12/13/21 14:10 Date Received: 12/14/21 10:40 Lab Sample ID: 280-156786-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 03:09	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 15:17	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560574	12/15/21 03:12	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560575	12/15/21 03:12	CJ	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561048	12/17/21 09:58	ABW	TAL DEN

Client Sample ID: SW-UP-20211213

Date Collected: 12/13/21 14:15 Date Received: 12/14/21 10:40

Lab Sample ID: 280-156786-5 **Matrix: Water**

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 03:13	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 15:21	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560574	12/15/21 03:26	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560575	12/15/21 03:26	CJ	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561048	12/17/21 09:58	ABW	TAL DEN

Client Sample ID: MW-4-20211213

Date Collected: 12/13/21 16:05 Date Received: 12/14/21 10:40

Lab Sample ID: 280-156786-6 **Matrix: Water**

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 03:17	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 15:25	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560574	12/15/21 03:40	CJ	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560575	12/15/21 03:40	CJ	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561048	12/17/21 09:58	ABW	TAL DEN
Dissolved	Analysis	SM 5310B		1	20 mL	20 mL	562191	12/30/21 04:38	RAF	TAL DEN
Total/NA	Analysis	SM 5310B		1	20 mL	20 mL	561526	12/21/21 22:09	RAF	TAL DEN

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Job ID: 280-156786-1

Project/Site: UNC Cogen

Laboratory: Eurofins TestAmerica, Denver

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-23
A2LA	ISO/IEC 17025	2907.01	10-31-23
Alabama	State Program	40730	09-30-12 *
Alaska (UST)	State	18-001	02-28-22
Arizona	State	AZ0713	12-20-22
Arkansas DEQ	State	19-047-0	06-01-22
California	State	2513	01-08-22
Connecticut	State	PH-0686	09-30-22
Florida	NELAP	E87667-57	06-30-22
Georgia	State	4025-011	01-08-22
Illinois	NELAP	2000172019-1	04-30-22
lowa	State	IA#370	12-02-22
Kansas	NELAP	E-10166	04-30-22
Louisiana	NELAP	30785	06-30-14 *
Louisiana	NELAP	30785	06-30-22
Minnesota	NELAP	1788752	12-31-22
Nevada	State	CO000262020-1	07-31-22
New Hampshire	NELAP	205319	04-29-22
New Jersey	NELAP	190002	06-30-22
New York	NELAP	59923	04-01-22
North Carolina (WW/SW)	State	358	12-31-22
North Dakota	State	R-034	01-08-22
Oklahoma	State	2018-006	08-31-22
Oregon	NELAP	4025-011	01-08-22
Pennsylvania	NELAP	013	07-31-22
South Carolina	State	72002001	01-08-22
Texas	NELAP	TX104704183-08-TX	09-30-09 *
Texas	NELAP	T104704183-21-19	10-01-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-20-00065	03-06-23
Utah	NELAP	QUAN5	06-30-13 *
Utah	NELAP	CO000262019-11	07-31-22
Virginia	NELAP	10490	06-14-22
Washington	State	C583-19	08-03-22
West Virginia DEP	State	354	01-31-22
Wisconsin	State	999615430	08-31-22
Wyoming (UST)	A2LA	2907.01	10-31-22

4

_

0

9

12

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

💸 eurofins | Environment Testing | America

Eurofins TestAmerica, Denver 4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Phone (303) 431-7171

	Sampler	l ab DM:	Company Totalship Market	7.000
Client Information	D. VOM Hadden MOOV		Callel Hacking NO(s).	280-114880-30944.1
Client Confact: Michael Schott	Phila-424-1840	E-Mail: Patrick.McEntee@Eurofinset.com	State of Origin:	Page:
Company: Geosyntec Consultants, Inc.	PWSID:	Analysis	Requested	Job #:
Address: 2501 Blue Ridge Road	Due Date Requested:			Preservation Codes:
City: Raleigh	TAT Requested (days):			A - HCL M - Hexane B - NaOH N - None
State, Zip: NC, 27607	Compliance Project: A Yes A No			C - Zn Acetate D - Nitric Acid E - NaHSO4
Phone: 919,424,1824	PO #:	10%	7- 48 t	
Email: MSchott@Geosyntec.com	WO#:	A0 701		H - Ascorbic Acid i - Ice J - DI Water
Project Name: COSTM	Project #	\$ 5 5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		K - EDTA L - EDA
I. DI	SSOW#:	100 101 101 101 101		Other
	Sample	Matrix (Wewatar, Washing, Wash	156786 Ch	Ээфший Ісі
Sample Identification	Sample Date Time	ation Code X	Ē	Special Instructions/Note:
MW-2-12132021213	14/3/21 105	× × × × × Z		
MW-3-121378 20211213	2	water NXX XXX		<u>€</u> 9
HW-5-202(1213	12/13/21 1400	Water NA X X X		
SW-DOWN -20211213	21 1410	Water N X X		
SW-WP-20211213	12/13/21/1415 6	Water Z X X		
MW-4-20211213	12 13/21 1405 6	water NNXXXXX		WATER THE WATER
		Water		
ant	Poison B Unknown Radiological	Sample Disposal (A fee may be assessed it samples are retained longer than 1 month)	assessed if samples are reta	tained longer than 1 month) Archive For
sted: I, II, III, IV, O		Specia	and for more	
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
3	Date/Time: 1745	Inte	Date/Time:	Company
Kellnduisned by: FSD &	Date/Time:		Date/Time:	JULY 1040 ELAN DELY
	Date/Time:	Company Received by:	Date/Time:	Company
Custody Seals Infact: Custody Seal No.: A Yes A No		Cooler Temperature(s) °C and Other Remarks:	0.2 43	CF-0:1 1249
				Ver: 01/16/2019

13

BILL THIRD PARTY

ATTN: SAMPLE RECEIVING EUROFINS TESTAMERICA 4955 YARROW STREET

Environment Testing TestAmerica

ARVADA CO 80002 (303) 736-0100

14° ±14°

1 of 2

TUE -AHS 80002 co-us DEN

SHIP DATE: 13DEC2 ACTWGT: 52.10 LB CAD: 6572628/SSFE2 DIMS: 24×13×14 IN

ATTN: SAMPLE RECEIVING **EUROFINS TESTAMERICA** 4955 ARROW STREET

eurofins |

Environment TestAmerica

ARVADA CO 80002

4

1773433

2 of 2 MPS# 2875 1989 5424 Mstr# 2875 1989 5413

PRIORITY OVERNIGHT 0201

AHS 80002 co-us DEN

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 280-156786-1

Login Number: 156786 List Source: Eurofins TestAmerica, Denver

List Number: 1

Creator: Burke, Sophie G

Creator: Burke, Sophie G		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

3

4

O

7

9

10

12

13

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-156833-1 Client Project/Site: UNC Cogen

For:

Geosyntec Consultants, Inc. 2501 Blue Ridge Rd. Suite 430 Raleigh, North Carolina 27607

Attn: Mr. Michael Schott

Datul & MoEnter

Authorized for release by: 1/6/2022 11:20:24 AM

Patrick McEntee, Client Service Manager (303)736-0107

Patrick.McEntee@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

_

10

40

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	6
Method Summary	7
Sample Summary	8
Client Sample Results	9
QC Sample Results	10
QC Association	18
Chronicle	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

4

5

0

ð

10

12

13

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Job ID: 280-156833-1 Project/Site: UNC Cogen

Qualifiers

 CLU	•

Qualifier **Qualifier Description** ^6+ Interference Check Standard (ICSA and/or ICSAB) is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

O	Ovelities December
Qualifier	Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	/ used abbreviations ma	y or may not be	present in this report.
--------------	----------------	-------------------------	-----------------	-------------------------

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MI Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins TestAmerica, Denver

Page 3 of 24

1/6/2022

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156833-1

Job ID: 280-156833-1

Laboratory: Eurofins TestAmerica, Denver

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: UNC Cogen

Report Number: 280-156833-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/15/2021 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.3° C.

Receipt Exceptions

The sample collection time for the MS and MSD samples do not match the parent sample collection time. Logged per the parent time on the COC. MW-1-20211214 (280-156833-1[MS]) and MW-1-20211214 (280-156833-1[MSD])

TOTAL METALS (ICP)

Sample MW-1-20211214 (280-156833-1) was analyzed for Total Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 12/21/2021 and analyzed on 12/22/2021.

The interference check standard solution (ICSA) associated with batch 280-561487 had results for one or more elements at a level greater than the limit of detection (LOD). The initial ICSA result(s) was 24.9ppb which is greater than the LOD of 0.3ppb for Sr. This element has been shown to be a trace impurity by MS. These results are not indicative of a matrix interference.

The interference check standard solution (ICSA) associated with the following samples showed results for strontium (24.9 ppb) at a level greater than 2 times the reporting limit (10 ppb). It is believed that the solution contains trace impurities of this element / these elements and the results are not due to matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. MW-1-20211214 (280-156833-1[MSD]), MW-1-20211214 (280-156833-1[MSD]), (ICSA 280-561285/1-A), (LCS 280-561285/2-A), (LCSD 280-561285/3-A), (MB 280-561285/1-A), (280-156833-B-1-A PDS) and (280-156833-B-1-A SD ^5)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Sample MW-1-20211214 (280-156833-1) was analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 12/20/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (28 DAYS)

Sample MW-1-20211214 (280-156833-1) was analyzed for anions (28 days) in accordance with EPA SW-846 Method 9056A (28 Days).

Eurofins TestAmerica, Denver 1/6/2022

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156833-1

Job ID: 280-156833-1 (Continued)

Laboratory: Eurofins TestAmerica, Denver (Continued)

The samples were analyzed on 01/05/2022 and 12/15/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (48 HOURS)

Sample MW-1-20211214 (280-156833-1) was analyzed for anions (48 hours) in accordance with EPA SW-846 Method 9056A (48 Hours). The samples were analyzed on 12/15/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON

Sample MW-1-20211214 (280-156833-1) was analyzed for dissolved organic carbon in accordance with SM20 5310B. The samples were analyzed on 12/30/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Sample MW-1-20211214 (280-156833-1) was analyzed for total organic carbon in accordance with SM20 5310B. The samples were analyzed on 12/21/2021.

Total Inorganic Carbon - Quad failed the recovery criteria high for the MS of sample MW-1-20211214MS (280-156833-1) in batch 280-561526. Total Inorganic Carbon - Quad failed the recovery criteria high for the MSD of sample MW-1-20211214MSD (280-156833-1) in batch 280-561526.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

O

8

9

4 4

12

13

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Lab Sample ID: 280-156833-1

Job ID: 280-156833-1

Client Sample ID: MW-1-20211214	Client	Sample	ID:	MW-1	I-2021	11214
---------------------------------	--------	--------	-----	------	--------	-------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Calcium	4400		200	78	ug/L		6010C	Total/NA
Chromium	1.7	J	10	0.66	ug/L	1	6010C	Total/NA
Iron	37	J	100	22	ug/L	1	6010C	Total/NA
Magnesium	800		200	26	ug/L	1	6010C	Total/NA
Potassium	1600	J	3000	240	ug/L	1	6010C	Total/NA
Sodium	36000		1000	370	ug/L	1	6010C	Total/NA
Strontium	65	^6+	10	0.30	ug/L	1	6010C	Total/NA
Boron	32	J	100	4.4	ug/L	1	6010C	Total/NA
Nitrate as N	0.81		0.50	0.090	mg/L	1	9056A	Total/NA
Chloride	12		3.0	1.0	mg/L	1	9056A	Total/NA
Sulfate	63		5.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	140		10	4.7	mg/L	1	SM 2540C	Total/NA
Total Inorganic Carbon - Quad	3.7	F1	1.0	0.35	mg/L	1	SM 5310B	Total/NA
Dissolved Organic Carbon - Quad	0.63	J	1.0	0.35	mg/L	1	SM 5310B	Dissolved

10

1 1

13

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156833-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL DEN
9056A	Anions, Ion Chromatography	SW846	TAL DEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL DEN
SM 5310B	Organic Carbon, Dissolved (DOC)	SM	TAL DEN
SM 5310B	Organic Carbon, Total (TOC)	SM	TAL DEN
3010A	Preparation, Total Metals	SW846	TAL DEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

9

4

6

9

10

12

13

Sample Summary

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 280-156833-1
 MW-1-20211214
 Water
 12/14/21 11:25
 12/15/21 10:30

Job ID: 280-156833-1

3

4

6

0

9

10

12

13

Client Sample Results

Client: Geosyntec Consultants, Inc. Job ID: 280-156833-1 Project/Site: UNC Cogen

Method: 6010C - Metals (ICP)

Client Sample ID: MW-1-20211214 Lab Sample ID: 280-156833-1 Date Collected: 12/14/21 11:25 **Matrix: Water**

Date Received: 12/15/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	4400		200	78	ug/L		12/21/21 15:02	12/22/21 03:45	1
Chromium	1.7	J	10	0.66	ug/L		12/21/21 15:02	12/22/21 03:45	1
Cobalt	1.2	U	10	1.2	ug/L		12/21/21 15:02	12/22/21 03:45	1
Iron	37	J	100	22	ug/L		12/21/21 15:02	12/22/21 03:45	1
Magnesium	800		200	26	ug/L		12/21/21 15:02	12/22/21 03:45	1
Manganese	1.9	U	10	1.9	ug/L		12/21/21 15:02	12/22/21 03:45	1
Potassium	1600	J	3000	240	ug/L		12/21/21 15:02	12/22/21 03:45	1
Sodium	36000		1000	370	ug/L		12/21/21 15:02	12/22/21 03:45	1
Vanadium	1.1	U	10	1.1	ug/L		12/21/21 15:02	12/22/21 03:45	1
Lithium	9.1	U	20	9.1	ug/L		12/21/21 15:02	12/22/21 15:29	1
Thallium	4.9	U	15	4.9	ug/L		12/21/21 15:02	12/22/21 03:45	1
Molybdenum	1.0	U	20	1.0	ug/L		12/21/21 15:02	12/22/21 03:45	1
Strontium	65	^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 03:45	1
Arsenic	4.4	U	15	4.4	ug/L		12/21/21 15:02	12/22/21 03:45	1
Boron	32	J	100	4.4	ug/L		12/21/21 15:02	12/22/21 03:45	1

General Chemistry

Client Sample ID: MW-1-20211214 Lab Sample ID: 280-156833-1

Date Collected: 12/14/21 11:25

Date Received: 12/15/21 10:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 13:06	1
Nitrate as N	0.81		0.50	0.090	mg/L			12/15/21 13:06	1
Chloride	12		3.0	1.0	mg/L			12/15/21 13:06	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 13:06	1
Fluoride	0.17	U	0.50	0.17	mg/L			01/05/22 14:40	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 13:06	1
Sulfate	63		5.0	1.0	mg/L			12/15/21 13:06	1
Total Dissolved Solids	140		10	4.7	mg/L			12/20/21 11:39	1
Total Inorganic Carbon - Quad	3.7	F1	1.0	0.35	mg/L			12/21/21 20:19	1

General Chemistry - Dissolved

Client Sample ID: MW-1-20211214 Lab Sample ID: 280-156833-1 Date Collected: 12/14/21 11:25 **Matrix: Water**

Date Received: 12/15/21 10:30

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Dissolved Organic Carbon - Quad	0.63	J	1.0	0.35	mg/L			12/30/21 15:44	1		

Eurofins TestAmerica, Denver

Matrix: Water

Client: Geosyntec Consultants, Inc. Job ID: 280-156833-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 280-561285/1-A

Analysis Batch: 561533

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 561285

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	78	U	200	78	ug/L		12/21/21 15:02	12/22/21 02:45	1
Chromium	0.66	U	10	0.66	ug/L		12/21/21 15:02	12/22/21 02:45	1
Cobalt	1.2	U	10	1.2	ug/L		12/21/21 15:02	12/22/21 02:45	1
Iron	22	U	100	22	ug/L		12/21/21 15:02	12/22/21 02:45	1
Magnesium	26	U	200	26	ug/L		12/21/21 15:02	12/22/21 02:45	1
Manganese	1.9	U	10	1.9	ug/L		12/21/21 15:02	12/22/21 02:45	1
Potassium	240	U	3000	240	ug/L		12/21/21 15:02	12/22/21 02:45	1
Sodium	370	U	1000	370	ug/L		12/21/21 15:02	12/22/21 02:45	1
Vanadium	1.1	U	10	1.1	ug/L		12/21/21 15:02	12/22/21 02:45	1
Thallium	4.9	U	15	4.9	ug/L		12/21/21 15:02	12/22/21 02:45	1
Molybdenum	1.0	U	20	1.0	ug/L		12/21/21 15:02	12/22/21 02:45	1
Strontium	0.30	U ^6+	10	0.30	ug/L		12/21/21 15:02	12/22/21 02:45	1
Arsenic	4.4	U	15	4.4	ug/L		12/21/21 15:02	12/22/21 02:45	1
Boron	4.4	U	100	4.4	ug/L		12/21/21 15:02	12/22/21 02:45	1

MD MD

MB MB

Lab Sample ID: MB 280-561285/1-A

Matrix: Water

Analysis Batch: 561601

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 561285

 Analyte
 Result
 Qualifier
 RL
 MDL unit
 D unit
 D repared
 Analyzed
 Dil Fac

 Lithium
 9.1
 U
 20
 9.1
 ug/L
 12/21/21 15:02
 12/22/21 14:28
 1

Lab Sample ID: LCS 280-561285/2-A

Matrix: Water

Analysis Batch: 561533

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 561285

Analysis Daton. 301333							r rep Datch. 301203
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	50000	50400		ug/L		101	90 - 111
Chromium	1000	985		ug/L		99	90 - 113
Cobalt	1000	1000		ug/L		100	89 - 111
Iron	10000	10100		ug/L		101	89 - 115
Magnesium	50000	48900		ug/L		98	90 - 113
Manganese	1000	1010		ug/L		101	90 - 110
Potassium	50000	50300		ug/L		101	89 - 114
Sodium	50000	51800		ug/L		104	90 - 115
Vanadium	1000	1000		ug/L		100	90 - 111
Thallium	2000	1940		ug/L		97	88 - 110
Molybdenum	1000	1010		ug/L		101	90 - 110
Strontium	1000	1030	^6+	ug/L		103	90 - 111
Arsenic	2000	2070		ug/L		104	88 - 110
Boron	1000	1030		ug/L		103	86 - 110

Lab Sample ID: LCS 280-561285/2-A

Matrix: Water

Analysis Batch: 561601

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 561285

 Analyte
 Added Lithium
 Result 1000
 Qualifier 1000
 Unit ug/L
 D %Rec Limits 100
 Limits 200 - 112

Eurofins TestAmerica, Denver

7

9

11

13

1/

Client: Geosyntec Consultants, Inc. Job ID: 280-156833-1

Project/Site: UNC Cogen

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 280-561285/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Boron

Lithium

Analysis Ratch: 561533

Prep Type: Total/NA

Analysis Batch: 561533							Prep Ba	atcn: 50	51285
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	50000	49900		ug/L		100	90 - 111	1	20
Chromium	1000	981		ug/L		98	90 - 113	0	20
Cobalt	1000	993		ug/L		99	89 - 111	1	20
Iron	10000	10000		ug/L		100	89 - 115	1	20
Magnesium	50000	48700		ug/L		97	90 - 113	0	20
Manganese	1000	1000		ug/L		100	90 - 110	1	20
Potassium	50000	49800		ug/L		100	89 - 114	1	20
Sodium	50000	51500		ug/L		103	90 - 115	1	20
Vanadium	1000	995		ug/L		99	90 - 111	1	20
Thallium	2000	1930		ug/L		96	88 - 110	1	20
Molybdenum	1000	1000		ug/L		100	90 - 110	1	20
Strontium	1000	1020	^6+	ug/L		102	90 - 111	1	20
Arsenic	2000	2050		ug/L		103	88 - 110	1	20
Boron	1000	1040		ug/L		104	86 - 110	0	20

Lab Sample ID: LCSD 280-561285/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA **Analysis Batch: 561601 Prep Batch: 561285** Spike LCSD LCSD %Rec. **RPD**

Limits Analyte Added Result Qualifier RPD Limit Unit %Rec Lithium 1000 1000 ug/L 100 90 - 112

Lab Sample ID: 280-156833-1 MS Client Sample ID: MW-1-20211214 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 561533 Prep Batch: 561285**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec Calcium 4400 50000 54900 ug/L 101 48 - 153 1000 Chromium 1.7 998 ug/L 100 73 - 135 Cobalt 1.2 U 1000 1010 ug/L 101 82 - 119 10000 10100 101 Iron 37 ug/L 52 - 155 Magnesium 800 50000 50300 ug/L 99 62 - 146Manganese 1.9 U 1000 1020 ug/L 102 79 - 121 Potassium 1600 50000 51600 ug/L 100 76 - 132 Sodium 36000 50000 86400 ug/L 100 70 - 203 Vanadium 1.1 U 1000 1010 ug/L 101 85 - 120 ug/L Thallium 4.9 U 2000 1950 97 90 - 116 1.0 U ug/L Molybdenum 1000 101 1010 83 - 109 Strontium ^6+ 1000 1090 ^6+ 103 65 ug/L 81 - 125 Arsenic 4.4 U 2000 2090 ug/L 104 84 - 124

Lab Sample ID: 280-156833-1 MS Client Sample ID: MW-1-20211214 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 561601 Prep Batch: 561285 Sample Sample Spike MS MS %Rec. Result Qualifier **Analyte** Added Result Qualifier Unit %Rec Limits

1070

1020

ug/L

ug/L

104

102

87 - 113

89 - 114

1000

1000

32 J

9.1 U

Eurofins TestAmerica, Denver

1/6/2022

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 280-156833-1 MSD Client Sample ID: MW-1-20211214

Matrix: Water

Analysis Ratch: 561533

Prep Type: Total/NA

Analysis Batch: 561533									Prep Ba	itcn: 50	51285
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	4400		50000	56200		ug/L		104	48 - 153	2	20
Chromium	1.7	J	1000	992		ug/L		99	73 - 135	1	20
Cobalt	1.2	U	1000	996		ug/L		100	82 - 119	2	20
Iron	37	J	10000	10400		ug/L		104	52 - 155	3	20
Magnesium	800		50000	51400		ug/L		101	62 - 146	2	20
Manganese	1.9	U	1000	1010		ug/L		101	79 - 121	1	20
Potassium	1600	J	50000	52400		ug/L		102	76 - 132	2	20
Sodium	36000		50000	88300		ug/L		104	70 - 203	2	20
Vanadium	1.1	U	1000	1000		ug/L		100	85 - 120	1	20
Thallium	4.9	U	2000	1930		ug/L		97	90 - 116	1	20
Molybdenum	1.0	U	1000	1010		ug/L		101	83 - 109	1	20
Strontium	65	^6+	1000	1090	^6+	ug/L		102	81 - 125	1	20
Arsenic	4.4	U	2000	2050		ug/L		102	84 - 124	2	20
Boron	32	J	1000	1090		ug/L		106	87 - 113	1	20

Lab Sample ID: 280-156833-1 MSD Client Sample ID: MW-1-20211214

Matrix: Water

Analysis Batch: 561601

Prep Type: Total/NA **Prep Batch: 561285**

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Lithium 9.1 U 1000 1010 ug/L 101 89 - 114

Method: 9056A - Anions, Ion Chromatography

MR MR

Lab Sample ID: MB 280-560747/6 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 560747

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.090	U	0.50	0.090	mg/L			12/15/21 11:56	1
Nitrite as N	0.049	U	0.50	0.049	mg/L			12/15/21 11:56	1
Orthophosphate as P	0.47	U	1.0	0.47	mg/L			12/15/21 11:56	1

Lab Sample ID: LCS 280-560747/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 560747

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Nitrate as N 5.00 4.93 mg/L 99 90 - 110 Nitrite as N 5.00 103 5.13 mg/L 90 - 110 Orthophosphate as P 5.00 4.75 mg/L 95 90 - 110

Lab Sample ID: LCSD 280-560747/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 560747

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	5.00	4.92		mg/L		98	90 - 110	0	10
Nitrite as N	5.00	5.11		mg/L		102	90 - 110	0	10
Orthophosphate as P	5.00	4.74		mg/L		95	90 - 110	0	10

Eurofins TestAmerica, Denver

Page 12 of 24

1/6/2022

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MRL 280-560747/3

Matrix: Water

Analysis Batch: 560747

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.500	0.452	J	mg/L		90	50 - 150	
Nitrite as N	0.500	0.452	J	mg/L		90	50 - 150	
Orthophosphate as P	0.500	0.47	U	mg/L		54	50 - 150	

Lab Sample ID: 280-156833-1 MS

Matrix: Water

Analysis Batch: 560747

Client Sample ID: MW-1-20211214

Prep Type: Total/NA

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.81		5.00	5.64		mg/L		97	80 - 120	
Nitrite as N	0.049	U	5.00	4.88		mg/L		98	80 - 120	
Orthophosphate as P	0.47	U	5.00	4.48		mg/L		90	80 - 120	

Lab Sample ID: 280-156833-1 MSD

Matrix: Water

Analysis Batch: 560747

Client Sample ID: MW-1-20211214

Prep Type: Total/NA

RPD Sample Sample Spike MSD MSD %Rec. **Result Qualifier** Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec Nitrate as N 0.81 5.00 5.77 mg/L 99 80 - 120 2 Nitrite as N 0.049 U 5.00 5.00 mg/L 100 80 - 120 2 20 Orthophosphate as P 5.00 4.59 mg/L 0.47 U 92 80 - 120 2 20

Lab Sample ID: 280-156833-1 DU

Matrix: Water

Analysis Batch: 560747

Client Sample ID: MW-1-20211214

Prep Type: Total/NA

7 , 0.0 2	Sample	Sample	D	U DU				RPD
Analyte	Result	Qualifier	Resu	It Qualifie	er Unit	D	RPD	Limit
Nitrate as N	0.81		0.78	1	mg/L		 3	15
Nitrite as N	0.049	U	0.04	9 U	mg/L		NC	15
Orthophosphate as P	0.47	U	0.4	7 U	ma/L		NC	15

Lab Sample ID: MB 280-560748/6

Matrix: Water

Analysis Batch: 560748

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	U	0.50	0.23	mg/L			12/15/21 11:56	1
Chloride	1.0	U	3.0	1.0	mg/L			12/15/21 11:56	1
Sulfate	1.0	U	5.0	1.0	mg/L			12/15/21 11:56	1

Lab Sample ID: LCS 280-560748/4

Matrix: Water

Analysis Batch: 560748

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	 5.00	4.70		mg/L		94	90 - 110	
Chloride	100	103		mg/L		103	90 - 110	
Sulfate	100	103		mg/L		103	90 - 110	

Eurofins TestAmerica, Denver

Page 13 of 24

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 280-560748/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 560748

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	5.00	4.65		mg/L		93	90 - 110	1	10
Chloride	100	103		mg/L		103	90 - 110	0	10
Sulfate	100	103		mg/L		103	90 - 110	0	10

Lab Sample ID: MRL 280-560748/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 560748

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Bromide 0.500 0.425 J 50 - 150 mg/L 85 Chloride 5.00 4.88 mg/L 98 50 - 150 5.00 Sulfate 4.72 J mg/L 50 - 150 94

Lab Sample ID: 280-156833-1 MS Client Sample ID: MW-1-20211214 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 560748

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.23	U	5.00	4.65		mg/L		93	80 - 120	
Chloride	12		50.0	64.1		mg/L		104	80 - 120	
Sulfate	63		50.0	114		mg/L		102	80 - 120	

Lab Sample ID: 280-156833-1 MSD Client Sample ID: MW-1-20211214 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 560748

7 , 0.0 = 0.0 000	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Bromide	0.23	U	5.00	4.73		mg/L		95	80 - 120	2	20	
Chloride	12		50.0	65.6		mg/L		107	80 - 120	2	20	
Sulfate	63		50.0	115		mg/L		105	80 - 120	1	20	

Lab Sample ID: 280-156833-1 DU Client Sample ID: MW-1-20211214 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 560748

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Bromide	0.23	U	0.23	U	mg/L		 NC	15
Chloride	12		12.0		mg/L		2	15
Sulfate	63		61.6		mg/L		2	15

Lab Sample ID: MB 280-562555/6 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 562555

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.17	U	0.50	0.17	mg/L			01/05/22 12:22	1

Eurofins TestAmerica, Denver

1/6/2022

Client: Geosyntec Consultants, Inc.

Lab Sample ID: LCS 280-562555/4

Project/Site: UNC Cogen

Method: 9056A - Anions, Ion Chromatography (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

97

96

Matrix: Water Analysis Batch: 562555

LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit D 5.00

Fluoride mg/L Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 280-562555/5 **Matrix: Water**

4.84

0.481 J

mg/L

Prep Type: Total/NA

50 - 150

Prep Type: Total/NA

90 - 110

Analysis Batch: 562555

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 5.00 4.83 90 - 110 Fluoride mg/L 97 n

Lab Sample ID: MRL 280-562555/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 562555

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit %Rec

0.500

Lab Sample ID: 280-156833-1 MS Client Sample ID: MW-1-20211214

Matrix: Water

Fluoride

Analysis Batch: 562555

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Fluoride 0.17 U 5.00 80 - 120 4.71 mg/L

Lab Sample ID: 280-156833-1 MSD Client Sample ID: MW-1-20211214 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 562555

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec **RPD** Limit Fluoride 0.17 U 5.00 4.37 87 mg/L 80 - 120

Lab Sample ID: 280-156833-1 DU Client Sample ID: MW-1-20211214 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 562555

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier **RPD** Limit Unit D 0.17 U 0.17 U NC Fluoride mg/L 15

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 280-561246/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 561246 MR MR Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids 4.7 Ū 10 4.7 mg/L 12/20/21 10:38

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Job ID: 280-156833-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: MW-1-20211214

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 280-561246/2

Matrix: Water

Analysis Batch: 561246

Spike LCS LCS %Rec. Result Qualifier Added Limits Analyte Unit D %Rec **Total Dissolved Solids** 505 491 mg/L 97 88 - 114

Lab Sample ID: LCSD 280-561246/3

Matrix: Water

Analysis Batch: 561246

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 505 **Total Dissolved Solids** 486 mg/L 96 88 - 114 20

Method: SM 5310B - Organic Carbon, Total (TOC)

Lab Sample ID: MB 280-561526/11

Matrix: Water

Analysis Batch: 561526

MB MB Analyte

Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Total Inorganic Carbon - Quad 0.35 U 1.0 0.35 mg/L 12/21/21 20:07

Lab Sample ID: MB 280-561526/7

Matrix: Water

Analysis Batch: 561526

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Inorganic Carbon - Quad 0.35 U 1.0 0.35 mg/L 12/21/21 19:17

Lab Sample ID: LCS 280-561526/9

Matrix: Water

Analysis Batch: 561526

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits Total Inorganic Carbon - Quad 25.0 25.0 mg/L 100 88 - 112

Lab Sample ID: LCSD 280-561526/10

Matrix: Water

Analysis Batch: 561526

Spike LCSD LCSD RPD %Rec. Added Result Qualifier RPD Unit %Rec Limits Limit Total Inorganic Carbon - Quad 25.0 24.4 97 88 - 112 mg/L

Lab Sample ID: 280-156833-1 MS

Matrix: Water

Analysis Batch: 561526

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits 3.7 F1 25.0 36.3 F1 Total Inorganic Carbon - Quad mg/L 130 88 - 112

Eurofins TestAmerica, Denver

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Dissolved

Prep Type: Dissolved

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Method: SM 5310B - Organic Carbon, Total (TOC) (Continued)

Client Sample ID: MW-1-20211214 Lab Sample ID: 280-156833-1 MSD

Matrix: Water

Analysis Batch: 561526

RPD Sample Sample Spike MSD MSD %Rec. Result Qualifier Result Qualifier Added Unit %Rec Limits RPD Limit Analyte 3.7 F1 Total Inorganic Carbon - Quad 25.0 35.4 F1 mg/L 127 88 - 112 2 15

Method: SM 5310B - Organic Carbon, Dissolved (DOC)

Lab Sample ID: MB 280-562238/5 Client Sample ID: Method Blank **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562238

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 0.35 U 0.35 mg/L 12/30/21 15:05 Dissolved Organic Carbon - Quad

Lab Sample ID: LCS 280-562238/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 562238

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Dissolved Organic Carbon -25.0 23.8 mg/L 95 88 - 112 Quad

Lab Sample ID: LCSD 280-562238/4

Matrix: Water

Analysis Batch: 562238

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Analyte Limit 25.0 24.3 97 88 - 112 2 Dissolved Organic Carbon mg/L

Quad

Lab Sample ID: 280-156833-1 MS Client Sample ID: MW-1-20211214 **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 562238

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Dissolved Organic Carbon -0.63 J 25.0 24.7 mg/L 96 88 - 112

Lab Sample ID: 280-156833-1 MSD Client Sample ID: MW-1-20211214

Matrix: Water

Analysis Batch: 562238

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec Limit Dissolved Organic Carbon -0.63 J 25.0 24.5 96 15 mg/L 88 - 112

Quad

Eurofins TestAmerica, Denver

1/6/2022

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: UNC Cogen

Job ID: 280-156833-1

Metals

Prep Batch: 561285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	3010A	
MB 280-561285/1-A	Method Blank	Total/NA	Water	3010A	
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
280-156833-1 MS	MW-1-20211214	Total/NA	Water	3010A	
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	3010A	

Analysis Batch: 561533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	6010C	561285
MB 280-561285/1-A	Method Blank	Total/NA	Water	6010C	561285
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	6010C	561285
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	561285
280-156833-1 MS	MW-1-20211214	Total/NA	Water	6010C	561285
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	6010C	561285

Analysis Batch: 561601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	6010C	561285
MB 280-561285/1-A	Method Blank	Total/NA	Water	6010C	561285
LCS 280-561285/2-A	Lab Control Sample	Total/NA	Water	6010C	561285
LCSD 280-561285/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	561285
280-156833-1 MS	MW-1-20211214	Total/NA	Water	6010C	561285
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	6010C	561285

General Chemistry

Analysis Batch: 560747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	9056A	
MB 280-560747/6	Method Blank	Total/NA	Water	9056A	
LCS 280-560747/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-560747/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-560747/3	Lab Control Sample	Total/NA	Water	9056A	
280-156833-1 MS	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 DU	MW-1-20211214	Total/NA	Water	9056A	

Analysis Batch: 560748

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	9056A	<u> </u>
MB 280-560748/6	Method Blank	Total/NA	Water	9056A	
LCS 280-560748/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-560748/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-560748/3	Lab Control Sample	Total/NA	Water	9056A	
280-156833-1 MS	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 DU	MW-1-20211214	Total/NA	Water	9056A	

Page 18 of 24

QC Association Summary

Client: Geosyntec Consultants, Inc.

Job ID: 280-156833-1 Project/Site: UNC Cogen

General Chemistry

Analysis Batch: 561246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	SM 2540C	
MB 280-561246/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 280-561246/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 280-561246/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	

Analysis Batch: 561526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	SM 5310B	_
MB 280-561526/11	Method Blank	Total/NA	Water	SM 5310B	
MB 280-561526/7	Method Blank	Total/NA	Water	SM 5310B	
LCS 280-561526/9	Lab Control Sample	Total/NA	Water	SM 5310B	
LCSD 280-561526/10	Lab Control Sample Dup	Total/NA	Water	SM 5310B	
280-156833-1 MS	MW-1-20211214	Total/NA	Water	SM 5310B	
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	SM 5310B	

Analysis Batch: 562238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Dissolved	Water	SM 5310B	
MB 280-562238/5	Method Blank	Dissolved	Water	SM 5310B	
LCS 280-562238/3	Lab Control Sample	Dissolved	Water	SM 5310B	
LCSD 280-562238/4	Lab Control Sample Dup	Dissolved	Water	SM 5310B	
280-156833-1 MS	MW-1-20211214	Dissolved	Water	SM 5310B	
280-156833-1 MSD	MW-1-20211214	Dissolved	Water	SM 5310B	

Analysis Batch: 562555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-156833-1	MW-1-20211214	Total/NA	Water	9056A	
MB 280-562555/6	Method Blank	Total/NA	Water	9056A	
LCS 280-562555/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-562555/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-562555/3	Lab Control Sample	Total/NA	Water	9056A	
280-156833-1 MS	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 MSD	MW-1-20211214	Total/NA	Water	9056A	
280-156833-1 DU	MW-1-20211214	Total/NA	Water	9056A	

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: UNC Cogen

Lab Sample ID: 280-156833-1

Matrix: Water

Job ID: 280-156833-1

Client Sample ID: MW-1-20211214 Date Collected: 12/14/21 11:25

Date Received: 12/15/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561533	12/22/21 03:45	LMT	TAL DEN
Total/NA	Prep	3010A			50 mL	50 mL	561285	12/21/21 15:02	CEH	TAL DEN
Total/NA	Analysis	6010C		1			561601	12/22/21 15:29	LRD	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560747	12/15/21 13:06	SPG	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	560748	12/15/21 13:06	SPG	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	562555	01/05/22 14:40	SPG	TAL DEN
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	561246	12/20/21 11:39	ABW	TAL DEN
Dissolved	Analysis	SM 5310B		1	20 mL	20 mL	562238	12/30/21 15:44	RAF	TAL DEN
Total/NA	Analysis	SM 5310B		1	20 mL	20 mL	561526	12/21/21 20:19	RAF	TAL DEN

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Eurofins TestAmerica, Denver

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Job ID: 280-156833-1

Project/Site: UNC Cogen

Laboratory: Eurofins TestAmerica, Denver

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-23
A2LA	ISO/IEC 17025	2907.01	10-31-23
Alabama	State Program	40730	09-30-12 *
Alaska (UST)	State	18-001	02-28-22
Arizona	State	AZ0713	12-20-22
Arkansas DEQ	State	19-047-0	06-01-22
California	State	2513	01-08-22
Connecticut	State	PH-0686	09-30-22
Florida	NELAP	E87667-57	06-30-22
Georgia	State	4025-011	01-08-22
Illinois	NELAP	2000172019-1	04-30-22
lowa	State	IA#370	12-02-22
Kansas	NELAP	E-10166	04-30-22
Louisiana	NELAP	30785	06-30-14 *
Louisiana	NELAP	30785	06-30-22
Minnesota	NELAP	1788752	12-31-22
Nevada	State	CO000262020-1	07-31-22
New Hampshire	NELAP	205319	04-29-22
New Jersey	NELAP	190002	06-30-22
New York	NELAP	59923	04-01-22
North Carolina (WW/SW)	State	358	12-31-22
North Dakota	State	R-034	01-08-22
Oklahoma	State	2018-006	08-31-22
Oregon	NELAP	4025-011	01-08-22
Pennsylvania	NELAP	013	07-31-22
South Carolina	State	72002001	01-08-22
Texas	NELAP	TX104704183-08-TX	09-30-09 *
Texas	NELAP	T104704183-21-19	10-01-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-20-00065	03-06-23
Utah	NELAP	QUAN5	06-30-13 *
Utah	NELAP	CO000262019-11	07-31-22
Virginia	NELAP	10490	06-14-22
Washington	State	C583-19	08-03-22
West Virginia DEP	State	354	01-31-22
Wisconsin	State	999615430	08-31-22
Wyoming (UST)	A2LA	2907.01	10-31-22

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Denver 4955 Yarrow Street Arvada, CO 80002 Phone (203) 276,0100 Deces (203) 444,2424	Chain of Custody	ody Record	na �	💸 eurofins _{Environment} Testing America
	Sampler (1)	O P M P M P M P M P M P M P M P M P M P	Carrier Tracking No(s): COC No: 280-11	COC No: 280-114880-30944.1
Clent mormation Clent contact Michael Schot	Phom/919/424-1840	urofinset.com	State of Origin.	
Company Consultants Inc. Geosyntee Consultants Inc.		Analysis Requested		Necele
Address 2501 Blue Ridge Road	Due Date Requested:			Š
Cr. Ralegh	TAT Requested (days):		B - NaOH	N - None Setate O - AsNaO2
State Zip NC 27607	Compliance Project: A Yes A No	e 2 .4,	D - Nino	
Phone 919 424 1824	PO#:	S 2	G - Amchlor H - Ascorbic Acid	70
Enail ViSchott@Geosyntec.com	WO#	(ON	- Ce 	
MVC CORM	Project #*	10 sa		
er chared Hill, NC	#MOSS	S TAN	oo Jo Je	
-	Sample (C=com.	Matrix (waster) (wast	[™] www.lsto	
Sample Identification	G=grab)	Field See The	Part Per	Special Instructions/Note:
-	7 711 101101	× × × × ×		
118 -1	1761 1120 6	× × × × × ×		
211214	14/21 1135 6	XXXXX		
		Water	A A A A	
		Water	*47	
		Water		
		Water	7 18 18 18 18 18 18 18 18 18 18 18 18 18	
		Water	72. 2	
	4	Water	1100	
-280-156833 Chain of Custody		Water	T.	
		Water	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Possible Hazard Identification	Poison B	Sample Disposal (A fee may be as:	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Honive For Mon	er than 1 month) Months
36		Special Instructions/QC Requirements		
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Reinquished by Olygony	Date/Time: 1/2 1 1730 Com	Company Received by Oglocy un fec.	Strul	1030 Company
Relinquished by	_		Date/Time	Сомрапу
Relinquished by:	Date/Time: Com	Company Received by:	Date/Time:	Сотрапу
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) °C and Other Remarks:	arks: CTTR 11 OFT	6
				Ver: 01/16/2019

ORIGIN ID: SOPA (919) 424-1840

GEOSYNTEC CONSULTÂNTS STE 430 2501 BLUE RIDGE RD STE 430 RALEIGH, NC 27607 UNITED STATES US

SHIP DATE: 14DEC21 ACTWGT: 49.05 LB CAD: 6992555/SSF02220 DIMS: 25x14x14 IN BILL THIRD PARTY

ATTN: SAMPLE RECEIVING **EUROFINS TESTAMERICA 4955 YARROW STREET**

ARVADA CO 80002

TRK# 2875 8611 8262

- 15 DEC 11:30A

80002 co-us DEN

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 280-156833-1

Login Number: 156833 List Source: Eurofins TestAmerica, Denver

List Number: 1

Creator: Roehsner, Karen P

Creator: Roensner, Karen P		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

0

10

10

13

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: 12 January 2022

To: Michael Schott

Eric Nesbit

From: Kristoffer Henderson

Ashley Wilson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverables - Eurofins

TestAmerica Laboratory Job ID Numbers 280-156786-1, 280-

156833-1 and 500-209718-1

SITE: UNC Cogen

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of eight water samples including one sample matrix spike/matrix spike duplicate (MS/MSD) collected from December 13-14, 2021 as part of the UNC Cogen sampling event. The analyses were performed at Eurofins TestAmerica (ETA) Denver, Arvada, Colorado, with the exception of the hexavalent chromium analyses which were performed by ETA Chicago, University Park, Illinois. The samples were analyzed for the following tests:

- United States Environmental Protection Agency (USEPA) Methods 3010A/6010C -Metals
- USEPA Method 9056A Anions (Bromide, Chloride, Fluoride, Nitrate as N and Sulfate)
- Standard Method 2540C- Total Dissolved Solids (TDS)
- Standard Method 5310B Total Inorganic Carbon (TIC) and Dissolved Organic Carbon (DOC)
- USEPA Method 218.6 Hexavalent Chromium

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. Qualified data should be used within the limitations of the qualification.

The data were reviewed based on the pertinent methods referenced by the data package and professional and technical judgment and the following documents:

- Quality Assurance Project Plan (QAPP), UNC-CH Cogeneration Facility, Chapel Hill, North Carolina, Site ID # NCR000010272, Geosyntec Project Number GN5219, October 2013:
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (USEPA-542-R-20-006).

The following samples were analyzed and validated at a Stage 2A level in the data set:

Laboratory ID	Client ID
280-156786-1	MW-2-20211213
280-156786-2	MW-3-20211213
280-156786-3	MW-5-20211213
280-156786-4	SW-DOWN-20211213
280-156786-5	SW-UP-20211213

Laboratory ID	Client ID
280-156786-6	MW-4-20211213
280-156833-1	MW-1-20211214
280-156833-1 MS	MW-1-20211214
280-156833-1 MSD	MW-1-20211214
500-209718-1	MW-4-20211213

The samples were received at the laboratories at 0.2 degrees Celsius (°C), 4.2°C, 2.9°C and 0.3°C, both within and outside of the QAPP criteria of 4 °C \pm 2 °C. However, since the samples were received below 6 °C and above freezing, no qualifications were applied to the data, based on professional and technical judgment. No sample preservation issues were noted by the laboratory.

Incorrect error corrections were observed on the chain of custody (COC) in reports 280-156786-1 and 500-209718-1 instead of the proper procedure of a single strike through, correction, and initials and date of the person making the corrections.

The sample collections times on the COC in report 280-156833-1 did not match for the MS/MSD for sample MW-1-20211214. The MS/MSD samples were logged in to match the collection time of sample MW-1-12182020 at 11:25.

1.0 METALS

The samples were analyzed for metals per USEPA Methods 3010A/6010C.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample

- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this sample set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for the sample set is 100%.

1.1.1 Analysis Anomaly

The interference check standard solution (ICSA) associated with batches 561487 and 561533 had results for strontium at a level greater than the reporting limit (RL). The initial ICSA result(s) was 24.9ppb which is greater than the LOD of 0.3ppb for Sr. This element has been shown to be a trace impurity by mass spectrum. Therefore, based on professional and technical judgment, no qualifications were applied to the data.

1.2 <u>Holding Times</u>

The holding time for metals analyses of water samples is 180 days from sample collection to analysis. The holding time was met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported (batch 561285). Metals were not detected in the method blank above the method detection limits (MDLs).

1.4 Matrix Spike/Matrix Spike Duplicate

MS/MSD pairs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair was reported using sample MW-1-20211214. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS/LCS duplicate (LCSD) pair was reported. The recovery and RPD results were within the QAPP specified acceptance criteria.

1.6 Equipment Blank

An equipment blank was not collected with the sample set.

1.7 Field Duplicate

A field duplicate sample was not collected with the sample set.

1.8 Sensitivity

The samples were reported to the MDLs. Elevated non-detect results were not reported. The MDLs and RLs were similar to those listed in Table 6.2 of the QAPP.

1.9 Electronic Data Deliverables (EDDs) Review

Results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20%. The MDLs and RLs were reported in the level II reports; however, only the MDLs were reported in the EDDs. No other discrepancies were identified between the level II reports and the EDDs.

2.0 WET CHEMISTRY

The samples were analyzed for anions (bromide, chloride, fluoride, nitrate as N and sulfate) by USEPA Method 9056A, DOC and TIC by Standard Method 5310B, TDS by Standard Method 2540C and hexavalent chromium by USEPA method 218.6.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate

- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

2.1.1 Completeness

The wet chemistry data reported in this sample set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for the sample set is 100%.

2.1.2 Analysis Anomaly

The fluoride results in samples MW-3-20211213, MW-5-20211213, SW-DOWN-20211213, SW-UP-20211213 and MW-4-20211213 were flagged ^1+ to indicate the initial calibration verification (ICV) result was high and outside of the control limits. Since fluoride was not detected in these samples, no qualifications were applied to the data.

2.2 <u>Holding Times</u>

The specified holding times are listed below.

Parameter	Holding Time		
Bromide, Chloride, Fluoride And Sulfate by	28 days from sample collection to analysis		
USEPA Method 9056A			
Nitrate and N by USEPA Method 9056A	48 hours from sample collection to analysis		
DOC and TIC by SM 5310B	28 days from sample collection to analysis		
TDS by Standard Method 2540C	7 days from sample collection to analysis		
Hexavalent chromium by USEPA Method 218.6	24 hours from sample collection to analysis or 28 days for field		
	filtered and preserved samples (pH 9.3-9.7)		

The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two method blanks were reported for TDS (batches 561246 and 561048), five method blanks were reported for the anions (batches 560747, 560748, 562555, 560574 and 560575), two method blanks for DOC (batches 562238 and 562191), two method blanks for TIC (batches 561526 and 561673) and one method blank was reported for

hexavalent chromium (batch 634390). The wet chemistry parameters were not detected in the method blanks above the MDLs.

2.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

One sample set specific MS/MSD pair was reported for the anions, using sample MW-1-20211214, two sample set specific MS/MSD pairs were reported for DOC using samples MW-1-20211214 and MW-2-20211213 and two sample set specific MS/MSD pairs were reported for TIC using samples MW-1-20211214 and MW-3-20211213. The recovery and RPD results were within the laboratory specified acceptance criteria, with the following exceptions.

The recoveries of TIC in the MS/MSD pair using sample MW-1-20211214 were high and outside the laboratory specified acceptance criteria. Therefore, the TIC concentration in sample MW-1-20211214 was J+ qualified as estimated with a high bias.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
MW-1-20211214	TIC	3.7	F1	3.7	$\mathbf{J}+$	4

mg/L-milligrams per liter

2.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs, LCS/LCSD pairs and method reporting limit (MRL) standards were reported for the anions, TDS, TIC, DOC and hexavalent chromium data. The recovery and RPD results were within the laboratory specified acceptance criteria.

2.6 Laboratory Duplicate

One sample set specific laboratory duplicate was reported for anions, using sample MW-1-20211214 and one sample set specific laboratory duplicate was reported for TDS using samples MW-2-20211213. The RPD results were within the laboratory specified acceptance criteria.

2.7 **Equipment Blank**

An equipment blank was not collected with the sample set.

2.8 Field Duplicate

A field duplicate sample was not collected with the sample set.

F1-laboratory flag indicating the MS and/or MSD recovery was outside the limits

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

2.9 Sensitivity

The samples were reported to the MDLs. MDLs and RLs for the wet chemistry parameters were not listed in QAPP Table 6.2.

2.10 Electronic Data Deliverables Review

Results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20%. The MDLs and RLs were reported in the level II reports; however, only the MDLs were reported in the EDDs. No other discrepancies were identified between the level II reports and the EDDs.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher that the concentration of the analyte in the sample due to positive bias of associated OC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower that the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

RPD-relative percent difference